
Kim et al. Journal of Biological Engineering           (2024) 18:31  
https://doi.org/10.1186/s13036-024-00428-1

RESEARCH

Mimicking chronic alcohol effects 
through a controlled and sustained ethanol 
release device
Wanil Kim1†, Jin‑Ok Chu2†, Do‑Yeon Kim3, Soo‑Hyeon Lee4, Chang‑Hyung Choi5* and Kyung‑Ha Lee4,6* 

Abstract 

Alcohol consumption, a pervasive societal issue, poses considerable health risks and socioeconomic consequences. 
Alcohol‑induced hepatic disorders, such as fatty liver disease, alcoholic hepatitis, chronic hepatitis, liver fibrosis, 
and cirrhosis, underscore the need for comprehensive research. Existing challenges in mimicking chronic alcohol 
exposure in cellular systems, attributed to ethanol evaporation, necessitate innovative approaches. In this study, 
we developed a simple, reusable, and controllable device for examining the physiological reactions of hepatocytes 
to long‑term alcohol exposure. Our approach involved a novel device designed to continuously release ethanol 
into the culture medium, maintaining a consistent ethanol concentration over several days. We evaluated device 
performance by examining gene expression patterns and cytokine secretion alterations during long‑term exposure 
to ethanol. These patterns were correlated with those observed in patients with alcoholic hepatitis. Our results sug‑
gest that our ethanol‑releasing device can be used as a valuable tool to study the mechanisms of chronic alcohol‑
mediated hepatic diseases at the cellular level. Our device offers a practical solution for studying chronic alcohol 
exposure, providing a reliable platform for cellular research. This innovative tool holds promise for advancing our 
understanding of the molecular processes involved in chronic alcohol‑mediated hepatic diseases. Future research 
avenues should explore broader applications and potential implications for predicting and treating alcohol‑related 
illnesses.
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Introduction
Alcohol misuse can lead to several negative physical and 
mental conditions. In 2021, approximately 60 million 
(21.5%) of American adults engaged in binge drinking [1]. 
Each year, alcohol-related deaths in the US total 95,000, 
with 68,000 occurring in males and 27,000 in females 
[2] . Consequently, alcohol consumption has a nega-
tive impact on society and the economy, and both acute 
and long-term alcoholism can cause major health issues. 
According to the International Classification of Diseases, 
Tenth Revision, alcohol misuse contributes to more than 
25 diseases, such as diabetes, cancer, neuropsychiatric 
disorders, and cardiovascular diseases [3].

The liver performs vital functions in the body, but liver 
ailments, also known as hepatic disorders, can pose seri-
ous harm to the body. Hepatic diseases can originate 
from various factors, including parasitic and viral infec-
tions, hereditary genetic defects, and liver toxins, such 
as alcohol [4, 5]. Liver diseases are prevalent across the 
globe and are quite prevalent in Asia [6]. The liver, being 
the primary location of alcohol metabolism, becomes the 
target of alcohol-mediated harm, resulting in conditions 
such as fatty liver disease, alcoholic hepatitis, chronic 
hepatitis, liver fibrosis, and cirrhosis [7]. Even with mini-
mal alcohol consumption, patients with hepatitis B and C 
face a higher risk of developing cancer than non-drink-
ers [8]. The causes and signaling pathways of alcohol-
induced liver disorders have been extensively studied at 
clinical, animal, cellular, and molecular levels. Genetic 
predispositions linked to PNPLA3, ALDH2, CYP2E1, 
HSD17B13, FAF2, and NFE2L2 have been associated 
with alcoholic liver illnesses [9–13]. However, predict-
ing and treating liver disorders resulting from prolonged 
alcohol consumption remains challenging.

Direct alcohol treatment of cell culture medium is fre-
quently used to simulate acute alcohol exposure in organ-
isms for a comprehensive understanding of the cellular 
and molecular mechanisms of acute alcohol-mediated 
liver damage [14]. However, mimicking chronic alcohol 
exposure at the cellular level is challenging due to etha-
nol evaporation from the culture medium, leading to 
potential misinterpretation of long-term cellular reac-
tions [15]. Numerous techniques have been used to over-
come this hurdle, including sealing the culture plate to 
reduce evaporation, adding ethanol regularly to the cul-
ture media, saturating the incubator’s air with ethanol, 
and using alcohol-releasing devices [16–18]. The most 
frequently employed method involves providing ethanol 
by changing the medium every 24 hours [18]. However, 
this approach results in fluctuating alcohol concentra-
tions throughout cultivation, potentially causing medium 
contamination, thereby compromising the study’s valid-
ity and leading to results misinterpretation [17]. An 

alternative method to maintain cell exposure to ethanol 
is to saturate the chamber atmosphere above the culture 
media with ethanol or seal the culture dishes with Para-
film® [15]. However, during extended (>24 h) cultivation, 
these techniques may interfere with the normal exchange 
of oxygen and carbon dioxide, compromising cell viabil-
ity. Therefore, developing a straightforward and suit-
able method for examining the physiological reactions 
of hepatocytes to long-term alcohol exposure becomes 
crucial. Additionally, the development of a method for 
the sustained and regulated release of ethanol over an 
extended period, such as several days, is imperative.

Previously, we developed a small, floating glass capil-
lary system to release ethanol over several days [17]. The 
ethanol concentration in the culture medium was con-
trolled by changing the number of capillaries. However, 
the capillary’s size limited its use to dishes larger than 35 
mm, necessitating replacement to maintain the ethanol 
concentration beyond three days.

In this study, we developed a simple, reusable, and con-
trollable device to overcome ethanol evaporation dur-
ing continuous exposure. The ethanol concentration in 
the culture medium was tested to determine whether it 
remained consistent over several days by installing a sim-
ple carrier for continuous ethanol release into the culture 
dish.

Results
Fabrication of ethanol‑release device
Ethanol, with its high vapor pressure, poses challenges 
for simulating ethanol exposure in biological systems 
over time due to easy evaporation. To overcome these 
limitations, we designed a novel device that can continu-
ously regulate ethanol release. The fabrication process 
for this ethanol-release device is illustrated in Fig. 1. The 
ethanol-release device consisted of a cup-shaped etha-
nol container and a commercially available hanging cell 
culture insert, as shown in Fig. 1A. To prepare the cup-
shaped ethanol container, we created a 3D-printed pol-
ylactic acid (PLA) mold (Fig.  1B). The mold featured a 
cylindrical structure in the center with surrounding sup-
port structures, facilitating proper alignment of the com-
ponents during the molding process (Fig. 1C).

The prepared mold was secured onto the cell culture 
insert containing the polydimethylsiloxane (PDMS) 
precursor that was prepared by mixing the PDMS pre-
polymer and curing agent (10:1 ratio), ensuring that the 
central cylindrical part was fully submerged (Fig.  1D-
i). The bottom surface of the culture insert was sealed 
to prevent leakage. Next, the PDMS precursor was 
cured in an oven set at 60 °C for 8 h (Fig. 1D-ii). Finally, 
we completed the ethanol-release device by separat-
ing the mold from the cured PDMS (Fig.  1D-iii). The 
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three-dimensional view of the fabricated ethanol-release 
device is shown in Fig. 1E.

The ethanol-release device was designed to release 
ethanol through two distinct routes. While one route 
involved evaporation in the upward direction, the other 
involved penetration through the bottom PDMS con-
tainer (Fig. 1F). To achieve a stable and sustained ethanol 
release, the microwells should be saturated with ethanol 
through evaporation, allowing simultaneous dissolu-
tion in water. Additionally, ethanol can also be released 
through the bottom of the PDMS container. To validate 
this assumption, we compared our device with a con-
figuration in which the bottom surface was sealed with a 
glass slide. Ethanol (0.5 mL) was introduced into the stor-
age space of the container, and the device was inserted 
into a microwell plate containing water. The quantity of 
ethanol in the aqueous solution was measured 24 h after 

the concentration reached a steady state. The amount 
of ethanol from each microwell was determined using 
UV-vis spectroscopy (λabs~962 nm). The plot shown in 
Fig.  1G exhibits that approximately 80% of the ethanol 
release occurred through evaporation, with only 20% 
penetrating through the bottom of the PDMS container. 
A small error bar indicates that this device enables con-
sistent and sustained release of ethanol (Fig. 1G).

Reusable and adjustable ethanol‑releasing devices 
for the biological system
The biocompatibility and functionality that controlled 
the sustained release of ethanol from the PDMS devices 
were crucial for their application in cellular systems. 
The PDMS devices were filled with phosphate buffered 
saline (PBS) in the middle space (Fig. 2A) and placed in a 
6-well plate containing the culture medium (Fig. 2B and 

Fig. 1 Fabrication of ethanol‑release device. A Schematic showing ethanol‑release device fabricated by the assembly of PDMS ethanol 
container and commercially available culture insert. Schematics showing (B) 3D view and (C) top view of the 3D printed mold. D Schematics 
showing the sequential procedure for creating an ethanol‑release device. E Photographs showing a three‑dimensional view of the prototype 
of the ethanol‑release device. F Schematic showing the release pathway of ethanol. G Plot showing the proportion of release pathways for ethanol

(See figure on next page.)
Fig. 2 Reusable and adjustable ethanol‑release device. a Top view of the PBS‑containing ethanol‑releasing device. b Side view of PBS‑containing 
devices placed in a culture medium with 6‑well plates. c Top view of PBS‑containing devices placed in a culture medium with 6‑well plates. 
d Cytotoxicity of PBS‑containing PDMS devices in L‑O2 or HepG2 cells. The viability of devices not positioned well was set to 100. e Ethanol 
was directly added to the cell culture medium of L‑02 cells, and the ethanol concentration in the culture medium was measured at indicated 
time points. f Ethanol‑containing PDMS devices were placed in the 6‑well plates, and the ethanol concentration in the culture medium of L‑02 
cells was measured at indicated time points. g PDMS devices used less than five times, ten times, or 20 times were exposed to indicated ethanol 
concentrations, and the ethanol concentration in the culture medium of L‑02 cells was measured
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Fig. 2 (See legend on previous page.)
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C). To determine the biocompatibility of PDMS devices, 
we tested their cytotoxicity. We positioned the PDMS 
devices filled with PBS in culture media containing 
L-02 or HepG2 cells, which are frequently used in liver 
research. No cytotoxicity was observed after 24 h or 72 h 
of incubation with the PDMS device (Fig. 2D), suggesting 
that the PDMS device system can be used in biocompat-
ible applications.

Next, we compared the ethanol concentration in the 
culture medium under various conditions, including the 
direct addition of ethanol to the medium and the place-
ment of ethanol-containing PDMS devices on the cul-
ture plate. When ethanol was introduced directly into 
the medium, its concentration declined rapidly and 
reached near-zero levels after 24 h, independent of the 
initial ethanol concentration (Fig. 2E). In contrast, when 
PDMS devices were used, the ethanol concentration in 
the medium gradually increased over 12 h and remained 
sustained, correlating with the ethanol concentration in 
the PDMS devices (Fig. 2D). Increasing ethanol concen-
trations (0, 5, 10, and 20%) in the PDMS devices led to 
a corresponding concentration-dependent increase in the 
culture medium. However, concentrations exceeding 20% 
in the PDMS devices did not increase the ethanol con-
centration in the culture medium.

To assess the reusability of PDMS and minimize exper-
iment costs and time, we added various ethanol concen-
trations to the PDMS devices with usage cycles of less 
than five times, less than 10 times, or more than 20 times. 
After a 24-h incubation, the ethanol concentration in 
the culture medium was measured. For reuse, the PDMS 
devices were first washed with 70% ethanol and subse-
quently rinsed with PBS. Sterilization was then achieved 
through UV irradiation. The number of reuse cycles did 
not affect the ethanol-release properties of the PDMS 
devices (Fig.  2G). These results suggest that PDMS 
devices can effectively control ethanol concentration in 
the culture medium, and biocompatible PDMS devices 
are reusable.

Long‑term exposure to ethanol using PDMS devices
We tested the ability of the PDMS device to release etha-
nol gradually and constantly into a cell culture system. 
Following the introduction of PDMS devices with 5% or 
10% ethanol, the ethanol concentration in the culture 
media steadily increased until 12 h and then remained 
constant for 120 h (Fig.  3A). While PDMS devices con-
taining 5% ethanol induced approximately 0.54% ethanol 
concentration in the culture medium, those with 10% 
ethanol induced approximately 0.95% ethanol concen-
tration. The ethanol concentration in the PDMS devices 
considerably influenced that of the culture medium 
(Fig.  3B). To check the long-term ethanol-releasing 

function of the PDMS devices, we placed PBS, 5%, or 10% 
ethanol-containing PDMS devices in a cell-containing 
culture plate and incubated for 72 h to evaluate cytotox-
icity. Long-term exposure to 5% ethanol (approximately 
0.54% ethanol concentration in the medium) induced 
cytotoxicity with approximately 69% cell viability (Fig 3C 
and D), and exposure to a constant 10% ethanol in PDMS 
(0.95% ethanol concentration in the medium) resulted in 
stronger cytotoxicity with approximately 53% cell viabil-
ity. These results suggest that PDMS devices are suitable 
for long-term ethanol treatment in cells with a control-
lable ethanol concentration and could be used as a tool 
to examine the cellular and molecular mechanisms of 
chronic ethanol effects in cellular systems.

Long‑term treatment of ethanol alters cytokine levels
The release of proinflammatory cytokines from liver cells 
is a well-known pathogenesis of alcoholic liver disease 
[19]. Cytokines trigger considerable changes in the gene 
expression of their target cells to induce apoptotic dam-
age and produce reactive oxygen species, thereby empha-
sizing the importance of understanding and controlling 
alcoholic liver disease.

The L-02 normal liver cell line has been utilized for 
in vitro alcohol stimulation [20, 21]; however, most stud-
ies have focused only on short exposure times (<48 h) 
owing to technical difficulties. We previously reported 
that the prolonged release of constant alcohol is a more 
reliable model for the study of in  vitro chronic alco-
hol exposure during mammalian cell cultivation [17]. 
Because the cytokine release profile after chronic alcohol 
exposure to L-02 liver cells has also not been reported, 
we placed 10% ethanol-containing PDMS devices in 
L-02 cell-containing culture plates for up to 120 h for 
sustained release of ethanol to a final concentration of 
approximately 0.95% in the culture medium and meas-
ured the secreted cytokine levels (Fig. 4A and B).

Some cytokines showed early changes in protein 
expression, which remained altered over time (Fig.  4C). 
For example, angiogenin levels decreased by nearly 40% 
after 24 h of ethanol release. Angiogenin in hepatocel-
lular carcinoma plays a crucial role in tumor vasculature 
construction [22]; however, its role in normal liver physi-
ology has been challenging to elucidate. Because angio-
genin exhibits enzymatic activity and plays an important 
role in various signaling pathways related to cell prolif-
eration and survival [23], we hypothesized that normal 
hepatocyte function would be diminished in chronic 
ethanol. Secretion of IL-3 and macrophage colony-stim-
ulating factor (M-CSF) from L-02 cells was also notably 
reduced by ethanol treatment, and the levels remained 
low for up to 120 h. While IL-3 plays pleiotropic roles in 
hematopoietic and immune cell differentiation [24], its 
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role in the liver is not well understood. The macrophage 
colony-stimulating factor is a common-chain cytokine 
that regulates inflammation. Because M-CSF has been 
well studied in macrophage regulation, its role in hepatic 

macrophage control of the liver is clearly elucidated 
[25]. Macrophage inflammatory protein-1α is a highly 
expressed protein in transplanted or ischemic injury liver 
for controlling the immune response [26]. Oncostatin M 

Fig. 3 Long‑term exposure to ethanol using PDMS devices. a 5% or 10% ethanol was added to the storage space of the container. The devices 
were placed into 6‑well plates containing the cell culture medium, and the ethanol concentration in the culture medium was measured 
at the indicated time points. b The average concentration in the culture medium of panel A was calculated (n = 30). c PDMS devices containing PBS 
and 5% or 10% ethanol were placed in a L‑02 cell‑containing culture plate and incubated for 72 h, after which live and dead cells were checked. 
d PDMS devices containing PBS and 5% or 10% ethanol were placed in a culture plate and incubated for another 72 h, after which cell viability 
was measured (n = 5)
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(OSM) is a key regulator involved in the early develop-
ment of the liver in fetuses and the growth of hepato-
carcinomas in adults [27]. As a major organ-producing 
hematopoietic hormone, the liver also secretes throm-
bopoietin (TPO) in response to external signals [28]. Our 

results indicated that the amount of TPO in L-02 cells 
was also downregulated in the presence of ethanol.

The secretion of some cytokines was considerably 
reduced at 24 h, an early stage of ethanol treatment, 
but recovered or even increased at 120 h after ethanol 

Fig. 4 Long‑term ethanol exposure alters cytokine levels. a PBS or 10% ethanol‑containing PDMS devices were placed in cell culture plates 
and incubated for 24 or 120 h. Then, cytokine levels of L‑02 cells were measured from a culture medium. Quantitation of secreted proteins 
after ethanol treatment was performed by analyzing the membrane‑based cytokine array. The density of dots was determined with Protein 
Analyzer software with Image J. b Heat map of the cytokine array showed the relative secretion of the indicated proteins compared to the control. 
c Levels of secreted proteins that showed early changes in protein expression that remained altered over time. One‑way ANOVA revealed statistical 
significance. ns: non‑significant, * p<0.05, **:p<0.01, *** p<0.0005; (d) Levels of secreted proteins whose secretion was significantly reduced 
after 24 h of treatment but recovered or even increased at 120 h after ethanol treatment. One‑way ANOVA revealed statistical significance. 
ns: non‑significant, * p<0.05, **:p<0.01, *** p<0.0005 (e) Secretion of cytokines that did not change in the initial 24 h of ethanol treatment 
but decreased over 120 h of exposure. One‑way ANOVA revealed statistical significance. ns: non‑significant, *: p<0.05, **:p<0.01, ***: p<0.0005
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treatment (Fig.  4D). Granulocyte-colony stimulating 
factor (G-CSF), a granulopoietic stimulant to mobilize 
hematopoietic stem cells, is utilized in liver failure [29]. 
Protein secretion of G-CSF dramatically decreased dur-
ing the first day of ethanol treatment but recovered 120 
h after ethanol release, implying that the decrease in 
G-CSF secretion is not a long-lasting effect of chronic 
alcohol exposure in liver cells. I-309 and Mig proteins 
also showed an early decrease in secretion from L-02 
liver cells, but their level recovered 120 h after ethanol 
treatment, indicating that the amount of cytokines is not 
significant at the end. I-309, expressed in CCL1, plays a 
role in Treg regulation via FOXp3 upregulation [30]. 
CXCL9 encodes the MIG protein, which is an anti-prolif-
erative and anti-migratory cytokine against liver fibrosis 
in vivo [31]. IL8 is activated in chronic liver disease [32]. 
We found that IL8 decreased on the first day of ethanol 
treatment but increased after 120 h.

We also analyzed the secretion of cytokines that did 
not change in the initial 24 h of ethanol treatment but 
decreased after 120 h of exposure. The secretion of repre-
sentative proteins, Leptin, PDGF-BB, SDF-1, and VEGF-
A, was not altered within three days; however, their levels 
considerably decreased after 120 h (Fig. 4E). Leptin is a 
pleiotropic hormone derived from adipose tissue that is 
vital for regulating fat deposition in the liver [33]. Plate-
let-derived growth factor-BB (PDGF-BB) stimulation 
is associated with liver fibrosis [34]; however, its physi-
ological role in liver function includes the regulation of 
hepatic stellate cells [35]. Stromal cell-derived factor-1 
(SDF-1) promotes the proliferation and invasion of can-
cer cells but is also expressed in normal hepatocytes for 
liver homeostasis [36]. Thymus and activation-regulated 
chemokine (TARC) selectively recruits CCR4-express-
ing T cells and functions in the pathogenesis of lethal 
liver damage from bacterial infection [37, 38]. Vascular 
endothelial growth factor-A (VEGF-A) is known to be 
a proinflammatory and profibrogenic factor in chronic 
liver disease [39], and its role in NAFLD has recently 
received attention in the [40, 41].

Our results indicated changes in the protein expres-
sion of representative cytokines secreted by L-02 hepat-
ocytes after chronic alcohol exposure for over 120 h. 
M-CSF and macrophage inflammatory protein-1α, 
which are involved in regulating immune responses in 
the liver, decreased in secretion after the initial 24 h of 
ethanol treatment and continued until 120 h. In con-
trast, cytokines such as GCSF and IL8, which decreased 
in the first 24 h of ethanol treatment, recovered to their 
initial levels after 120 h. The expression of PDGF-BB and 
SDF-1, which play important roles in regulating hepatic 
stellate cell homeostasis, decreased only after 120 h. 
Therefore, adopting an appropriate method to analyze 

the chronic response of hepatocytes to ethanol is crucial. 
This could be achieved with an ethanol-releasing device, 
as described in the present study.

Long‑term treatment of ethanol changes the physiology 
of hepatocytes
The release of hepatic transaminases is a primary indi-
cator of hepatocellular damage [42]. In this study, 
ethanol-induced hepatoxicity was assessed using an 
ethanol-release device by measuring the release of ala-
nine transaminase (ALT) and aspartate aminotrans-
ferase (AST) into the culture medium. The levels of 
ALT and AST increased approximately 3–4-fold in the 
ethanol-releasing devices compared to those in the non-
ethanol-treated control after 120 h of incubation with 
ethanol using the indicated methods (Fig. 5A and B). We 
investigated the expression of various genes that were 
recognized as important indicators for alcohol-related 
hepatocellular carcinoma to check whether long-term 
ethanol exposure using PDMS ethanol-releasing device 
systems exhibits similar cellular physiologies as patients-
derived samples show [43, 44]. Actin gamma 1 (ACTG1) 
mRNA levels, recognized as a biomarker for alcohol-
associated hepatocellular carcinoma, were considerably 
increased by long-term ethanol treatment with PDMS 
devices for 120 h (Fig. 5C). Recent studies have indicated 
that ethanol increases fatty acid synthesis in hepatocytes 
by regulating lipid metabolism-associated transcription 
factors, such as sterol regulatory element-binding protein 
1c (SREBP1c), which promotes fatty acid synthesis via 
upregulation of lipogenic genes [45]. Long-term ethanol 
treatment of PDMS devices increased SREBP1c mRNA 
levels by approximately 6-fold relative to the control 
(Fig.  5D). The chondrosarcoma-associated gene family 
(CSAG) is frequently activated in many tumors, includ-
ing alcohol-related hepatocellular carcinoma (HCC) [44]. 
The ethanol-releasing device-mediated chronic alcohol 
treatment dramatically upregulated CSAG1 and CSAG3 
expression levels (Fig.  5E). Tumor necrosis factor-alpha 
(TNFα), a significant factor in the development of alco-
hol-induced liver injury, and the C motif chemokine 
ligand 2 (CCL2, also known as MCP1) mediate alco-
hol-induced inflammatory cell activation [46]. Chronic 
ethanol treatment increases the expression of TNFα 
and MCP1 (Fig.  5E). Melanoma-associated antigen A3 
(MAGEA3) and MAGEA6 show higher expression levels 
in HCC tumors than in normal livers [44]. Long-term eth-
anol exposure induced increased expression of MAGEA3 
and MAGEA6 compared to that in the control (Fig. 5E). 
In human alcoholic hepatitis, hepatocyte nuclear factor 
4 alpha (HNF4α) was the most inhibited liver-enriched 
transcription factor in human alcoholic hepatitis [47]. 
HNF4 α is responsible for the transcriptional activation 
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Fig. 5 Long‑term ethanol exposure changed the gene expression of hepatocytes. a‑e PBS or 10% ethanol‑containing PDMS devices were placed 
in cell culture plates containing L‑02 cells and then incubated for 120 h. a, b AST and ALT levels were measured in the culture medium. c‑e The 
specified mRNA levels were measured using real‑time PCR. (F) PBS or 10% ethanol‑containing PDMS devices were placed in L‑02 cell‑containing cell 
culture plates, and the indicated RNA levels were measured after 24 or 120 h of incubation
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of mature hepatocyte-specific genes and plays a role in 
preserving hepatocellular homeostasis during chronic 
liver injury [47]. The mRNA levels of HNF4α -P1, an iso-
form of HNF4α, remained unchanged in alcoholic hepa-
titis, whereas HNF4α -P2 showed dramatic upregulation 
in the livers of patients with alcoholic hepatitis. Indeed, 
the expression of the long noncoding RNA HNF4A-AS1 
is downregulated in patients with alcoholic hepatitis [47]. 
To check if our ethanol-releasing system can also show 
similar expression patterns of HNF4α in livers from 
patients with alcoholic hepatitis, we chronically treated 
the cells with ethanol for 24 or 120 h using our PDMS 
device. HNF4α -P1 mRNA levels did not change in the 
presence or absence of alcohol or after treatment for 24 
or 120 h (Fig. 5F). HNF4α -P2 was upregulated when eth-
anol was treated for 120 h. Further, ethanol treatment for 
24 or 120 h downregulated HNF4A-AS1 expression lev-
els. These results correlate with HNF4α expression levels 
in the livers of patients with alcoholic hepatitis.

These results indicate that the PDMS device-mediated 
long-term ethanol treatment can mimic chronic alcohol-
induced hepatocellular physiology.

Discussion
Alcoholic liver disease is the most frequent cause of alco-
hol-induced deaths [48], with numerous investigations 
establishing a firm causal connection between persistent 
ethanol consumption and human tissue damage [49]. 
However, unlike experiments conducted in living organ-
isms, lab-based studies on hepatocytes face constraints in 
consistently subjecting cells to ethanol, given its volatile 
nature. The current techniques are cumbersome, involv-
ing periodic introduction of ethanol or ethanol-saturated 
air within the incubation chamber.

We aimed to overcome the limitations of the existing 
treatments by utilizing a simple ethanol carrier design. 
Our PDMS devices maintain consistent ethanol concen-
trations for at least three days and can be reused for up 
to 20 cycles, providing a simple and effective solution to 
prevent rapid fluctuations in ethanol levels due to evap-
oration. The PDMS devices in our study were designed 
for a 6-well plates system. However, their size can be 
adjusted for high-throughput methods if needed. Fur-
ther examination of different-sized PDMS devices would 
be beneficial for delving into the cellular and molecular 
mechanisms related to diseases associated with chronic 
alcohol exposure.

Given that the experiment was conducted at a typi-
cal cell culture temperature of 37 ℃, it is likely that the 
rate of ethanol evaporation was significantly increased. 
This would have accelerated the release of ethanol from 
the PDMS device. However, at the same time, the higher 
temperature would also increase the rate of ethanol 

evaporation from the surface of the culture medium, 
possibly balancing out the two processes and resulting 
in the ethanol concentration in the culture medium not 
increasing as anticipated. This could be an important fac-
tor in explaining the observed plateau in ethanol concen-
tration within the cell culture fluid.

We demonstrated that our system effectively replicates 
actual chronic alcohol consumption-mediated liver con-
ditions in cellular models. However, the analysis of anno-
tated or putative alcohol-related HCC biomarkers in L-02 
and HepG2 cells after chronic alcohol exposure using 
PDMS devices revealed that not all annotated or key bio-
markers may correlate with our cellular system. Given 
the diverse cell types in the liver, including hepatocytes, 
hepatic stellate cells, Kupffer cells, and liver sinusoidal 
endothelial cells, further analyses with diverse liver cells 
are necessary to mimic the actual chronic alcohol con-
sumption scenario and determine the exact cellular and 
molecular mechanisms.

Our ethanol-releasing PDMS device will help address 
the cellular and molecular mechanisms of chronic alco-
hol-mediated liver diseases. And our work will stimulate 
research into the development of various devices and 
methods required to reproduce phenomena at the organ-
ismal and cellular levels.

Methods
Cell culture and ethanol treatment
We cultured HepG2 cells (Korean Cell Line Bank) in 
Eagle’s minimal essential medium (Sigma-Aldrich) sup-
plemented with 10% fetal bovine serum (FBS, Sigma-
Aldrich) and 1% antibiotics (Sigma-Aldrich). We cultured 
L-02 cells in Dulbecco’s modified Eagle’s medium (Sigma-
Aldrich) supplemented with 10% FBS and 1% antibiotics. 
Cells were maintained in a humidified incubator with 
95% ambient air and 5%  CO2 at 37 ℃.

For ethanol treatment using direct addition, we seeded 
the cells in 96-well plates or 12-well plates and incubated 
them for 24 h. Subsequently, the specified ethanol con-
centration (Sigma-Aldrich, St. Louis, MO, USA) was 
directly added to the culture medium, and the mixture 
was incubated for the designated time. For the PDMS 
device system, the specified ethanol concentration was 
added to PDMS devices, which were then placed in 
6-well culture plates. Ethanol was added to the PDMS 
device every 48 h.

Cell viability and ethanol measurement
Cell viability was assessed using a Cell Counting Kit-8 
(Dojindo, Kumamoto, Japan) following the manufac-
turer’s instructions. Ethanol-containing phosphate-
buffered saline (PBS) or culture medium was obtained 
at specified time points, and the ethanol concentration 



Page 11 of 12Kim et al. Journal of Biological Engineering           (2024) 18:31  

was determined using an Ethanol Assay Kit (BioAssay 
Systems, Hayward, CA, USA) with an Infinite M nano 
microplate reader (Tecan, Zurich, Switzerland) according 
to the manufacturer’s instructions.

Cytokine analysis
The ethanol-containing PDMS devices were placed in 
L-02 cell culture plates for specified durations. Follow-
ing the manufacturer’s instructions, a cytokine array 
was performed after clarifying the supernatant at 15, 
000 × g for 30 min (AAH-CYT-3; RayBiotech Life, Peach 
Tree Corners, GA, USA). The ImageJ software (NIH, 
Bethesda, MD, USA) was used to quantify arbitrary pro-
tein quantities.

RNA quantification
Total RNA was extracted from cells using  TRIzolTM 
reagent  (InvitrogenTM). RNA was reverse-transcribed 
using  GoScriptTM Reverse Transcriptase (Promega) 
with oligo(dT) primers, following the manufacturer’s 
instructions. mRNA levels were detected by quantita-
tive real-time PCR using a QuantStudio 3 real-time PCR 
instrument (Applied Biosystems) and SYBR Green PCR 
Master Mix (Thermo Fisher Scientific).

Statistical analysis
Statistical parameters, including definitions and exact 
values of n (number of biological repeats), distributions, 
and deviations, are reported in the figures and their cor-
responding legends. All quantitative data are presented 
as mean ± standard error of the mean. Comparisons 
between the two groups were conducted using two-tailed 
unpaired Student’s t-tests. For comparisons between 
more than two groups, one-way analysis of variance was 
used with Tukey’s post-hoc test. Two-way analysis of var-
iance was used with Tukey’s post-hoc test to estimate the 
mean differences between groups that had been split into 
two independent variables. Statistical significance was 
set at p < 0.05. Statistical analyses were performed using 
GraphPad Prism software.
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