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Abstract 

Background  In the current genomic era, gene expression datasets have become one of the main tools utilized in 
cancer classification. Both curse of dimensionality and class imbalance problems are inherent characteristics of these 
datasets. These characteristics have a negative impact on the performance of most classifiers when used to classify 
cancer using genomic datasets.

Results  This paper introduces Reduced Noise-Autoencoder (RN-Autoencoder) for pre-processing imbalanced 
genomic datasets for precise cancer classification. Firstly, RN-Autoencoder solves the curse of dimensionality problem 
by utilizing the autoencoder for feature reduction and hence generating new extracted data with lower dimension‑
ality. In the next stage, RN-Autoencoder introduces the extracted data to the well-known Reduced Noise-Synthesis 
Minority Over Sampling Technique (RN- SMOTE) that efficiently solve the problem of class imbalance in the extracted 
data. RN-Autoencoder has been evaluated using different classifiers and various imbalanced datasets with different 
imbalance ratios. The results proved that the performance of the classifiers has been improved with RN-Autoencoder 
and outperformed the performance with original data and extracted data with percentages based on the classifier, 
dataset and evaluation metric. Also, the performance of RN-Autoencoder has been compared to the performance of 
the current state of the art and resulted in an increase up to 18.017, 19.183, 18.58 and 8.87% in terms of test accuracy 
using colon, leukemia, Diffuse Large B-Cell Lymphoma (DLBCL) and Wisconsin Diagnostic Breast Cancer (WDBC) 
datasets respectively.

Conclusion  RN-Autoencoder is a model for cancer classification using imbalanced gene expression datasets. It uti‑
lizes the autoencoder to reduce the high dimensionality of the gene expression datasets and then handles the class 
imbalance using RN-SMOTE. RN-Autoencoder has been evaluated using many different classifiers and many differ‑
ent imbalanced datasets. The performance of many classifiers has improved and some have succeeded in classifying 
cancer with 100% performance in terms of all used metrics. In addition, RN-Autoencoder outperformed many recent 
works using the same datasets.

Keywords  RN-Autoencoder, Cancer Classification, Gene Expressions, Imbalanced Classification, RN-SMOTE, 
Dimensionality Reduction

Introduction
Cancer is a serious disease and is currently one of the 
main causes of death worldwide. The classification of 
cancer using gene expression datasets is one of the best 
and most accurate methods as a result of the knowledge 
acquired through these datasets [1]. This is because gene 
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expression tracks the expression levels of thousands of 
genes simultaneously [2]. However, because they con-
tain thousands of genes and a small number of samples, 
they are high-dimensional datasets.  So, these datasets 
are computationally unmanageable as a result of their 
dimensionality [3]. Within these datasets, there are four 
categories of features: irrelevant, relevant with redun-
dant, relevant without redundant and strongly relevant 
features. The best feature set includes only the last two 
categories [4]. On the contrary, irrelevant and redun-
dant features always increase the training time signifi-
cantly and negatively affect the performance of the used 
classifier. So, these features should be removed from 
the dataset before training the classifier using the data-
set [5]. Also, the existence of noisy features as an inher-
ent property of the data reduces the performance of the 
underlying classifier [6]. Due to the dimensionality and 
its subsequent problems, a preliminary pre-processing 
step is required before introducing the high-dimensional 
dataset to the classifier. This can be achieved by utilizing 
two common approaches: feature extraction and feature 
selection techniques.

Feature selection selects the subset representing the 
most informative and relevant features from the origi-
nal high-dimensional data [7, 8]. Many feature selection 
methods have been introduced to remove the irrele-
vant and redundant features to reduce the computation 
requirements, tackle the curse of dimensionality and pro-
vide a more efficient understanding of the high-dimen-
sional data. This will improve the performance of various 
classifiers on high-dimensional datasets [9]. These meth-
ods have many taxonomies according to different crite-
ria. They can be classified into supervised, unsupervised 
and semi-supervised according to the utilization of the 
class label. Also, they can be classified into filter, wrap-
per and embedded models according to their relationship 
with learning methods. Also, according to the evaluation 
criteria, they can be classified into correlation, euclidean 
distance, consistency, dependence and information meas-
ure. Another classification is to classify them according 
to the search strategies into forward increase, backward 
deletion, random and hybrid models. Finally, they can be 
classified into feature rank (Weighting) and subset selec-
tion models according to the type of output [10–12]. 
Also, the feature selection process can be considered as 
an optimization problem and hence many optimization 
techniques such as Particle Swarm Optimization (PSO) 
and Genetic Algorithms (GA) can be utilized for feature 
selection [13, 14].

Feature Extraction creates a new set of features that 
replace the original high-dimensional dataset. It is 
needed for many different reasons including data com-
pression, noise removal, data visualization, increasing 

the training speed, analysis of parameters and tackling 
the curse of dimensionality [15]. While feature extrac-
tion compresses new features more efficiently, the new 
extracted features may lose their meaning [16, 17]. Fea-
ture extraction methods are classified as linear and 
non-linear methods. Some linear methods are based on 
variance total contribution ratios such as Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis 
(LDA) and Factor Analysis (FA). Other linear methods 
are based on Independent Component Analysis (ICA) 
and others are based on Singular Value Decomposition 
(SVD) and Multidimensional Scaling Analysis (MDS). 
Non-linear methods include kernel-optimized func-
tions such as Kernel-based Principal Component Analy-
sis (KPCA), Nonnegative Matrix Factorization (NMF), 
Wavelet Transformation (WT), Locally Linear Embed-
ding (LLE) and deep learning approaches including deep 
autoencoders [18].

Imbalanced class distribution in cancer genomic data-
sets is another challenging problem that has a negative 
impact on the performance of most classifiers. SMOTE 
is a well-known oversampling technique that is widely 
used to solve the class imbalance problem by synthesiz-
ing new samples for minor class [19]. SMOTE tackles the 
overfitting problem caused by other oversampling tech-
niques such as random oversampling because it does not 
repeat existing samples. However, SMOTE is sensitive to 
the high dimensionality problem [20]. Also, it neglects 
the major class neighbours resulting in more overlap-
ping between major and minor classes [21]. Moreover, 
SMOTE generates noisy samples which negatively affect 
the performance of the used classifier [22, 23]. Many 
SMOTE extensions have been proposed to overcome 
these limitations. RN-SMOTE is one of the recent exten-
sions that utilize the Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) algorithm to detect 
and remove noise after oversampling the imbalanced 
dataset through SMOTE [24]. Another extension is the 
Limiting Radius SMOTE (LR-SMOTE) which utilizes the 
Support Vector Machines (SVM) and k-means to remove 
the noise in the original data set then oversamples the 
data using SMOTE to generate new samples which are 
filtered based on the nearest neighbours [25].

This paper introduces a new model for cancer classifi-
cation using high dimensional imbalanced gene expres-
sion datasets that combines autoencoders for feature 
extraction and RN-SMOTE for handling class imbalance 
problem.

The main contributions of this paper include the 
following:

•	 Introduce RN-Autoencoder that utilizes the autoen-
coder for feature reduction and RN-SMOTE for han-
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dling class imbalance to handle the challenges of gene 
expressions.

•	 Evaluate RN-Autoencoder using several classifiers 
and different imbalanced datasets using various met-
rics.

•	 Compare the performance of the classifiers under 
RN-Autoencoder with their performance under both 
original and extracted data.

•	 Compare the performance of RN-Autoencoder with 
the performance of the current state of art.

The rest of this paper is organized as follows: Related 
work section reviews the related work. Material and 
methods section explains the proposed model by firstly 
introducing both the RN-SMOTE and autoencoders. 
Then, RN-Autoencoder is described in detail.   Results 
and discussion section shows the experiments and dis-
cusses the obtained results. Finally, the last section is the 
conclusion and future work.

Related work
Many studies have been done to classify cancer using 
different types of datasets with different characteristics 
and dimensionalities. Gene expressions are considered 
one of these datasets, which are characterized by their 
high dimensionality.  While high dimensionality pre-
sents a serious challenge to existing machine learning 
methods, some recent studies deal with gene expres-
sion datasets without feature reduction using different 
strategies. Li et  al. [26] introduced a model for classify-
ing gene expression datasets by first balancing them with 
SMOTE oversampling technique. The resampled data is 
then introduced to a Stochastic Gradient Descent (SGD) 
based L2-SVM classifier. This model was evaluated 
using four different datasets. The resulting accuracy was 
estimated at 93.1, 93.10, 83.7 and 85.4% for Leukemia, 
Myelodysplastic Syndrome (MDS), Single Nucleotide 
Polymorphism (SNP) and colon from Gene Expression 
Omnibus (GEO) repository respectively. Kakati et al. [27] 
introduced DEGnext that based on transfer learning and 
CNN to improve the classification performance of gene 
expression datasets. DEGnext can classify differentially 
expressed genes (DEGs) as upregulating genes and down-
regulating genes in cancer genome datasets. DEGnext 
has been trained and evaluated using 17 different data-
sets from The Cancer Genomic Atlas (TCGA) repository, 
resulting in Receiver Operating Characteristic (ROC) 
scores between 88 and 99%. Dai et al. [28] built their can-
cer classification model based on the correlation between 
gene expression samples. This model is based on a resid-
ual graph convolutional network and a sample similarity 
network. In the first stage, a sample similarity matrix is 
computed based on the Pearson correlation coefficient of 

the gene expression data, yielding an adjacency matrix. 
In the second stage, the adjacency matrix and the input 
features are introduced to a residual graph convolutional 
network for classification. This model was applied to 
breast invasive carcinoma (BRCA), Glioblastoma Mul-
tiforme (GBM) and lung cancer (LUNG). It achieved an 
accuracy of 82.58, 85.13 and 79.18% for the BRCA, GBM 
and LUNG datasets respectively.

Other studies employ a single feature selection method 
to enhance the performance of their machine learning 
models on gene expression datasets. Mohammed et  al. 
[29] introduced a one-dimensional convolutional neu-
ral network (1D-CNN) model for cancer classification 
in which LASSO regression has been utilized for feature 
selection. This model has been trained and evaluated 
using five RNASeq datasets among the TCGA pan-can-
cer datasets. This model scored an average performance 
estimated at 99.55, 99.29 and 99.42% in terms of preci-
sion, recall and F1-Score respectively. Menaga et  al. 
[30] used wrapper method for feature selection in their 
introduced model for classifying cancer from colon and 
leukemia datasets. the selected features have been classi-
fied using Deep Recurrent Neural Network (Deep RNN), 
which is optimized by the utilization of Fractional-Atom 
Search Algorithm (FASO). This model achieved an accu-
racy estimated at 92.87 and 92.82% for the colon and 
leukemia datasets respectively. Al Mamun et al. [31] pro-
posed the use of Concrete Autoencoder (CAE) [32] to 
discover the critical Long non-coding RNA (lncRNAs) 
that can identify the origin of 12 different types of can-
cers from TCGA repository. They proposed multi-run 
CAE (mrCAE) to identify a stable set of top-ranking 128 
lncRNAs. Their model mrCAE could identify the origin 
of 12 different cancers with an accuracy of 95%.

Combining multiple feature selection methods is the 
main strategy of other researchers for efficiently deal-
ing with gene expression datasets. Majumder et  al. [33] 
combined Analysis of Variance (ANOVA) and Informa-
tion Gain (IG) for feature selection from four different 
gene expression datasets. Then, Multilayer Perceptron 
(MLP), 1DCNN and 2DCNN deep learning architec-
tures have been used for classifying the selected features. 
Based on the used dataset and the feature selection, the 
MLP model resulted in an accuracy that ranges from 77 
to 95%, the 1DCNN resulted in an accuracy that ranges 
from 77 to 100% and the 2DCNN resulted in an accuracy 
that ranges from 77 to 90%. Saberi-Movahed et  al. [34] 
propounded a novel feature selection approach called 
Dual Regularized Unsupervised Feature Selection Based 
on Matrix Factorization and Minimum Redundancy (DR-
FS-MFMR). Their approach uses matrix factorization 
and subspace learning strategies to drive useful features. 
DR-FS-MFMR has been evaluated on nine different gene 
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expression datasets. Bustamam et al. [35] proposed two 
stages of feature selection for their lung cancer diagnostic 
tool. They use support vector machine-recursive feature 
elimination SVM-RFE to prefilter the genes. The selected 
genes are chosen again using Artificial Bee Colony algo-
rithm ABC, an optimization method proposed based on 
the social behavior of honeybees as they search for high-
quality food sources. They built their tool using SVM. 
The accuracy of SVM with RFE-ABC as the feature selec-
tion method reached 98% with 100 best features for the 
Michigan lung cancer dataset [36] and 97% with 70 best 
features for the Ontario lung cancer dataset [37].

On the other point of view, feature extraction methods 
can support cancer classification models on gene expres-
sion datasets. Devendran et  al. [38] reduced the high 
dimensionality of the genomic data by utilizing Probabil-
istic Principal Component Analysis (PPCA) to enhance 
the performance of their cancer classification proposal. 
Following that, the resulting features were classified using 
a CNN, with the weights optimized using Fractional Bio-
geography-Based Optimization (FBBO). This proposal 
is evaluated using both the colon and leukemia datasets, 
resulting in an accuracy estimated at 98% for the two 
datasets. Majji et  al. [39] used non-negative matrix fac-
torization for feature extraction in their cancer classifi-
cation model. The resulting features are introduced to a 
recurrent neural network based on JayaAnt lion optimi-
zation for classification. This model is trained and evalu-
ated using four datasets, which are AP_Colon_Kidney 
[40], AP_Breast_Ovary [41], AP_Breast_Colon [42] and 
AP_Breast_Kidney [43] datasets. This model resulted in 
a maximum accuracy, sensitivity and specificity of 95.97, 
95.95 and 96.96%.

Combining feature selection and feature extraction 
methods provides a promising solution for the high 
dimensionality curse of gene expression datasets. Pan-
dit et  al. [44] introduced a hybrid approach for cancer 
classification using genomic datasets. In this approach, 
the gene expressions data were first preprocessed using 
an adaptive filter and then clustered using an improved 
binomial clustering approach. In the next step, new data 
is extracted using the multifractal Brownian motion 
method. Then, the most relevant features are selected 
using an improved cuckoo search optimization. After 
that, the selected features are introduced to a wavelet-
based Convolutional Neural Network (CNN) for clas-
sification, resulting in an accuracy estimated at 98.36, 
98.12, 98.55, 97.70 and 95.30% for ovarian, breast, colon, 
leukemia and prostate cancer datasets respectively. Uzma 
et al. [45] introduced the Gene-encoder to classify cancer 
based on multiple feature reduction techniques repre-
sented in two stages. In the first stage, it uses an ensemble 
of three feature reduction techniques, including Principal 

Component Analysis (PCA), correlation and spectral 
feature selection. In the second stage, the Genetic Algo-
rithm (GA) is combined with autoencoder and K-means 
clustering to select a set of features and then evaluate 
them. The resulting subset of features has been classified 
using SVM, Kth Nearest Neighbours (KNN) and Random 
Forest (RF) classifiers. Gene-encoder has been evaluated 
using six different gene expressions datasets, including 
the colon, leukemia and DLBCL datasets. The perfor-
mance of SVM outperformed KNN and RF for colon, 
leukemia and DLBCL datasets and scored an accuracy 
estimated at 97, 84 and 90% respectively.

Besides high-dimensional gene expressions datasets, 
we also included recent studies for cancer classification 
using small-dimensional datasets, namely Wisconsin 
Diagnostic Breast Cancer (WDBC) dataset. It contains 30 
features computed from a digitized image of a fine needle 
aspirate (FNA) of a breast mass [46]. We use it to evalu-
ate our proposal in light of the recent researches.

Just like gene expression datasets, different strategies 
of feature reduction have been utilized to enhance breast 
cancer classification accuracy based on WDBC data-
set. Multiple feature selection methods have been used 
to build Meta Health Stack by Samieinasab et  al. [47]. 
In this model, the Extra Trees classifier is used to com-
bine features resulting from the Variance Inflation Factor, 
Pearson’s Correlation and Information Gain. The result-
ing features are introduced to a stacked ensemble classi-
fier composed of bagging, boosting and voting classifiers. 
This model resulted in a performance estimated at 97% in 
terms of F1-score and 98% in terms of precision. On the 
other hand, Singh et al. [48] used PCA as a feature extrac-
tion method in their study to evaluate the performance of 
many different classifiers for cancer classification using 
the WDBC and the Surveillance, Epidemiology and End 
Results  (SEER) datasets [49]. This evaluation resulted 
in maximal performance using WDBC in terms of the 
accuracy estimated at 97.66%, obtained by SVM and RF 
classifiers. Also, with the SEER dataset, the maximum 
performance in terms of accuracy has been estimated at 
99.5%, obtained by decision tree and Naïve Bayes classi-
fiers. On the same methodology, Bacha et  al. [50] used 
kernel principal component analysis (KPCA) for fea-
ture extraction in their breast cancer diagnosis model. 
They run their model on WDBC and Mammographic 
Image Analysis Society  (MIAS) datasets. They used dif-
ferential evaluation to optimize the hyperparameters 
of the Radial-Based Function Kernel Extreme Learning 
Machines (RBF-KELM), which are used as a classifier. 
This model resulted in a maximal performance in terms 
of accuracy, estimated at 91.13% with the WDBC dataset 
and 100% with the MIAS dataset. Table 1 lists the sum-
mary of all studies included in the related work.
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Many of the studies mentioned in related works have 
drawbacks regarding their performance for cancer 
diagnosis. This is because misclassifying a sample as 
"benign" while it is actually "malignant" leads to ignor-
ing the necessary treatment of the patient, hence the 
exacerbation of the disease and possibly death. The 
performance drawbacks in these studies resulted from 
ignoring many important characteristics of the used 
datasets. Most of these studies handled dimensionality 
using different feature selection and extraction meth-
ods. However, many of these studies ignored the class 
imbalance and the existence of noise in many datasets 
such as the colon, leukemia, DLBCL and WDBC. These 
problems always have a negative impact on the classifi-
er’s performance, especially when classifying the minor 
class samples. So, the proposed RN-Autoencoder pro-
vides an efficient model for precise cancer diagnosis 
using imbalanced gene expressions datasets by utiliz-
ing autoencoder for feature reduction and RN-SMOTE 
for handling the class imbalance and the noise. Thereby, 
RN-Autoencoder successfully improves the perfor-
mance of different classifiers when used with these 
challenged datasets.

Material and methods
The proposed RN-Autoencoder is constructed from 
two stages. The first stage is the feature extraction stage, 
where the curse of dimensionality problem of the dataset 
is solved by using autoencoders. In the second stage, RN-
SMOTE is utilized to handle the class imbalance in the 
previously extracted data. In this section, we give a brief 
introduction to both autoencoders and the RN-SMOTE. 
Then, the RN-Autoencoder is described in detail.

Autoencoders
The autoencoder is an unsupervised neural network with 
a bottleneck layer (also known as the latent layer) that 
represents a compressed version of the original input 
data [51]. Autoencoders are mainly constructed from 
two main parts. The first part is the encoder, which is a 
nonlinear transformation of the original input data to 
lower-dimensional data. The second part is the decoder, 
which reconstructs the previously encoded data to its 
original form [52, 53]. Figure 1 shows the basic construc-
tion of autoencoders. Autoencoders were mainly devel-
oped and used for feature extraction to reduce the high 

Table 1  Summary of related work studies

Authors Year #Datasets Feature Reduction Classifier

No Feature Reduction
  Li et al. [26] 2022 4 - SMOTE Resampling + L2-SVM

  Kakati et al [27] 2022 17 - Transfer learning + CNN

  Dai et al. [28] 2021 3 - ERGCN

Single Stage Feature Selection
  Mohammed et al. [29] 2021 5 Lasso Staking Ensemble of CNN

  Menaga et al. [30] 2021 2 Wrapper Fractional-ASO Deep RNN

  Al Mamun et al. [31] 2021 12 mrCAE -

Multiple Stages Feature Selection
  Majumder et al. [33] 2022 4 ANOVA, IG MLP, 1DCNN, 2DCNN

  Saberi-Movahed et al. [34] 2022 9 DR-FS-MFMR = Matrix Factorization + Minimum 
Redundancy

Unsupervised clustering

  Bustamam et al. [35] 2021 2 SVM-RFE + ABC SVM

  Samieinasab et al. [47] 2022 1 Ensemble (Variance Inflation Factor, Pearson’s 
Correlation, Information Gain)

Ensemble (Boosting, Bagging, Voting)

Single Stage Feature Extraction
  Devendran et al. [38] 2021 2 PPCA FBBO + CNN

  Majji et al. [39] 2021 4 Non-negative matrix factorization JayaALO-based Deep RNN

  Singh et al. [48] 2022 2 PCA C5.0, AdaBoost, CART, GBM, NB, RF, SVM, AdaBoost

  Bacha et al. [50] 2022 2 KPCA DE-RBF-KELM

Feature Selection + Feature Extraction
  Pandit et.al [44] 2022 5 Binomial Clustering + Multifractional Brownian 

Motion + Cuckoo search optimization
Wavelet + CNN

  Uzma et al. [45] 2022 5 Two stages:
1-Ensemble (PCA, Correlation, SFS)
2-Autoencoder + GA + K-means

SVM, KNN, RF
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dimensionality of datasets to be ready for classification 
by different ML algorithms [54–57]. They have also been 
utilized in a variety of applications, including anomaly 
detection in different types of applications [58–61] and 
classification problems in many applications [62–64]. 
Since they are considered non-linear feature reduction 
methods, autoencoders have superior performance when 
compared to other linear feature reduction approaches 
such as PCA [65, 66].

RN‑SMOTE
RN-SMOTE is an approach for handling the class imbal-
ance problem [24]. It first oversamples the imbalanced 
dataset using SMOTE by generating a set of synthetic 
samples from the minor class according to the equation 
below.

Where X i is a sample from the minor class and 
Xneighbour is a randomly selected sample from the K 
nearest neighbours to the sample X i and rand(0, 1) is a 
random number between 0 and 1. Also, DBSCAN is a 
clustering algorithm that has the ability to recognize the 
isolated samples that are not reachable from any other 
point and isolates them in a separate cluster and mark it 
as noise. So, after oversampling the imbalanced data, RN-
SMOTE detects then removes the noise from the minor 
class by utilizing the DBSCAN This noise may have 
existed in the dataset originally or as a result of the over-
sampling process depicted in Eq. 1.

(1)Xsyn = Xi + rand(0, 1)× X i − Xneighbour

Figure 2 displays the steps of the RN-SMOTE. It begins 
with oversampling the minor class samples in the train-
ing dataset using the SMOTE procedure. After that, 
the minor samples are isolated to be introduced to the 
DBSCAN to clean them from the noisy samples. For effi-
cient noise detection, DBSCAN hyperparameters (eps 
and MinPts) are optimized by using the sorted k-distance 
graph. The MinPts parameter that represents the mini-
mum number of points to create a cluster is assumed 
to be the natural log of the minor class samples. The 
eps value is decided by finding the maximum curvature 
point in the sorted k-distance graph. The RN-SMOTE 
then removes the detected noise and then combines the 
resultant cleaned minor samples with the original train-
ing set that includes both the original minors and major 
classes.

RN‑ Autoencoder
In this section, we describe the proposed RN-Autoen-
coder. The RN-Autoencoder consists of four main stages, 
which are the pre-processing, autoencoding, RN-SMOTE 
and classification stages. Figure 3 shows the sequence of 
these steps.

The first stage in RN-Autoencoder is the pre-process-
ing stage, which includes stratified splitting of each input 
dataset into training and testing sets and then normali-
zation techniques are applied. The Min–Max scaler is 
used as a normalization technique for all used datasets. 
It transforms the value of any feature to be in the range 
[0,1] according to the formula:

Fig. 1  Construction of Autoencoders
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where x is the value of the feature and x ̀  is the value of 
the feature after the transformation.

(2)x‘ =
x −min(x)

max(x)−min(x)

Feature reduction is a mandatory step when deal-
ing with cancer genomic datasets to tackle the curse of 
dimensionality. So, in the second stage of RN-autoen-
coder, the autoencoder is used to reduce the dimension-
ality of these datasets. An autoencoder is constructed 
for each of the used datasets. The training set is used to 
build, compile and train the autoencoder, while the test 
set is used for its evaluation. The training process has 
continued until an appropriate compressed version of 
the training data has been extracted. At this point, the 
autoencoder architecture is saved to be used later to 
transform the test set to have the same number of fea-
tures as the training set. The number of layers and nodes 
within each layer in each autoencoder is dependent on 
the used dataset, as they are different in the number 
of features. Figure  4 shows the number of hidden lay-
ers and the number of nodes within each layer of the 
autoencoder used with the WDBC dataset. It is clear 
that, the original 30 features in WBCD dataset can be 
represented will by only 10 extracted new features in the 
bottleneck layer. The Rectified Linear Unit (ReLU) activa-
tion function has been used in all hidden layers with all 
constructed autoencoders. With all datasets, the autoen-
coders use an exponential decay learning rate with an ini-
tial learning rate, decay steps and a decay rate value listed 
in Table 2. Furthermore, three datasets (colon, leukemia 
and DLBCL) use 100 epochs, while the WDBC and lung 
cancer datasets use only 50 epochs. The output of the 
autoencoding stage is a new extracted dataset that repre-
sents an effective compressed version of the original data.

Since the compressed version generated by the autoen-
coder is imbalanced because the original version was 
imbalanced, in the third stage, RN-SMOTE is used to 
handle the class imbalance in the version extracted 
by the autoencoder. RN-SMOTE will oversample the 
extracted data using SMOTE and remove the resultant 
or originally existing noise in the minor class of the com-
pressed version of the data resulting in a clean version 
of the compressed training set. This is accomplished by 
utilizing DBSCAN. To optimize the DBSCAN, the min-
imum number of points to create a class in the utilized 
DBSCAN is determined by the natural log (Ln) of the 
number of samples in the minor class which is computed 
using the formula:

Finally, in the fourth stage, the clean-extracted-bal-
anced training data resulting from the RN-SMOTE stage 
is introduced to many classifiers for building many mod-
els for cancer classification. The impact of the extracted 
data by the RN-Autoencoder on the performance of these 
classifiers is evaluated by using many different metrics. 
Figure 5 shows the detailed steps of the RN-Autoencoder.

(3)MinPts = Ln(N )
Fig. 2  Flowchart of RN-SMOTE
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Datasets and metrics
This section introduces the characteristics of the datasets 
and classification metrics used in this study. In the exper-
iments that have been carried out to evaluate the pro-
posed RN-Autoencoder model, four different imbalanced 
and high dimensional datasets have been used. These 
datasets represent the binary classification for three types 
of cancer, which are colon [67], leukemia [68], DLBCL 
[69] and Lung (Michigan). This is beside the WDBC 
which has also been used to evaluate the proposed model 
and measure its performance on small-dimension data-
sets. Table  3 lists the characteristics of these datasets, 
including the imbalance ratio, which is the ratio of the 
number of minor class samples to the number of major 
class samples.

True Positive (TP), False Positive (FP), True Negative 
(TN) and False Negative (FN) are the basic confusion 

matrix parameters used to compute other performance 
metrics such as accuracy, precision, recall and F1 scores 
in ML classification [70]. Also, classification tasks with 
imbalanced data can be evaluated using other metrics, 
including Matthew’s Correlation Coefficient (MCC), 
Cohesion’s Kappa and the Geometric-Mean (GM) score 
[71]. For the evaluation of the classifiers in this paper, all 
metrics listed in Table 4 have been used.

Results and Discussion
Evaluation of RN‑Autoencoder
The performance of different classifiers is significantly 
affected by dimensionality reduction, resampling and 
other data pre-processing techniques. So, to evaluate the 
effectiveness and performance of RN-Autoencoder, many 
classifiers have been utilized for this purpose. These clas-
sifiers are Classification and Regression Tree (CART), 
RF, Gradient Boost (GB), Adaptive Boosting (AdaBoost), 
Extreme Gradient Boosting (XGBOOST), Gaussian 
Naïve Bayes (GNB), Kth Nearest Neighbours (KNN), 
Logistic Regression with Stochastic Gradient Descent 
(SGD-LR), Support Vector Machines with Radial Basis 
Function kernel (SVM-RBF), SVM with Linear kernel 
(SVM-Linear) and Linear Discriminant Analysis (LDA). 
These classifiers have been selected because they per-
formed well on a variety of datasets. Each classifier has 
been used with its default settings in python libraries. 
Also, all evaluation experiments have been carried out 
on a machine with Windows 10 operating system, 8 GB 
RAM and Intel I5 processor.
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Fig. 4  Internal Details of the WDBC dataset autoencoder

Table 2  Exponential decay learning rate parameters for all 
datasets

Dataset Initial 
Learning Rate

Decay steps Decay Rate

Colon 1 e−4 10,000 0.9

Leukemia 1 e−4 10,000 0.9

DLBCL 1.1 e−4 10,000 0.75

Lung (Michigan) 1 e−4 10,000 0.9

WDBC 1.1 e−4 10,000 0.95
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Fig. 5  Flowchart of detailed steps of RN-Autoencoder
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RN-Autoencoder has been evaluated by comparing the 
performance of each classifier in four different scenar-
ios. The first scenario is training the classifier using the 
original data without any feature reduction. The second 
scenario is training the classifier using the original data 
after pre-processing it using RN-SMOTE only. The third 
scenario is training the classifier using the extracted data 
after applying the autoencoder only. Finally, the fourth 
scenario is training the classifier with the data obtained 
the after pre-processing using RN-Autoencoder. All clas-
sifiers are trained in each case on the same training set 
and evaluated on the same test set for a fair evaluation of 
the classifiers, which is shown in Fig. 6. The performance 
of each classifier has been measured in terms of all met-
rics listed in Table 4.

We build an autoencoder for each dataset. Each autoen-
coder is trained using the training set and evaluated using 
the reserved test set. All the parameters of each autoen-
coder were manually optimized by trial and error. With 
all datasets, the autoencoders use an exponential decay 
learning rate with an initial learning rate, decay steps and 
a decay rate value listed in Table  2. Furthermore, three 
datasets (colon, leukemia and DLBCL) use 100 epochs, 
while the WDBC and lung cancer datasets use only 50 
epochs. The architecture of each autoencoder is saved 
with its weights and used later to convert the dimension-
ality of the reserved test set to the same dimensions as 
the training set. Figure  7 shows the autoencoder learn-
ing curves that resulted for all used datasets. Each curve 
shows the training loss versus the validation loss with 
increasing the number of epochs for each dataset. The 
figure shows the well-fitting of the autoencoder on the 

WDBC dataset, resulting in the minimum error among 
all datasets. Increasing the dimensionality of the dataset 
resulted in increasing the gap between the validation and 
training curves and hence increasing the loss, as shown 
in the colon, leukemia, Lung and DLBCL dataset curves.

Results for all datasets
In this section, the performance of classifiers on each 
dataset will be discussed. The performance metrics listed 
in Table 4 have been measured for each classier with each 
dataset in each of the three evaluation cases. The results 
for each dataset are summarized in a table containing 
only the results for classifiers that outperformed their 
performance with the original and extracted data when 
they were employed with RN-Autoencoder. The best 
results have been bolded in each table.

Colon dataset
This section discusses the RN-Autoencoder results 
for the colon dataset. All classifiers that resulted in an 
increase in their performance in terms of any metric with 
the colon dataset are listed in Table 5. The results showed 
that only GNB, AdaBoost and the GB classifiers gained 
performance when combined with RN-Autoencoder.

The performance of the GNB Classifier has increased 
by 14.28, 16.67, 20, 18.18, 29.79, 30.12 and 15.63% in 
terms of test accuracy, precision, recall, F1, Kappa, MCC 
and GM scores when used with RN-Autoencoder than 
when used with original data. Also, it has increased by 
21.43, 26.67, 40, 32.73, 48.65, 49.27 and 27.24% in terms 
of test accuracy, precision, recall, F1, Kappa, MCC and 
GM scores when used with RN-Autoencoder than when 
used with RN-SMOTE, while it has not increased when 
compared with extracted data.

The performance of the AdaBoost classifier has gained 
an increase of 7.14, 15, 6.67, 13.38, 14.077 and 4.72% in 
terms of test accuracy, precision, F1, Kappa, MCC and 
GM scores when used with RN-Autoencoder than when 
used with original data. However, there is no increase 
in the recall score. Also, it has increased by 14.28, 25, 
12.12, 25.63, 26.03 and 9.78% in terms of test accuracy, 

Table 3  Datasets description

Dataset #Features #Sample #Minors #Majors Imbalance 
Ratio (#Minors 
/#Majors)

Colon 2000 62 22 40 55%
Leukemia 7129 72 25 47 53.19%
DLBCL 7070 77 19 58 32.75%
Lung (Michigan) 7129 96 10 86 11.62%
WDBC 30 569 212 357 59.38%

Table 4  Classification metrics

Metric Expression Metric Expression

Precision TP
TP+FP

GM
√

TP

TP+FN
×

TN

TN+FP

Recall TP
TP+FN

MCC TP.TN−FP.FN
√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

F1 2∗precision∗Recall
Precision+Recall

Kappa Po−Pe
1−Pe

Accuracy TP+TN

TP+TN+FP+FN
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precision, F1, Kappa, MCC and GM scores when used 
with RN-Autoencoder than when used with RN-SMOTE. 
Finally, when used with the extracted data, it has gained 
an increase of 7.14, 8.33, 20, 16.67, 19.45, 18.12 and 13.4% 
in terms of test accuracy, precision, recall, F1, Kappa, 
MCC and GM scores, respectively.

Finally, the GB classifier with RN-Autoencoder has suc-
ceeded in classifying colon cancer with 100% percent-
age in terms of all metrics. The performance of the GB 
classifier has gained an increase of 35.71, 50, 60, 55.56, 
81.4, 81.14 and 44.22% in terms of test accuracy, preci-
sion, recall, F1, Kappa, MCC and GM scores when used 
with RN-Autoencoder than when used with original 
data. Also, it has increased by 35.71, 50, 40, 45.45, 74.47, 
74.18 and 36.75% in terms of test accuracy, precision, 
recall, F1, Kappa, MCC and GM scores when used with 
RN-Autoencoder than when used with the RN-SMOTE. 
Finally, when used with the extracted data, it has gained 
an increase of 28.57, 33.33, 60, 50, 68.29, 66.27 and 
40.37% in terms of test accuracy, precision, recall, F1, 
Kappa, MCC and GM scores, respectively.

Leukemia dataset
This section discusses the results of RN-Autoen-
coder with the leukemia dataset. All classifiers that 
improved their performance with the leukemia dataset 
in terms of any metric are listed in Table 6. The results 
showed that SVM-RBF, SGD-LR, KNN and LDA clas-
sifiers gained performance when combined with the 
RN-Autoencoder.

The performance of the SVM-RBF classifier has gained 
an increase of 23.53, 57.14, 52.71, 56.89, 45.48 and 42.35% 
in terms of test accuracy, recall, F1, Kappa, MCC and 
GM scores when used with RN-Autoencoder than when 
used with both original data and RN-SMOTE. When 
used with the extracted data, it has gained an increase of 
14.71, 35.71, 28, 34.3, 27.33 and 23.17% in terms of test 
accuracy, recall, F1, Kappa, MCC and GM scores. Also, 
The SVM-RBFBF classifier has maintained its precision 
score value at 100% for the different scenarios.

The performance of the SGD-LR classifier has gained 
an increase of 20.59, 50, 48.04, 50.34, 39.97 and 38.23% in 
terms of test accuracy, recall, F1, Kappa, MCC and GM 
scores when used with RN-Autoencoder than when used 
with original data.

Also, it has increased by 14.71, 35.72, 30.7, 35.1, 27.52 
and 24.76% in terms of test accuracy, recall, F1, Kappa, 
MCC and GM scores when used with RN-Autoencoder 
than when used with RN-SMOTE. When used with the 
extracted data, it has gained an increase of 8.83, 21.43, 
16.66, 20.58, 16.29 and 13.81% in terms of test accuracy, 
recall, F1, Kappa, MCC and GM scores. Also, the SGD-
LR classifier succeeded in keeping its precision score 
value at 100% in the different cases.

The performance of the KNN classifier has gained an 
increase of 8.82, 5.56, 21.43, 19.57, 21.5, 18.52 and 15.43% 
in terms of test accuracy, precision, recall, F1, Kappa, 
MCC and GM scores when used with RN-Autoencoder 
than when used with original data. Also, it has increased 
by 2.94, 17.46, 3.66 and 6.74% in terms of test accuracy, 

Fig. 6  Flowchart of the evaluation of all the used classifiers
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precision, Kappa, MCC but decreased by 14.29, 1.86 and 
1.91% in terms of recall, F1 and GM scores when used 
with RN-Autoencoder than when used with RN-SMOTE. 
When comparing the extracted data, it has gained an 
increase of 2.94, 14.28, 9.57, 8.21, 2.84 and 8.21% in terms 
of test accuracy, recall, F1, Kappa, MCC and GM scores 
and this performance has decreased by 11.11% in terms 
of the precision score.

Finally, the LDA classifier with RN-Autoencoder has 
succeeded in classifying leukemia cancer with 100% 
percentage in terms of all metrics. The performance of 
LDA classifier has gained an increase of 29.41, 71.43, 
55.56, 68, 56.36 and 46.55% in terms of test accuracy, 
recall, F1, Kappa, MCC and GM scores when used 
with RN-Autoencoder than when used with original 
data.

Fig. 7  Autoencoder Learning Curves for all used datasets
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Also, it has increased by 17.65, 25, 14.29, 20, 35.66, 35.2 
and 17.19% in terms of test accuracy, precision, recall, 
F1, Kappa, MCC and GM scores when used with RN-
Autoencoder than when used with RN-SMOTE. When 
used with the extracted data, it has gained an increase by 
20.59, 18.18, 35.71, 28, 43.91, 42.89 and 23.94% in terms 
of test accuracy, precision, recall, F1, Kappa, MCC and 
GM scores.

DLBCL dataset
This section discusses the results for the DLBCL 
dataset. All classifiers that performed better 
according to any metric with the DLBCL dataset 
are listed in Table  7. The results showed that RF, 
CART, SVM-RBF, AdaBoost and XGBoost classi-
fiers gained performance when combined with the 
RN-Autoencoder.

Table 5  Results summary for the colon dataset

Dataset: colon

Classifier Metrics

Model Test Acc Precision Recall F1 Kappa MCC GM

GNB Original 0.6429 0.5 0.6 0.5455 0.2553 0.2582 0.6325

RN-SMOTE 0.5714 0.4 0.4 0.4 0.0667 0.0667 0.5164

Extracted 0.7857 0.6667 0.8 0.7273 0.5532 0.5594 0.7888
RN-Extracted 0.7857 0.6667 0.8 0.7273 0.5532 0.5594 0.7888

AdaBoost Original 0.7143 0.6 0.6 0.6 0.3778 0.3778 0.6831

RN-SMOTE 0.6429 0.5 0.6 0.5455 0.2553 0.2582 0.6325

Extracted 0.7143 0.6667 0.4 0.5 0.3171 0.3373 0.5963

RN-Extracted 0.7857 0.75 0.6 0.6667 0.5116 0.5185 0.7303
Gradient Boost Original 0.6429 0.5 0.4 0.4444 0.186 0.1886 0.5578

RN-SMOTE 0.6429 0.5 0.6 0.5455 0.2553 0.2582 0.6325

Extracted 0.7143 0.6667 0.4 0.5 0.3171 0.3373 0.5963

RN-Extracted 1 1 1 1 1 1 1

Table 6  Results summary for the leukemia dataset

Dataset: leukemia

Classifier Metrics

Model Test Acc Precision Recall F1 Kappa MCC GM

SVM-RBF Original 0.6765 1 0.2143 0.3529 0.2429 0.3718 0.4629

RN-SMOTE 0.6765 1 0.2143 0.3529 0.2429 0.3718 0.4629

Extracted 0.7647 1 0.4286 0.6 0.4688 0.5533 0.6547

RN-Extracted 0.9118 1 0.7857 0.88 0.8118 0.8266 0.8864
SGD (LR) Original 0.6765 1 0.2143 0.3529 0.2429 0.3718 0.4629

RN-SMOTE 0.7353 1 0.3571 0.5263 0.3953 0.4963 0.5976

Extracted 0.7941 1 0.5 0.6667 0.5405 0.6086 0.7071

RN-Extracted 0.8824 1 0.7143 0.8333 0.7463 0.7715 0.8452
KNN Original 0.7059 0.8333 0.3571 0.5 0.3359 0.3965 0.5825

RN-SMOTE 0.7647 0.7143 0.7143 0.7143 0.5143 0.5143 0.7559

Extracted 0.7647 1 0.4286 0.6 0.4688 0.5533 0.6547

RN-Extracted 0.7941 0.8889 0.5714 0.6957 0.5509 0.5817 0.7368
LDA Original 0.7059 1 0.2857 0.4444 0.32 0.4364 0.5345

RN-SMOTE 0.8235 0.75 0.8571 0.8 0.6434 0.648 0.8281

Extracted 0.7941 0.8182 0.6429 0.72 0.5609 0.5711 0.7606

RN-Extracted 1 1 1 1 1 1 1
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The performance of the RF classifier has gained an 
increase of 4.16, 16.66, 10.91, 13.24, 11.39 and 9.64% 
in terms of test accuracy, recall, F1, Kappa, MCC and 
GM scores when used with RN-Autoencoder than 
when used with both original data and RN-SMOTE. 
Finally, when used with the extracted data, it has gained 
an increase of 12.5, 50, 40.91, 45.38, 36.63 and 33.55% 
in terms of test accuracy, recall, F1, Kappa, MCC and 
GM scores. The RF classifier has preserved its precision 
score value at 100% for the different scenarios.

The CART classifier with RN-Autoencoder has suc-
ceeded in classifying cancer using the DLBCL dataset 
with 100% in terms of all metrics. Also, its performance 
has increased by 8.33, 25, 14.29, 20, 18.35 and 5.72% 
in terms of test accuracy, precision, F1, Kappa, MCC 
and GM scores when used with RN-Autoencoder than 
when used with both original data and RN-SMOTE. 
Finally, when used with the extracted data, it has 
gained an increase of 4.17, 16.67, 9.09, 11.76, 11.15 
and 8.71% in terms of test accuracy, recall, F1, Kappa, 
MCC and GM scores. The CART classifier has achieved 
100% precision in the cases of extracted data and the 
RN-Autoencoder.

The performance of the SVM-RBF classifier has 
gained an increase of 20.83, 100, 83.33, 90.91, 88.24, 
88.85 and 91.29% in terms of test accuracy, precision, 
recall, F1, Kappa, MCC and GM scores when used with 
RN-Autoencoder than when used with original data. 
Also, it has increased by 8.33,33.33, 24.24, 28.24, 23.38 
and 20.58% in terms of test accuracy, recall, F1, Kappa, 
MCC and GM scores when used with RN-Autoencoder 
than when used with RN-SMOTE. Finally, when used 
with the extracted data, it has gained an increase of 
16.66, 66.66, 62.34, 65.16, 52.73 and 50.47% in terms of 
test accuracy, recall, F1, Kappa, MCC and GM scores, 
while keeping the precision score at 100% in the two 
cases.

The AdaBoost classifier with RN-Autoencoder has 
succeeded in classifying cancer using the DLBCL data-
set with 100% percentage in terms of all metrics. Ada-
Boost performance has gained an increase of 4.17, 
16.67, 9.09, 11.76, 11.15 and 8.71% in terms of test 
accuracy, recall, F1, Kappa, MCC and GM scores with 
no increase in precision scores when used with RN-
Autoencoder than when used with original data, RN-
SMOTE and extracted data. The AdaBoost classifier has 

Table 7  Results summary for the DLBCL dataset

Dataset: DLBCL

Classifier Metrics

Model Test Acc Precision Recall F1 Kappa MCC GM

RF Original 0.9167 1 0.6667 0.8 0.75 0.7746 0.8165

RN-SMOTE 0.9167 1 0.6667 0.8 0.75 0.7746 0.8165

Extracted 0.8333 1 0.3333 0.5 0.4286 0.5222 0.5774

RN-Extracted 0.9583 1 0.8333 0.9091 0.8824 0.8885 0.9129
CART​ Original 0.9167 0.75 1 0.8571 0.8 0.8165 0.9428

RN-SMOTE 0.9167 0.75 1 0.8571 0.8 0.8165 0.9428

Extracted 0.9583 1 0.8333 0.9091 0.8824 0.8885 0.9129

RN-Extracted 1 1 1 1 1 1 1
SVM-RBF Original 0.75 0 0 0 0 0 0

RN-SMOTE 0.875 1 0.5 0.6667 0.6 0.6547 0.7071

Extracted 0.7917 1 0.1667 0.2857 0.2308 0.3612 0.4082

RN-Extracted 0.9583 1 0.8333 0.9091 0.8824 0.8885 0.9129
AdaBoost Original 0.9583 1 0.8333 0.9091 0.8824 0.8885 0.9129

RN-SMOTE 0.9583 1 0.8333 0.9091 0.8824 0.8885 0.9129

Extracted 0.9583 1 0.8333 0.9091 0.8824 0.8885 0.9129

RN-Extracted 1 1 1 1 1 1 1
XGBOOST Original 0.9167 1 0.6667 0.8 0.75 0.7746 0.8165

RN-SMOTE 0.9167 1 0.6667 0.8 0.75 0.7746 0.8165

Extracted 0.9167 1 0.6667 0.8 0.75 0.7746 0.8165

RN-Extracted 0.9583 1 0.8333 0.9091 0.8824 0.8885 0.9129
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maintained its precision score value at 100% for all the 
different scenarios.

Finally, the performance of the XGBoost classifier 
has gained an increase of 4.16, 16.66, 10.91, 13.24, 
11.39 and 9.64% in terms of test accuracy, recall, F1, 
Kappa, MCC and GM scores when used with the RN-
Autoencoder than when used with original data, RN-
SMOTE and extracted data. The XGBoost classifier 
succeeded in keeping its precision score value at 100% 
in the different cases.

Lung (Michigan) dataset
This section discusses the results for the Lung dataset. 
All classifiers that resulted in an increase in their per-
formance in terms of any metric with the Lung dataset 
are listed in Table 8. The results showed that GNB, GB 
and XGBoost classifiers gained in performance when 
combined with the RN-Autoencoder.

For the GNB and GB Classifiers, their performance 
has increased by 5, 5.26, 2.7, 35.71, 31.18 and 29.29% 
in terms of test accuracy, precision, F1, Kappa, MCC 

Table 8  Results summary for the lung dataset

Dataset: Lung (Michigan)

Classifier Metrics

Model Test Acc Precision Recall F1 Kappa MCC GM

GNB Original 0.95 0.9474 1 0.973 0.6429 0.6882 0.7071

RN-SMOTE 0.95 0.9474 1 0.973 0.6429 0.6882 0.7071

Extracted 1 1 1 1 1 1 1
RN-Extracted 1 1 1 1 1 1 1

Gradient Boost Original 0.95 0.9474 1 0.973 0.6429 0.6882 0.7071

RN-SMOTE 0.95 0.9474 1 0.973 0.6429 0.6882 0.7071

Extracted 1 1 1 1 1 1 1
RN-Extracted 1 1 1 1 1 1 1

XGBOOST Original 0.95 1 0.9444 0.9714 0.7727 0.7935 0.9718

RN-SMOTE 0.95 1 0.9444 0.9714 0.7727 0.7935 0.9718

Extracted 1 1 1 1 1 1 1
RN-Extracted 1 1 1 1 1 1 1

Table 9  Results summary for the WDBC dataset

Dataset: WDBC

Classifier Metrics

Model Test Acc Precision Recall F1 Kappa MCC GM

GNB Original 0.9386 0.973 0.8571 0.9114 0.8647 0.8688 0.9194

RN-SMOTE 0.9386 0.973 0.8571 0.9114 0.8647 0.8688 0.9194

Extracted 0.9298 0.925 0.881 0.9024 0.8477 0.8483 0.9188

RN-Extracted 0.9386 0.9268 0.9048 0.9157 0.8674 0.8676 0.9312
SVM-Linear Original 0.9825 1 0.9524 0.9756 0.9619 0.9626 0.9759

RN-SMOTE 0.9912 0.9767 1 0.9882 0.9812 0.9814 0.993
Extracted 0.9825 1 0.9524 0.9756 0.9619 0.9626 0.9759

RN-Extracted 0.9825 0.9545 1 0.9767 0.9627 0.9633 0.986

XGBOOST Original 0.9649 1 0.9048 0.95 0.9231 0.9258 0.9512

RN-SMOTE 0.9737 0.9756 0.9524 0.9639 0.9432 0.9433 0.9691

Extracted 0.9649 0.9524 0.9524 0.9524 0.9246 0.9246 0.9623

RN-Extracted 0.9737 0.9535 0.9762 0.9647 0.9437 0.9439 0.9742
LDA Original 0.9649 1 0.9048 0.95 0.9231 0.9258 0.9512

RN-SMOTE 0.9561 0.9512 0.9286 0.9398 0.9053 0.9054 0.9501

Extracted 0.9737 1 0.9286 0.963 0.9426 0.9442 0.9636

RN-Extracted 1 1 1 1 1 1 1
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and GM scores when used with RN-Autoencoder than 
when used with both original data and RN-SMOTE, 
while keeping the recall score at 100% in the two 
cases.

For the XGBoost Classifier, their performance has 
gained an increase of 5, 5.56, 2.86, 22.73, 20.65 and 
2.82% in terms of test accuracy, recall, F1, Kappa, MCC 
and GM scores when used with RN-Autoencoder than 
when used with both original data and RN-SMOTE, 
while keeping the recall score at 100%.

GNB, GB and XGBoost classifiers have succeeded in 
classifying lung cancer with 100% percentage in terms 
of all metrics after pre-processing the dataset using 
both extracted data and RN-Autoencoder.

WDBC dataset
This section discusses the results for the WDBC data-
set. All classifiers that enhanced their performance with 
the WDBC dataset in terms of any metric are listed in 
Table  9. The results showed that GNB, SVM-Linear, 

Table 10  The improved classifiers using RN-Autoencoders on different datasets

RN-Autoencoder + Classifier

Classifiers

Dataset #Features Imbalance Ratio CART​ GB GNB RF KNN XG-Boost SGD-LR SVM-Linear Ada
Boost

SVM-RBF LDA

Colon 2000 55%  - ✓ ✓ - - - - - ✓ - -

Leukemia 7129 53.19% - - -  - ✓ - ✓ - - ✓ ✓
DLBCL 7070 32.75% ✓ - - ✓ - ✓ - - ✓ ✓ -

Lung (Michigan) 7129 11.62% - ✓ ✓ - - ✓ - - - - -

WDBC 30 59.38%  -  - ✓ - - ✓ - ✓ - - ✓

Fig. 8  RN-Autoencoder versus FBBO + DCNN and Wavelet + CNN. (A) colon dataset. (B) leukemia Dataset

Fig. 9  RN-Autoencoder versus FASO-RNN
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XGBoost and LDA classifiers gained an increase in per-
formance when combined with the RN-Autoencoder.

The performance of the GNB classifier has gained an 
increase of 4.77, 0.43, 0.277 and 1.18% in terms of recall, 
F1, Kappa and GM scores with a decrease of 4.62 and 
0.12% in terms of precision and MCC and no change in 
test accuracy when used with RN-Autoencoder than 
when used with both original data and RN-SMOTE. 
Also, when used with the extracted data, it has gained an 
increase of 0.88, 0.18, 2.38, 1.33, 1.97, 1.93 and 1.24% in 
terms of test accuracy, precision, recall, F1, Kappa, MCC 
and GM scores respectively.

The performance of the SVM-Linear classifier has 
gained an increase of 4.76, 0.11, 0.08, 0.0707 and 1.01% 
in terms of recall, F1, Kappa, MCC and GM scores 
and a decrease of 4.55% in terms of the precision score Fig. 10  RN-Autoencoder vs IG-MLP

Fig. 11  RN-Autoencoder versus Gene Encoder using colon, leukemia and DLBCL datasets: (A) SVM Classifier. (B) KNN Classifier. (C) RF Classifier. (D) 
Best results
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when used with the RN-Autoencoder than when used 
with both the original and the extracted data. The 
SVM-Linear classifier has maintained its test accuracy 
value of 98.25% in different cases. Unfortunately, with 
the SVM-Linear classifier, RN-SMOTE exceeded RN-
Autoencoder and gained an increase of 0.87, 2.22, 1.15, 
1.85, 1.81 and 0.7% in terms of test accuracy, precision, 
F1, Kappa, MCC and GM scores than when used with 
RN-Autoencoder.

The performance of the XGBoost classifier has gained 
an increase of 0.88, 7.14, 1.47, 2.06, 1.811 and 2.3% in 
terms of test accuracy, recall, F1, Kappa, MCC and GM 
scores with a decrease in precision score of 4.65% when 
used with RN-Autoencoder than when used with origi-
nal data. Also, it has gained an increase of 2.38, 0.08, 
0.05, 0.06 and 0.51% in terms of recall, F1, Kappa, MCC 
and GM scores and a decrease of 2.21% in terms of the 
precision score when used with the RN-Autoencoder 
than when used with both the original and the extracted 
data. When used with the extracted data, it has gained an 
increase of 0.88, 0.11, 2.38, 1.23, 1.91, 1.93 and 1.19% in 
terms of test accuracy, precision, recall, F1, Kappa, MCC 
and GM scores.

Finally, the LDA classifier succeeded in classifying 
cancer using the WDBC dataset by 100% in terms of all 
metrics. The LDA performance has gained an increase of 
3.51, 9.52, 5, 7.69, 7.42 and 4.88% in terms of test accu-
racy, recall, F1, Kappa, MCC and GM scores when used 
with RN-Autoencoder than when used with original 
data. Also, it has gained an increase of 4.39, 4.88, 7.14, 
6.02, 9.47, 9.46 and 4.99% in terms of test accuracy, preci-
sion, recall, F1, Kappa, MCC and GM scores when used 
with the RN-Autoencoder than when used with both 
the original and the extracted data. When used with the 
extracted data, it has gained an increase of 2.63, 7.14, 3.7, 
5.74, 5.58 and 3.64% in terms of test accuracy, recall, F1, 
Kappa, MCC and GM scores. The LDA classifier kept the 
precision score value at 100% for the different scenarios 
except with RN-SMOTE.

Table 10 summarises which classifiers can perform well 
on each dataset while also indicating the dimensional-
ity and imbalance ratios of each dataset. RN-Autoencoder 
enhances the performance of different machine learning 
classifiers for cancer classification based on high dimen-
sional imbalanced gene expressions datasets.  In addition, 
RN-Autoencoder performs well with different classifiers on 
cancer subclinical datasets like WDBC dataset.

Comparison with current state of art
In this section, we compare the performance of RN-
Autoencoder with the performance of the work done in 
the recent studies mentioned in the related work section 
using the colon, leukemia, DLBCL and WDBC datasets 

that are mainly used to evaluate RN-Autoencoder. These 
studies are Pandit et.al [44], Devendra et al. [28], Menaga 
et  al. [30], Uzma et  al. [45], Majumder et  al. [33], Bus-
tamam et al. [35], Samieinasab et al. [47], Singh et al. [48] 
and Bacha et al. [50]. Also, with each comparison we use 
only the metrics and datasets used by the comparative 
study.

By comparing the performance of RN-Autoencoder 
with the best results obtained by FBBO + CNN [28], RN-
Autoencoder outperformed it by 2% in terms of the test 
accuracy, recall, precision and F1 scores for both the leu-
kemia and colon datasets.

Also, when compared to Wavelet + CNN [44], RN-
Autoencoder outperformed it by 1.45, 2.05, 1.57 and 
1.95% in terms of the test accuracy, recall, precision and 
F1 respectively for the colon dataset. Also, for the leuke-
mia dataset, RN-Autoencoder outperformed by 2.3, 2.87, 
2.19 and 2.76% in terms of test accuracy, recall, precision 
and F1 scores respectively. Figure  8 shows the superior 
performance of the RN-Autoencoder when compared to 
both FBBO + CNN and Wavelet + CNN.

When comparing RN-Autoencoder to the results of 
FASO-DEEP-RNN introduced by Menaga et al. [30], RN-
Autoencoder outperformed it by 7.13% in terms of the 
test accuracy with the colon dataset and 7.18% in terms 
of the test accuracy with the leukemia dataset. Figure 9 
shows this comparison.

When comparing RN-Autoencoder to the best results 
obtained by the work done by Majumder et al. [33] using 
the colon dataset, we find that RN-Autoencoder outper-
formed it by 16, 13 and 13% in terms of test accuracy, pre-
cision and F1 scores respectively as illustrated in Fig. 10.

Contrasted with Gene-encoder [45], the SVM classi-
fier with RN-Autoencoder outperformed SVM with Gene 

Fig. 12  Accuracy of RN-Autoencoder vs SVM-RFE-ABC using Lung 
(Michigan) dataset



Page 20 of 23Arafa et al. Journal of Biological Engineering            (2023) 17:7 

Encoder by 1.71 and 1.18% in terms of accuracy with colon 
and leukemia datasets respectively, but lagged by 1.17% for 
the DLBCL dataset. For the KNN classifier, RN-Autoen-
coder outperformed Gene-encoder by 18.017, 19.183 and 
0.67% for colon, leukemia and DLBCL datasets, respec-
tively. Also, for the RF classifier, RN-Autoencoder outper-
formed Gene Encoder by 18.62 and 18.58% with leukemia 
and DLBCL datasets respectively, but lagged by 2.2% with 
the colon dataset. Since some other classifiers with RN-
Autoencoder scored 100% in terms of test accuracy, when 
this result was compared with the Gene-encoder, RN-
Autoencoder outperformed it by 16, 10 and 3% with the 
colon, leukemia and DLBCL datasets respectively. Fig-
ure 11 draws this performance comparison.

When comparing RN-Autoencoder to the work done in 
[35] using the lung (Michigan) dataset, we found that the 
RN-Autoencoder outperformed it by 2% in terms of the 
accuracy. Also, Fig. 12 shows this comparison.

When comparing RN-Autoencoder to the Meta 
Health Stack introduced by Samieinasab et al. [47] using 
the WDBC dataset, we found that the RN-Autoencoder 
outperformed it by 1.8%, 1.5%, 3.2% and 2.4% in terms 
of test accuracy, precision, recall and F1 scores respec-
tively. Also, when comparing RN-Autoencoder to the 
DE-RBF-KELM introduced by Bacha et  al. [50] using 
the WDBC dataset, we found that the RN-Autoencoder 
outperformed it by 8.87% in terms of test accuracy. 
Finally, when comparing RN-Autoencoder to the best 
result obtained by the hybrid work done by Singh et al. 
[48], we found that the RN-Autoencoder outperformed 
by 2.34% in terms of test accuracy. Figure 13 shows the 
comparison between RN-Autoencoder and the men-
tioned models using the WDBC dataset.

The proposed RN-Autoencoder achieves accurate and 
precise cancer diagnosis using many imbalanced gene 
expression datasets. Its performance outperformed the 
performance of many different recent works. This enhance-
ment mainly depends on the non-linear transformation of 
the gene expressions using the autoencoder. This is besides 

the oversampling and noise handling using RN-SMOTE. 
This combination of steps handles the curse of dimension-
ality, class imbalance and noise problems that existed in the 
used datasets and had a bad impact on the performance 
of many classifiers in recent studies. So, RN-Autoencoder 
with this sequence of steps improves the performance of 
many different classifiers in terms of various classification 
metrics compared to earlier proposals.

Conclusion and future work
This paper introduced RN-Autoencoder for classifying 
imbalanced high-dimensional cancer gene expression 
datasets. RN-Autoencoder utilizes the Autoencoder to 
reduce the high-dimensionality of the gene expressions 
and then handle the class imbalance using RN-SMOTE. 
RN-Autoencoder has been evaluated using many differ-
ent classifiers and many different imbalanced datasets 
with different imbalance ratios. The results proved that 
the performance of the classifiers has been improved with 
RN-Autoencoder and outperformed the performance 
with original data and extracted data with percentages 
based on the classifier, dataset and evaluation metric. 
Some classifiers succeeded in classifying cancer with 100% 
performance in terms of all used metrics. In addition, RN-
Autoencoder outperformed many recent works using the 
same datasets. As a future work, RN-Autoencoder will 
be extended to include more genomic datasets including 
TCGA with higher dimensionality and multiclass gene 
expressions datasets. Also, time analysis will be required 
and then suitable hyperparameter optimization tech-
niques will be applied for RN-Autoencoder to reduce the 
time for dimensionality reduction and classification.

Abbreviations
RN-Autoencoder      Reduced Noise Autoencoder
RN- SMOTE	               Reduced Noise-Synthesis Minority Over Sampling Technique
DLBCL	               Diffuse Large B-Cell Lymphoma
WDBC	               Wisconsin Diagnostic Breast Cancer
GBM	               Glioblastoma Multiforme
SEER	               Surveillance, Epidemiology and End Results

Fig. 13  RN-Autoencoder vs other models using WDBC dataset
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LDA	               Linear Discriminant Analysis
FA	               Factor Analysis
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NMF	               Nonnegative Matrix Factorization
WT	               Wavelet Transformation
LLE	               Locally Linear Embedding
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GNB	               Gaussian Naïve Bayes
SGD-LR	               Logistic Regression with Stochastic Gradient Descent
SVM-RBF	               �Support Vector Machines with Radial Basis Function kernel
SVM-Linear	               SVM with Linear kernel

Authors’ contributions
The authors confirm contribution to the paper as follows: study concep‑
tion and design: All authors analysis, implementation and interpretation of 
results: Ahmed Arafa, draft manuscript preparation: Ahmed Arafa and Marwa 
Radad. All authors reviewed the results and approved the final version of the 
manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation 
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank 
(EKB). All authors report that this research had no funding from any individual 
or organization.

Availability of data and materials
The datasets analysed during the current study are available in the Kent Ridge 
and UCI repositories at the following links:
https://​web.​archi​ve.​org/​web/​20080​20715​3800/​http://​resea​rch.​i2r.a-​star.​edu.​
sg/​rp/.
https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Breast+​Cancer+​Wisco​nsin+​(Diagn​ostic).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All authors certify that they have NO affiliations with or involvement in any 
organization or entity with any financial interest (such as honoraria; educa‑
tional grants; participation in speakers’ bureaus; membership, employment, 
consultancies, stock ownership, or other equity interest; and expert testimony 
or patent-licensing arrangements), or non-financial interest (such as personal 
or professional relationships, affiliations, knowledge or beliefs) in the subject 
matter or materials discussed in this manuscript.

Received: 13 November 2022   Accepted: 12 December 2022

References
	1.	 Tabakhi S, Najafi A, Ranjbar R, Moradi P. Gene selection for microarray data 

classification using a novel ant colony optimization. Neurocomputing. 
2015;168:1024–36. https://​doi.​org/​10.​1016/j.​neucom.​2015.​05.​022.

	2.	 C Devi Arockia Vanitha, D Devaraj, M Venkatesulu. Gene expression 
data classification using Support Vector Machine and mutual infor‑
mation-based gene selection. Procedia Comput Sci. 2014;47(C):13–21. 
https://​doi.​org/​10.​1016/j.​procs.​2015.​03.​178.

	3.	 Das Sarma S, Deng DL, Duan LM. Machine learning meets quantum 
physics. Phys Today. 2019;72(3):48–54. https://​doi.​org/​10.​1063/​PT.3.​
4164.

	4.	 A Limshuebchuey, R Duangsoithong, T Windeatt. Redundant feature 
identification and redundancy analysis for causal feature selection. In 
2015 8th Biomedical Engineering International Conference (BMEiCON). 
2015:1–5. https://​doi.​org/​10.​1109/​BMEiC​ON.​2015.​73995​32.

	5.	 AAGS Danasingh, A alias Balamurugan Subramanian, JL Epiphany. Identifying 
redundant features using unsupervised learning for high-dimensional data. 
SN Appl Sci. 2020;2(8):1367. https://​doi.​org/​10.​1007/​s42452-​020-​3157-6.

	6.	 L Chen, S Wang. Automated feature weighting in naive bayes for high-
dimensional data classification. In Proceedings of the 21st ACM interna‑
tional conference on Information and knowledge management - CIKM 
’12. 2012:1243. https://​doi.​org/​10.​1145/​23967​61.​23984​26.

	7.	 Tran B, Xue B, Zhang M. Genetic programming for feature construction 
and selection in classification on high-dimensional data. Memetic Com‑
put. 2016;8(1):3–15. https://​doi.​org/​10.​1007/​s12293-​015-​0173-y.

	8.	 Bonev B, Escolano F, Cazorla M. Feature selection, mutual information, 
and the classification of high-dimensional patterns. Pattern Anal Appl. 
2008;11(3–4):309–19. https://​doi.​org/​10.​1007/​s10044-​008-​0107-0.

	9.	 Chandrashekar G, Sahin F. A survey on feature selection methods. Com‑
put Electr Eng. 2014;40(1):16–28. https://​doi.​org/​10.​1016/j.​compe​leceng.​
2013.​11.​024.

	10.	 Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: A new 
perspective. Neurocomputing. 2018;300:70–9. https://​doi.​org/​10.​1016/j.​
neucom.​2017.​11.​077.

	11.	 Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF. A review of 
unsupervised feature selection methods. Artif Intell Rev. 2020;53(2):907–
48. https://​doi.​org/​10.​1007/​s10462-​019-​09682-y.

	12.	 U Shaham, O Lindenbaum, J Svirsky, Y Kluger. Deep unsupervised feature 
selection by discarding nuisance and correlated features. 2021. Available: 
http://​arxiv.​org/​abs/​2110.​05306.

	13.	 Gu S, Cheng R, Jin Y. Feature selection for high-dimensional classification 
using a competitive swarm optimizer. Soft Comput. 2018;22(3):811–22. 
https://​doi.​org/​10.​1007/​s00500-​016-​2385-6.

	14.	 Alhenawi E, Al-Sayyed R, Hudaib A, Mirjalili S. Feature selection methods 
on gene expression microarray data for cancer classification: a systematic 
review. Comput Biol Med. 2022;140: 105051. https://​doi.​org/​10.​1016/j.​
compb​iomed.​2021.​105051.

	15.	 Mishra D, Sharma S. Performance analysis of dimensionality reduction 
techniques: a comprehensive Review. Adv Mech Eng. 2021;639–651:2021. 
https://​doi.​org/​10.​1007/​978-​981-​16-​0942-8_​60.

	16.	 Engel D, Hüttenberger L, Hamann B. A survey of dimension reduc‑
tion methods for high-dimensional data analysis and visualization. 

https://web.archive.org/web/20080207153800/http://research.i2r.a-star.edu.sg/rp/
https://web.archive.org/web/20080207153800/http://research.i2r.a-star.edu.sg/rp/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
https://doi.org/10.1016/j.neucom.2015.05.022
https://doi.org/10.1016/j.procs.2015.03.178
https://doi.org/10.1063/PT.3.4164
https://doi.org/10.1063/PT.3.4164
https://doi.org/10.1109/BMEiCON.2015.7399532
https://doi.org/10.1007/s42452-020-3157-6
https://doi.org/10.1145/2396761.2398426
https://doi.org/10.1007/s12293-015-0173-y
https://doi.org/10.1007/s10044-008-0107-0
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1007/s10462-019-09682-y
http://arxiv.org/abs/2110.05306
https://doi.org/10.1007/s00500-016-2385-6
https://doi.org/10.1016/j.compbiomed.2021.105051
https://doi.org/10.1016/j.compbiomed.2021.105051
https://doi.org/10.1007/978-981-16-0942-8_60


Page 22 of 23Arafa et al. Journal of Biological Engineering            (2023) 17:7 

OpenAccess Ser Informatics. 2012;27:135–49. https://​doi.​org/​10.​4230/​
OASIcs.​VLUDS.​2011.​135.

	17.	 Hira ZM, Gillies DF. A review of feature selection and feature extraction 
methods applied on microarray data. Adv Bioinformatics. 2015;2015:1–13. 
https://​doi.​org/​10.​1155/​2015/​198363.

	18.	 Jia W, Sun M, Lian J, Hou S. Feature dimensionality reduction: a review. 
Complex Intell Syst. 2022;8(3):2663–93. https://​doi.​org/​10.​1007/​
s40747-​021-​00637-x.

	19.	 Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minor‑
ity over-sampling technique. J Artif Intell Res. 2022;16:321–57. Available: 
https://​arxiv.​org/​pdf/​1106.​1813.​pdf%​0A. http://​www.​snopes.​com/​horro​
rs/​insec​ts/​telam​onia.​asp

	20.	 Blagus R, Lusa L. SMOTE for high-dimensional class-imbalanced 
data. BMC Bioinformatics. 2013;14:106. https://​doi.​org/​10.​1186/​
1471-​2105-​14-​106.

	21.	 MacIejewski, J. Stefanowski. Local neighbourhood extension of SMOTE 
for mining imbalanced data. IEEE SSCI 2011 Symp. Ser Comput Intell 
- CIDM 2011 2011 IEEE Symp. Comput Intell Data Min. 2011:104–111. 
https://​doi.​org/​10.​1109/​CIDM.​2011.​59494​34

	22.	 Cheng K, Zhang C, Yu H, Yang X, Zou H, Gao S. Grouped SMOTE with 
noise filtering mechanism for classifying imbalanced data. IEEE Access. 
2019;7:170668–81. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29550​86.

	23.	 Rivera WA. Noise reduction a priori synthetic over-sampling for class 
imbalanced data sets. Inf Sci (Ny). 2017;408:146–61. https://​doi.​org/​10.​
1016/j.​ins.​2017.​04.​046.

	24.	 Arafa A, El-Fishawy N, Badawy M, Radad M. RN-SMOTE: reduced noise 
SMOTE based on DBSCAN for enhancing imbalanced data classification. 
J King Saud Univ Comput Inf Sci. 2022;34(8):5059–74. https://​doi.​org/​10.​
1016/j.​jksuci.​2022.​06.​005.

	25.	 XW Liang, AP Jiang, T Li, YY Xue, GT Wang. LR-SMOTE — An improved 
unbalanced data set oversampling based on K-means and SVM. 
Knowledge-Based Syst. 2020;196. https://​doi.​org/​10.​1016/j.​knosys.​2020.​
105845.

	26.	 Li B, Han B, Qin C. Application of large-scale L 2-SVM for microarray classi‑
fication. J Supercomputing. 2022;78(2):2265–86. https://​doi.​org/​10.​1007/​
s11227-​021-​03962-7.

	27.	 Kakati T, Bhattacharyya DK, Kalita JK, Norden-Krichmar TM. DEGnext: 
classification of differentially expressed genes from RNA-seq data using a 
convolutional neural network with transfer learning. BMC Bioinformatics. 
2022;23(1):2022. https://​doi.​org/​10.​1186/​s12859-​021-​04527-4.

	28.	 W Dai, W Yue, W Peng, X Fu, L Liu, L Liu. Identifying cancer subtypes using 
a residual graph convolution model on a sample similarity network. 
Genes (Basel). 2022;13(1). https://​doi.​org/​10.​3390/​genes​13010​065.

	29.	 Mohammed M, Mwambi H, Mboya IB, Elbashir MK, Omolo B. A stacking 
ensemble deep learning approach to cancer type classification based 
on TCGA data. Sci Rep. 2021;11(1):15626. https://​doi.​org/​10.​1038/​
s41598-​021-​95128-x.

	30.	 Menaga D, Revathi S. Fractional-atom search algorithm-based deep 
recurrent neural network for cancer classification. J Ambient Intell 
Humaniz Comput. 2021. https://​doi.​org/​10.​1007/​s12652-​021-​03008-z.

	31.	 Al Mamun A, et al. Multi-run concrete autoencoder to identify prognostic 
lncRNAs for 12 cancers. Int J Mol Sci. 2021;22:11919. https://​doi.​org/​10.​
3390/​ijms2​22111​919.

	32.	 A Abid, MF Balin, J Zou. Concrete Autoencoders for Differentiable Fea‑
ture Selection and Reconstruction. 2019. Available: http://​arxiv.​org/​abs/​
1901.​09346

	33.	 S Majumder, Yogita, V Pal, A Yadav, A Chakrabarty. Performance analysis 
of deep learning models for binary classification of cancer gene 
expression data. J Healthc Eng. 2022;2022.https://​doi.​org/​10.​1155/​
2022/​11225​36.

	34.	 Saberi-Movahed F, et al. Dual regularized unsupervised feature selection 
based on matrix factorization and minimum redundancy with applica‑
tion in gene selection. Knowl Based Syst. 2022;256: 109884. https://​doi.​
org/​10.​1016/j.​knosys.​2022.​109884.

	35.	 A Bustamam, Z Rustam, AA Selly, NA Wibawa, D Sarwinda, N Husna. Lung 
cancer classification based on support vector machine-recursive feature 
elimination and artificial bee colony. Ann Math Mod. 2021;3(1):40–52. 
https://​doi.​org/​10.​33292/​amm.​v13i1.​71.

	36.	 https://​web.​archi​ve.​org/​web/​20070​63007​4355f​w_/​http://​resea​rch.​i2r.a-​
star.​edu.​sg/​rp/​LungC​ancer/​LungC​ancer-​Michi​gan.​html. (Accessed 6 
Dec 2022).

	37.	 https://​web.​archi​ve.​org/​web/​20070​63007​4513f​w_/​http://​resea​rch.​
i2r.a-​star.​edu.​sg/​rp/​LungC​ancer/​LungC​ancer-​Ontar​io.​html. (Accessed 6 
Dec 2022)

	38.	 Devendran M, Sathya R. An approach for cancer classification using 
optimization driven deep learning. Int J Imaging Syst Technol. 
2021;31(4):1936–53. https://​doi.​org/​10.​1002/​ima.​22596.

	39.	 R Majji, G Nalinipriya, C Vidyadhari, R Cristin. Jaya Ant lion optimization-
driven Deep recurrent neural network for cancer classification using gene 
expression data. https://​doi.​org/​10.​1007/​s11517-​021-​02350-w/​Publi​shed.

	40.	 https://​www.​openml.​org/d/​1137. (Accessed 6 Dec 2022).
	41.	 https://​www.​openml.​org/d/​1165. (Accessed 6 Dec 2022).
	42.	 https://​www.​openml.​org/d/​1145. (Accessed 6 Dec 2022).
	43.	 https://​www.​openml.​org/d/​1158. (Accessed 6 Dec 2022).
	44.	 D Pandit, J Dhodiya, Y Patel. Molecular cancer classification on microar‑

rays gene expression data using wavelet-based deep convolutional 
neural network. Int J Imaging Syst Technol. 2022:1–19. https://​doi.​org/​10.​
1002/​ima.​22780.

	45.	 Uzma, F Al-Obeidat, A Tubaishat, B Shah, Z Halim. Gene encoder: a 
feature selection technique through unsupervised deep learning-based 
clustering for large gene expression data. Neural Comput Appl. 2020;4. 
https://​doi.​org/​10.​1007/​s00521-​020-​05101-4.

	46.	 https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Breast+​Cancer+​Wisco​nsin+​
(Diagn​ostic). (Accessed 6 Nov 2022).

	47.	 Samieinasab M, Torabzadeh SA, Behnam A, Aghsami A, Jolai F. Meta-
Health Stack: A new approach for breast cancer prediction. Healthcare 
Analytics. 2022;2: 100010. https://​doi.​org/​10.​1016/j.​health.​2021.​100010.

	48.	 Singh D, Nigam R, Mittal R, Nunia M. Information retrieval using machine 
learning from breast cancer diagnosis. Multimed Tools Appl. 2022. 
https://​doi.​org/​10.​1007/​s11042-​022-​13550-3.

	49.	 https://​seer.​cancer.​gov/​data/. (Accessed 6 Dec 2022).
	50.	 S Bacha, O Taouali. A novel machine learning approach for breast cancer 

diagnosis. Measurement (Lond). 2022;187. https://​doi.​org/​10.​1016/j.​
measu​rement.​2021.​110233.

	51.	 Tong F. "A Comprehensive Comparison of Neural Network-Based Feature 
Selection Methods in Biological Omics Datasets". In 2021 4th Interna‑
tional Conference on Signal Processing and Machine Learning. 2021 pp. 
77-81. https://​doi.​org/​10.​1145/​34832​07.​34832​20.

	52.	 Danaee P, Ghaeini R, Hendrix DA. A deep learning approach for cancer 
detection and relevant gene identification. Pac Symp Biocomputing. 
2017;22:219–29. https://​doi.​org/​10.​1142/​97898​13207​813_​0022.

	53.	 Liu Z, Wang R, Zhang W. Improving the generalization of unsupervised 
feature learning by using data from different sources on gene expression 
data for cancer diagnosis. Med Biol Eng Comput. 2022;60(4):1055–73. 
https://​doi.​org/​10.​1007/​s11517-​022-​02522-2.

	54.	 HN Sowmya, S. Ajitha. A study on deep learning predictive models in 
healthcare. 2022;863–876. https://​doi.​org/​10.​1007/​978-​981-​16-​0739-4_​81.

	55.	 Daoud M, Mayo M. A survey of neural network-based cancer predic‑
tion models from microarray data. Artif Intell Med. 2019;97:204–14. 
https://​doi.​org/​10.​1016/j.​artmed.​2019.​01.​006.

	56.	 G López-García, JM Jerez, L Franco, FJ Veredas. A Transfer-Learning 
Approach to Feature Extraction from Cancer Transcriptomes with Deep 
Autoencoders. 2019:912–924. https://​doi.​org/​10.​1007/​978-3-​030-​20521-
8_​74

	57.	 Wang Y, Yao H, Zhao S. Auto-encoder based dimensionality reduction. 
Neurocomputing. 2016;2016(184):232–42. https://​doi.​org/​10.​1016/j.​
neucom.​2015.​08.​104.

	58.	 VS Ngairangbam, M Spannowsky, M Takeuchi. Anomaly detection in 
high-energy physics using a quantum autoencoder. Physical Review D. 
2022;105(9). https://​doi.​org/​10.​1103/​PhysR​evD.​105.​095004

	59.	 Mujkic E, Philipsen MP, Moeslund TB, Christiansen MP, Ravn O. Anomaly 
detection for agricultural vehicles using autoencoders. Sensors. 
2022;22(10):3608. https://​doi.​org/​10.​3390/​s2210​3608.

	60.	 Zhou H, Yu K, Zhang X, Wu G, Yazidi A. Contrastive autoencoder for anom‑
aly detection in multivariate time series”. Inf Sci (N Y). 2022;610:266–80. 
https://​doi.​org/​10.​1016/j.​ins.​2022.​07.​179.

	61.	 M Catillo, A Pecchia, U Villano. AutoLog: anomaly detection by deep 
autoencoding of system logs. Expert Syst Appl. 2022;191. https://​doi.​org/​
10.​1016/j.​eswa.​2021.​116263.

	62.	 Subray S, Tschimben S, Gifford K. Towards enhancing spectrum sensing: 
signal classification using autoencoders. IEEE Access. 2021;9:82288–99. 
https://​doi.​org/​10.​1109/​ACCESS.​2021.​30871​13.

https://doi.org/10.4230/OASIcs.VLUDS.2011.135
https://doi.org/10.4230/OASIcs.VLUDS.2011.135
https://doi.org/10.1155/2015/198363
https://doi.org/10.1007/s40747-021-00637-x
https://doi.org/10.1007/s40747-021-00637-x
https://arxiv.org/pdf/1106.1813.pdf%0A
http://www.snopes.com/horrors/insects/telamonia.asp
http://www.snopes.com/horrors/insects/telamonia.asp
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1109/CIDM.2011.5949434
https://doi.org/10.1109/ACCESS.2019.2955086
https://doi.org/10.1016/j.ins.2017.04.046
https://doi.org/10.1016/j.ins.2017.04.046
https://doi.org/10.1016/j.jksuci.2022.06.005
https://doi.org/10.1016/j.jksuci.2022.06.005
https://doi.org/10.1016/j.knosys.2020.105845
https://doi.org/10.1016/j.knosys.2020.105845
https://doi.org/10.1007/s11227-021-03962-7
https://doi.org/10.1007/s11227-021-03962-7
https://doi.org/10.1186/s12859-021-04527-4
https://doi.org/10.3390/genes13010065
https://doi.org/10.1038/s41598-021-95128-x
https://doi.org/10.1038/s41598-021-95128-x
https://doi.org/10.1007/s12652-021-03008-z
https://doi.org/10.3390/ijms222111919
https://doi.org/10.3390/ijms222111919
http://arxiv.org/abs/1901.09346
http://arxiv.org/abs/1901.09346
https://doi.org/10.1155/2022/1122536
https://doi.org/10.1155/2022/1122536
https://doi.org/10.1016/j.knosys.2022.109884
https://doi.org/10.1016/j.knosys.2022.109884
https://doi.org/10.33292/amm.v13i1.71
https://web.archive.org/web/20070630074355fw_/http://research.i2r.a-star.edu.sg/rp/LungCancer/LungCancer-Michigan.html
https://web.archive.org/web/20070630074355fw_/http://research.i2r.a-star.edu.sg/rp/LungCancer/LungCancer-Michigan.html
https://web.archive.org/web/20070630074513fw_/http://research.i2r.a-star.edu.sg/rp/LungCancer/LungCancer-Ontario.html
https://web.archive.org/web/20070630074513fw_/http://research.i2r.a-star.edu.sg/rp/LungCancer/LungCancer-Ontario.html
https://doi.org/10.1002/ima.22596
https://doi.org/10.1007/s11517-021-02350-w/Published
https://www.openml.org/d/1137
https://www.openml.org/d/1165
https://www.openml.org/d/1145
https://www.openml.org/d/1158
https://doi.org/10.1002/ima.22780
https://doi.org/10.1002/ima.22780
https://doi.org/10.1007/s00521-020-05101-4
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
https://doi.org/10.1016/j.health.2021.100010
https://doi.org/10.1007/s11042-022-13550-3
https://seer.cancer.gov/data/
https://doi.org/10.1016/j.measurement.2021.110233
https://doi.org/10.1016/j.measurement.2021.110233
https://doi.org/10.1145/3483207.3483220
https://doi.org/10.1142/9789813207813_0022
https://doi.org/10.1007/s11517-022-02522-2
https://doi.org/10.1007/978-981-16-0739-4_81
https://doi.org/10.1016/j.artmed.2019.01.006
https://doi.org/10.1007/978-3-030-20521-8_74
https://doi.org/10.1007/978-3-030-20521-8_74
https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.1103/PhysRevD.105.095004
https://doi.org/10.3390/s22103608
https://doi.org/10.1016/j.ins.2022.07.179
https://doi.org/10.1016/j.eswa.2021.116263
https://doi.org/10.1016/j.eswa.2021.116263
https://doi.org/10.1109/ACCESS.2021.3087113


Page 23 of 23Arafa et al. Journal of Biological Engineering            (2023) 17:7 	

	63.	 Dai X, He X, Guo S, Liu S, Ji F, Ruan H. Research on hyper-spectral remote 
sensing image classification by applying stacked de-noising auto-
encoders neural network. Multimedia Tools Appl. 2021;80(14):21219–39. 
https://​doi.​org/​10.​1007/​s11042-​021-​10735-0.

	64.	 O. Deperlioglu. Heart sound classification with signal instant energy and 
stacked autoencoder network. Biomed Signal Process Control. 2021;64. 
https://​doi.​org/​10.​1016/j.​bspc.​2020.​102211.

	65.	 Ai D, Wang Y, Li X, Pan H. Colorectal cancer prediction based on weighted 
gene co-expression network analysis and variational auto-encoder. 
Biomolecules. 2020;10(9):1207. https://​doi.​org/​10.​3390/​biom1​00912​07.

	66.	 B Janakiramaiah, G Kalyani, S Narayana, TBM Krishna. Reducing 
dimensionality of data using autoencoders. Smart Intell Comput Appl. 
2020:51–58. https://​doi.​org/​10.​1007/​978-​981-​32-​9690-9_6.

	67.	 https://​web.​archi​ve.​org/​web/​20070​63007​4444f​w_/​http://​resea​rch.​i2r.a-​
star.​edu.​sg/​rp/​Colon​Tumor/​Colon​Tumor.​html. (Accessed 6 Nov 2022).

	68.	 https://​web.​archi​ve.​org/​web/​20070​63007​4526f​w_/​http://​resea​rch.​i2r.a-​
star.​edu.​sg/​rp/​Leuke​mia/​ALLAML.​html. (Accessed 6 Nov 2022).

	69.	 https://​web.​archi​ve.​org/​web/​20080​20715​3800/​http://​resea​rch.​i2r.a-​star.​
edu.​sg/​rp/. (Accessed 6 Nov 2022).

	70.	 A Arafa, M Radad, M Badawy, NE Fishawy. Regularized Logistic Regression 
Model for Cancer Classification. In 2021 38th National Radio Science 
Conference (NRSC), 2021:251–261. https://​doi.​org/​10.​1109/​NRSC5​2299.​
2021.​95098​31.

	71.	 AA Arafa, M Radad, M Badawy, N El-Fishawy. Logistic regression hyperpa‑
rameter optimization for cancer classification. Menoufia J Electron Eng 
Res. 2022;31(1):1–8. https://​doi.​org/​10.​21608/​mjeer.​2021.​70512.​1034.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/s11042-021-10735-0
https://doi.org/10.1016/j.bspc.2020.102211
https://doi.org/10.3390/biom10091207
https://doi.org/10.1007/978-981-32-9690-9_6
https://web.archive.org/web/20070630074444fw_/http://research.i2r.a-star.edu.sg/rp/ColonTumor/ColonTumor.html
https://web.archive.org/web/20070630074444fw_/http://research.i2r.a-star.edu.sg/rp/ColonTumor/ColonTumor.html
https://web.archive.org/web/20070630074526fw_/http://research.i2r.a-star.edu.sg/rp/Leukemia/ALLAML.html
https://web.archive.org/web/20070630074526fw_/http://research.i2r.a-star.edu.sg/rp/Leukemia/ALLAML.html
https://web.archive.org/web/20080207153800/http://research.i2r.a-star.edu.sg/rp/
https://web.archive.org/web/20080207153800/http://research.i2r.a-star.edu.sg/rp/
https://doi.org/10.1109/NRSC52299.2021.9509831
https://doi.org/10.1109/NRSC52299.2021.9509831
https://doi.org/10.21608/mjeer.2021.70512.1034

	RN-Autoencoder: Reduced Noise Autoencoder for classifying imbalanced cancer genomic data
	Abstract 
	Background 
	Results 
	Conclusion 

	Introduction
	Related work
	Material and methods
	Autoencoders
	RN-SMOTE
	RN- Autoencoder
	Datasets and metrics


	Results and Discussion
	Evaluation of RN-Autoencoder
	Results for all datasets
	Colon dataset
	Leukemia dataset
	DLBCL dataset
	Lung (Michigan) dataset
	WDBC dataset

	Comparison with current state of art

	Conclusion and future work
	References


