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Abstract

Background Non-invasive online fluorescence monitoring in high-throughput microbioreactors is a well-established
method to accelerate early-stage bioprocess development. Recently, single-wavelength fluorescence monitoring in
microtiter plates was extended to measurements of highly resolved 2D fluorescence spectra, by introducing charge-
coupled device (CCD) detectors. Although introductory experiments demonstrated a high potential of the new moni-
toring technology, an assessment of the capabilities and limits for practical applications is yet to be provided.

Results In this study, three experimental sets introducing secondary substrate limitations of magnesium, potassium,
and phosphate to cultivations of a GFP-expressing H. polymorpha strain were conducted. This increased the complex-
ity of the spectral dynamics, which were determined by 2D fluorescence measurements. The metabolic responses
upon growth limiting conditions were assessed by monitoring of the oxygen transfer rate and extensive offline sam-
pling. Using only the spectral data, subsequently, partial least-square (PLS) regression models for the key parameters
of glycerol, cell dry weight, and pH value were generated. For model calibration, spectral data of only two cultivation
conditions were combined with sparse offline sampling data. Applying the models to spectral data of six cultures

not used for calibration, resulted in an average relative root-mean-square error (RMSE) of prediction between 6.8 and
6.0%. Thus, while demanding only sparse offline data, the models allowed the estimation of biomass accumulation
and glycerol consumption, even in the presence of more or less pronounced secondary substrate limitation.

Conclusion For the secondary substrate limitation experiments of this study, the generation of data-driven models
allowed a considerable reduction in sampling efforts while also providing process information for unsampled cultures.
Therefore, the practical experiments of this study strongly affirm the previously claimed advantages of 2D fluores-
cence spectroscopy in microtiter plates.
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Background

Fluorophores are molecules that can undergo absorp-
tion and emission of energy upon excitation of light at a
compound-specific wavelength. The radiative emission
of fluorescent light occurs, when an electron of a sin-
glet excited state returns to the ground state. During this
process, energy is partially dissipated by non-radiative
vibrational relaxation. Consequently, fluorescence emis-
sion is observed at an increased wavelength compared
to the excitation wavelength [1]. Coenzymes such as fla-
vin adenine dinucleotide (FAD), Nicotinamide adenine
dinucleotide (NADH), or aromatic amino acids such as
tryptophane and phenylalanine are naturally occurring
intracellular fluorophores. Among others, their fluores-
cence intensity depends on the intracellular concentra-
tion or the pH value. This molecular feature has been
exploited for online bioprocess monitoring for over
50vyears [2—4]. Over the time, the spectroscopical setups
have advanced from the measurements of single wave-
length combinations to scanning measurements using
filter wheels [5-7] and tunable grating-based monochro-
mators [8—10]. Recently, by introducing charge-coupled
device (CCD)-based detectors, even measurement of
continuous emission spectra was enabled in stirred tank
reactors [11] and microtiter plates (MTPs) [12].

With the increased amount of available spectral data,
also workflows and machine learning methods had to
be adapted to the needs of bioprocess engineering.
Mowbray et al. classified the available algorithms into
the groups of multivariate data analysis (MVDA), sup-
port vector machines, ensemble learning, artificial neu-
ral networks and Gaussian processes [13]. Of these,
especially methods of MVDA, such as principal com-
ponent analysis (PCA) and partial least-square (PLS)
regression, have routinely been applied within the
related field of chemometrics [13, 14]. PCA is a dimen-
sion reduction technique, which allows the descrip-
tion of high dimensional data by only a few principal
components (PCs). The PCs are iteratively generated,
according to the maximum variance of the residual
data in an orthogonal manner [15]. Thereby, besides
dimensional reduction, PCA can be applied to separate
dominant and less dominant spectral signal dynamics.
This additional feature has successfully been used for
describing cultivation processes in more detail [16, 17].
PLS regression is a supervised machine learning tech-
nique closely related to PCA. Instead of solely relying
on independent spectral data, an additional dependent
response dataset, such as a compound concentration, is
included to generate covariance-based regression mod-
els. Applying the regression models to external spectral
data, allows the prediction of the respective response
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variable without the need for offline measurement [18].
Within the field of bioprocess engineering, the imple-
mentations and applications of spectroscopic setups
in combination with machine learning algorithms are
constantly advancing and are, thus, frequently re-eval-
uated [13, 19-23].

Online fluorescence monitoring in high-throughput
microbioreactors allows cost-efficient, parallel screen-
ing experiments. This advantage renders the technology
an invaluable tool during early-stage bioprocess devel-
opment [24-26]. Successful applications have been
reported for clone screening and genetic construct
selection [27-31], substrate feeding [32, 33] and induc-
tion profiling [10, 34, 35]. Also, a systematic evalua-
tion of media compositions and cultivation conditions
for improved microbial growth and product forma-
tion has been demonstrated [36—39]. For the recently
introduced 2D fluorescence spectroscopy in MTPs, a
successful proof-of-concept was shown for the cultiva-
tion of Escherichia coli and Hansenula polymorpha [12,
40-42]. In these first studies, data-driven PLS mod-
eling was extensively tested for the variation of carbon
sources and initial cell dry weights (CDW). In another
study, scattered-light spectra were generated for the
co-cultivation of Lactococcus lactis and Kluyveromyces
marxianus. Data-driven modeling was used to calcu-
late the coculture composition [43]. Furthermore, the
setup has been used for analysing autofluorescence and
absorption of a pigment in Trichoderma reesei RUT-
C30 and Streptomyces coelicolor A3 (2) mixed cultures
[44-46].

This study aims to evaluate the capabilities of the new
MTP-based monitoring system under more practical-
oriented conditions. The methodology for 2D fluores-
cence-based PLS modeling, presented by Berg et al.
[41], is applied to experimental data of higher complex-
ity. Following the H. polymorpha screening experiments
of Kottmeier et al. [47], three separate experiments are
conducted, with each varying the supplementation of
one secondary substrate of magnesium (Mg”"), potas-
sium (K), or phosphate (PO,>7). 2D fluorescence spec-
troscopy is used to monitor the dynamics of GFP and
biomass accumulation, while further metabolic insights
are obtained by the measurement of the oxygen transfer
rate (OTR) and by extensive offline sampling. Subse-
quently, the spectral data of cultures of two cultivation
conditions in combination with a subset of the offline
data is then used to generate PLS models, before inter-
nal and external validation is conducted using data not
used for calibration. Based on the results and the com-
parison to the study by Berg et al. [41], the capabilities
and limitations of the 2D fluorescence monitoring tech-
nology in MTPs are assessed.
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Fig. 1 Time-resolved (A-C) online monitoring signals and (D-F) offline sample measurements of H. polymorpha RB11 pC9-FMD (Pr,n-GFP)
cultivations at different initial cell dry weight (CDW,;) and magnesium (Mg?*) concentrations. (A) The mean oxygen transfer rate (OTR) of culture
replicates (n=2-3, Additional file 1:Fig. S3) was determined by a uRAMOS device [48]. The low standard deviations are shown as shaded areas and
indicate good reproducibility. Hollow symbols indicate every sixth data point. (B) Scattered light (A, =A,,,=600nm) and (C) GFP fluorescence

intensities (Ao, =420nm, A,

=530nm) were extracted from 2D spectra of duplicates (solid and dotted lines). Hollow symbols indicate every

fifth data point. Values of (D) glycerol, (E) cell dry weight (CDW), and (F) pH value are based on singular offline measurement from parallel
cultivation, taken every 1.5h (hollow and filled symbols). Filled, linearly interpolated symbols describe a sampling interval of 6 h. Cultivation
conditions: 48-well microtiter plate with round geometry, modified SYN6-MES medium, liquid volume =800 L, shaking diameter =3 mm, shaking

frequency = 1000 rpm, temperature =30°C

Results

Magnesium limitation experiment

In the first cultivation experiment, the magnesium
(Mg*") supplementation of the modified SYN6-MES
medium was varied between 295.8 mg/L and O0mg/L. In
addition to the initial cell dry weight (CDW,,) of 0.03g/L,
for the cultures with 295.8 mg/L magnesium also 0.06g/L
and 0.11g/L were cultivated. Following the experimental
layout described in Additional file 1: Fig. S1, the result-
ing online data of the OTR, scattered light and GEP fluo-
rescence is shown in Fig. 1A-C. Exemplary recorded 2D
spectra are shown in Additional file 1: Fig. S2. Offline
sampling data for the cultures with 295.8 mg/L mag-
nesium and a CDW, of 0.06g/L (blue upward triangle)
and 1.18 mg/L magnesium and a CDW, of 0.03g/L (red

downward triangle), taken at a 1.5h interval, are shown
as hollow symbols in Fig. 1D-F. The filled, linearly inter-
polated symbols describe a more realistic sampling inter-
val of 6 h and are later used for PLS model calibration.
The OTR signals in Fig. 1A are comparable to the
results of Kottmeier et al. [47], although being obtained
in MTPs instead of shake flasks. The cultures with a mag-
nesium supplementation of 295.8mg/L and a CDW,,
of 0.03g/L (light blue pentagons) showed exponen-
tial growth until 22.3h, with a maximum OTR value of
34.5mmol/L/h. Afterwards, the OTR dropped below
5mmol/L/h. Both the scattered light and the GFP signals
followed this exponential growth pattern. Shortly before
the maximum OTR was reached, a sudden increase was
observed for the GFP signal, which is connected to the
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partial derepression of the FMD promotor due to low
glycerol concentrations [49, 50]. After the increase, the
GFP signals flattened asymptotically. The cultures with
an increased CDW, (purple circles, blue upward trian-
gles) described an earlier exponential increase, but were
otherwise similar. With decreasing the magnesium sup-
plementation, the maximum OTR was reduced, and the
final signal drop was successively replaced by a slight
linear decrease. Accordingly, the scattered light signal
was observed to transition from an exponential increase
to a linear increase upon reaching the OTR maximum.
For the GFP signal, a sudden stagnation was observed
for the cultures supplemented with a magnesium sup-
plementation of up to 4.14mg/L (yellow leftward trian-
gles). No considerable metabolic activity was measured
for the cultures without magnesium (pink squares) and
the wells containing only non-inoculated medium (black
hexagons).

The offline data in Fig. 1D-F described an exponential
increase of the CDW and an according glycerol and pH
decrease during the unlimited growth phase. In total,
around 4.1g/L CDW were accumulated for the culture
supplemented with 295.8 mg/L magnesium. The pH value
decreased to a minimum of 5.48. For the culture sup-
plemented with 1.18mg/L magnesium, the transition
from an exponential OTR increase to a linear decrease
resulted in a slow linear decrease and a residual glycerol
concentration of 5.5g/L at the end of the cultivation.
Here, a total of 1.9g/L. CDW was accumulated, while the
pH decreased to 5.75. For the 6h sampling interval the
exponential growth pattern was described inaccurately,
as especially the time of glycerol depletion and the mini-
mum pH value were not correctly reflected.

Similar to the study by Berg et al. [41], the PLS mod-
els were generated based on online spectral data of two
replicates and the linearly interpolated offline values of
the sparse, 6 h sampling interval of the cultures shown in
Fig. 1D-F. The prediction dataset consisted of the spec-
tral data of the remaining cultivation conditions shown
in Fig. 1A-C. The OTR was not used for PLS modeling.
The resulting root-mean-square error (RMSE) for differ-
ent numbers of latent variables (LVs) are shown in Addi-
tional file 1: Fig. S4. The appropriate number of LVs was
identified by a decreasing RMSE,) ¢parse> 2cCOmpanied by
an increase of the RMSE(, ¢y According to Berg et al.
[41], at this point, the model starts to overfit the sparse
data, instead of representing the inherent biology-based
spectral dynamics. Following this methodology, the PLS
models were generated using two LVs for the glycerol
concentration and the CDW and three LVs for the pH
value. The calculated offline parameter progressions for
the calibration and the prediction dataset are shown in
Fig. 2.
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In Fig. 2A, the glycerol values calculated for the cul-
tures with 295.8 mg/L magnesium (blue upward trian-
gles) agreed well with the exponential decrease, described
by the offline values of the short sampling interval. The
lowest glycerol concentration is calculated at 0.15g/L and
coincided with the depletion of glycerol depletion accord-
ing to the sparse sampling interval. For the cultures with
1.18 mg/L magnesium (red downward triangles), the ini-
tial non-linear glycerol decrease was calculated appro-
priately. However, according to the PLS model, glycerol
consumption ceases after 19h. This led to a final differ-
ence of 1.2g/L between the calculated and the measured
values, which represented the time point of the onset of
limitation and the stagnating GFP signal (Fig. 1C). For
the prediction dataset (Fig. 2D), good predictability of the
glycerol concentration was observed during exponential
growth, while under magnesium-limiting conditions, the
glycerol consumption was underestimated. As a result,
especially for the cultures supplemented with 2.37 mg/L
(orange diamonds) and 4.14mg/L magnesium (yellow
leftward triangles), the calculated values considerably
exceeded the measured values. In total, an RMSE, gy
of 0.57 g/L was calculated, while for the prediction data-
set, an RMSEp .4 ¢ of 0.94g/L resulted. Relative to the
measured glycerol range of 11.98g/L, this accounts for
5.1% for the calibration dataset and 8.5% for the predic-
tion dataset (Additional file 2: Table S1).

The results for the PLS model of the CDW are shown
in Fig. 2B and E. The CDW was accurately calculated for
both cultivation conditions of the calibration dataset. For
the prediction dataset, the calculated values agreed well
with the measured values during the exponential growth.
However, especially for the increasingly limited cultures,
the PLS model described a premature growth stagnation.
This stagnation led to the final CDW values being under-
estimated by as much as 0.5g/L for the cultures with
4.14mg/L magnesium. In conclusion, an RMSE¢, gy
of 0.18g/L (3.8%), and an RMSE; 4 ¢ of 0.3g/L (6.5%)
were determined (Additional file 2: Table S1).

The PLS model of the pH value is shown in Fig. 2C and
F. The model accurately reflected the initial pH decrease
and the subsequent increase for the calibration cultures
with 295.8mg/L magnesium. However, the minimum
value measured at 5.46 was calculated to be 5.55, which
represented the lowest value of the 6h sampling data-
set used for calibration. For the culture supplemented
with 1.18 mg/L magnesium, the PLS model accurately
described the pH value throughout the cultivation time.
Transferring the model to the prediction dataset resulted
in comparable observations. While the pH values of
the strongly limited cultures were described accurately,
deviations increased for the cultures of higher magne-
sium. This was especially observed for the time after the
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Fig. 2 (A-C) Calibration and (D-F) prediction of the PLS models for three offline parameters for H. polymorpha RB11 pC9-FMD (P,p-GFP)
cultivations at different initial cell dry weight (CDW,,) and magnesium (Mg?*) concentrations. This figure is based on the data in Fig. 1. The PLS
models were calibrated using the linearly interpolated values of the filled symbols and a total of 248 2D spectra of the two cultivation conditions
shown in A-C.The PLS models for (A, D) glycerol, (B, E) CDW, and (C, F) pH value were generated using two, three, and two LVs, respectively.
Solid and dotted lines describe the calculated parameter progression of duplicates. Hollow symbols in A-F were used for model validation

only. Cultivation conditions: 48-well microtiter plate with round geometry, modified SYN6-MES medium, liquid volume =800 L, shaking

diameter =3 mm, shaking frequency = 1000 rpm, temperature =30°C

metabolic activity ended. A systematic overestimation
of the pH values was observed for the cultures with a
CDW,, of 0.03g/L of 295.8 mg/L magnesium (light blue
pentagons). In summary, an RMSE, ¢, of 0.025 (4.9%)
was obtained, while for the RMSEy, .4 ¢y a value of 0.032
(6.0%) resulted.

In conclusion, despite the changes in the scattered
light and fluorescence dynamics, the resulting PLS mod-
els provide a reasonable overall accuracy. Although for
individual cultivation conditions the predictive perfor-
mance showed shortcomings of the models, with a rela-
tive RMSE below 10%, the acceptance criterium for a

transferable PLS model described by Yousefi-Darani et al.
[51] is met.

Potassium limitation experiment

In the second experiment, the potassium (K*) supple-
mentation to the modified SYN6-MES medium was
varied. As for the previous experiment, the calculated
RMSE included three very similar cultivation conditions,
the variation of the CDW, was omitted. Thereby, also
the number of cultures grown under limited conditions
could be increased. In total, eight cultivation conditions
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with potassium concentrations between 2017.3 mg/L and
20.2mg/L were investigated.

With decreasing potassium concentration, the online
spectral data in Additional file 1: Fig. S5A and B described
a transition into a decelerated linear increase for both the
scattered light and the GFP intensity. This resulted in the
maximum intensities being decreased by more than for
the cultures with the lowest potassium concentration
of 20.2mg/L when compared to the fully supplemented
cultures. Accordingly, also the offline data in Additional
file 1: Fig. S5C-E described a reduced, linear growth and
consumption during the limitation phase. Comparable to
the previous experiment, the linear interpolation of the
sparse sampling interval did not accurately describe the
non-linear growth pattern and missed the exact time of
glycerol depletion, as well as the correct minimum pH
value.

Similar to the previous experiment, the PLS model was
generated based on the spectral online and the sparse
offline sampling data of the cultures with the second
highest (100.9mg/L potassium, blue upward triangles)
and the lowest (20.2mg/L potassium, pink squares)
potassium supplementation. The prediction dataset
consisted of duplicates of the remaining online moni-
tored cultivation conditions, shown in Additional file 1:
Fig. S5A-B. The RMSEs resulting from the variation of
LVs are shown in Additional file 1: Fig. S6. The RMSE¢,
sparse a1d RMSEc,; ¢ were of the same magnitude, as
observed for the magnesium limitation experiment. Sim-
ilarly, a continuous decrease of the calculated values was
observed for increasing LVs. An overall reduced RMSE
was observed, when excluding the cultures with the high-
est potassium concentration from the prediction dataset
(RMSEp,eq full, —100%, Plue diamonds). Following the pre-
viously described criteria for the final PLS models of the
CDW and the pH value, three LVs were used, while for
the glycerol concentration, four LVs were chosen. The
resulting trajectories, calculated by the PLS models, are
shown in Fig. 3.

In Fig. 3A and D, the calculated glycerol values showed
a tendency towards the values of the interpolated sparse
sampling interval. Consequently, for both the calibra-
tion and the prediction dataset, the glycerol progressions
were described more accurately for lower potassium con-
centrations. For higher potassium supplementation, the
glycerol consumption rates were underestimated, lead-
ing to the calculated glycerol depletion to occur later
than determined by the measurements. For the culture
supplemented with 2017.3mg/L potassium (purple cir-
cles), the glycerol concentration was calculated to a
value of —3.5g/L after 21 h. Here, a close connection to
the increased scattered light (Additional file 1: Fig. S5A)
can be assumed. In total, the determined RMSE., 4
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is 0.51g/L (4.7%), while for the prediction dataset, the
RMSEp,q s Was calculated to 2.05g/L (18.7%). Exclud-
ing the cultures with the highest potassium concentra-
tion resulted in a considerably reduced RMSEp, g g
_100% 0f 0.57 g/L (5.2%).

As for the glycerol concentration, also for the PLS
model of the CDW, shown in Fig. 3B and E, higher inac-
curacies were observed for higher potassium concentra-
tions resulting from an underestimated growth rate. Only
for the cultures with 2017.3 mg/L potassium, the calcu-
lated and the measured offline values were again in very
good alignment during the exponential growth. However,
after the exponential growth was terminated (between
18h and 42h) non-plausible CDW fluctuations with
deviations of up to 0.45g/L were calculated. As a result,
an RMSEc, ¢ of 0.15g/L (4.0%) was calculated, while
the RMSE), . ¢,; was determined to 0.55g/L (14.6%). The
RMSEp,eq furt, - 100% Was reduced to 0.29g/L (8.4%) as the
described fluctuations were omitted.

The calculated values for the pH value of the calibration
dataset in Fig. 3C show a tendency of underestimation
for the low potassium supplementation and an overesti-
mation for the high potassium supplementation. When
applied to the prediction dataset (Fig. 3F), the PLS model
accurately predicted the pH values for the cultures with
potassium concentrations of up to 35.3 mg/L (orange dia-
monds). However, for higher potassium concentrations,
the accuracy decreased. Considerable shortcomings were
observed for the cultures of 2017.3 mg/L potassium, for
which the measured minimal pH value was missed by
0.14. In total, the RMSE,, ¢ of the PLS model was cal-
culated to 0.034 (4.3%), while the RMSEp 4 ¢, Was cal-
culated to 0.054 (6.9%). When excluding the cultures
with the highest potassium concentration, the RMSE; .
full, —100% Was reduced to 0.032 (6.5%). While this repre-
sents only a limited reduction of the percentage value,
compared to the RMSEp, .4 ¢, the absolute RMSEp 4 ¢,
_100% is nearly reduced by half.

In conclusion, the potassium experiment showed lower
PLS modeling performance than the magnesium vari-
ation experiment. This partially resulted from the cho-
sen cultivation conditions and the reduced similarity
between the calibration and prediction dataset.

Phosphate limitation experiment

In the third experiment, the supplementation of
phosphate (PO,%>") was varied between Omg/L and
697.9mg/L. The resulting online and offline values
are shown in Additional file 1: Fig. S7. The OTR sig-
nals indicated the onset of a limitation for phosphate
concentrations of 139.6mg/L (light blue pentagons)
or less. The limitation led to a decreased maximum
of the OTR, followed by a plateau of variable length.
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Fig. 3 (A-C) Calibration and (D-F) prediction of the PLS models for three offline parameters of H. polymorpha RB11 pC9-FMD (P,5-GFP) cultivations
at different potassium (K*) concentrations. This figure is based on the data from Additional file 1: Fig. S5. The PLS models were calibrated with the
linearly interpolated values of the filled symbols and a total of 356 2D spectra of the two cultivation conditions shown in A-C. The PLS models for (A,
D) glycerol, (B, E) CDW, and (C, F) pH value were generated using four, three, and three LVs. Solid and dotted lines describe the calculated parameter
progression of duplicates. The hollow symbols were used for model validation only. The crossed symbols describe the value for the last offline
sample taken after 54 h. Cultivation conditions: 48-well microtiter plate with round geometry, modified SYN6-MES medium, liquid volume =800 L,

shaking diameter =3 mm, shaking frequency = 1000 rpm, temperature =30°C

Concurrently, the scattered light transitioned to a lin-
ear increase, while the GFP signal stagnated. Upon the
final decrease of the OTR, an additional final increase
of the GFP intensity was observed, the extend of which
decreased with decreasing phosphate supplementation.
Noteworthy, for all phosphate concentrations, the scat-
tered light signals reached comparable maximum val-
ues. For the cultures without phosphate (pink squares)
and the non-inoculated medium (black hexagons), no
considerable signal increase was observed.

Similar to the scattered light, the offline data in Addi-
tional file 1: Fig. S7D-F indicated a comparable CDW
of 3.2g/L CDW for both sampled conditions, despite
a slower growth of the limited culture. In contrast, the
higher phosphate supplementation led to a minimum
pH value of 5.44, whereas for the lower supplementation
a pH minimum of 5.8 was observed. Again, the linear
interpolation of the sparse sampling interval introduced
inaccuracies for the timing of the depletion of glycerol,
the maximum CDW, and the minimum pH value for the
cultures with the higher phosphate supplementation. For
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the culture of lower phosphate supplementation, the tra-
jectory was appropriately described.

The PLS models were generated based on the data of
the first 34.5h of cultivation. The calibration dataset
included the cultivation conditions shown in Additional
file 1: Fig. S7D-F, while the prediction dataset consisted
of the remaining inoculated cultures. With increasing
LVs, the RMSE(,; gy, and the RMSEc,; g5 Of the PLS
models continuously decreased for all offline parameters
as shown in Additional file 1: Fig. S9A-C. The two cali-
bration RMSEs of the glycerol concentration decreased
in parallel, while for the CDW, the RMSE,; ¢, surpasses
the RMSE,| sparse fOr five LVs. For the pH value, the two
values were nearly identical for all eight LVs. For the pre-
diction dataset, the glycerol and the CDW concentration
showed a constant positive offset of the RMSEp, g ¢ to
the RMSEs of the calibration datasets. Only for the pH
value, a valley-shaped progression with a minimum of
three LVs was observed. For this parameter, excluding
the cultures of the highest phosphate supplementation
resulted in a minimum RMSEp, 4 g1 —100% Which was
comparable to the RMSEs of the calibration datasets.
In conclusion, the criterium for choosing the number
LVs [41] did only apply for the CDW and led to five LVs.
However, for the glycerol concentration and the pH value
the criterium did not apply. Thus, five and three LVs were
chosen subjectively, as these represented the minimum
values of the RMSEp .4 s, - 100%- The resulting PLS mod-
els are shown in Fig. 4.

Comparable to the previous experiment, the PLS model
for glycerol in Fig. 4A and E showed a tendency towards
linear glycerol consumption for both the calibration
and the prediction dataset. Consequently, the cultures
with lower phosphate concentrations were predicted
more accurately, while the exponentially grown cultures
with phosphate supplementation of at least 244.3 mg/L
showed slight deviations from the measured values. As a
result, the RMSE, ¢,; was determined to 0.58 g/L (5.2%).
With a RMSEp,4 ¢ of 0.61g/L (5.6%) and a RMSEp, .4
full, — 1009 of 0.59 g/L (5.4%), very comparable values were
achieved for the transfer to the prediction dataset.

Also, for the calculated CDW in Fig. 4B and F, a bet-
ter predictability for the cultures with lower phosphate
supplementation was observed. However, when trans-
ferring the model to the prediction dataset, the noise
of the calculated values significantly increased, while
the reproducibility of the replicates decreased. Addi-
tional, notable deviations from the measured offline
values were observable for the cultures with 104.7 mg/L
(green rightward triangles) and 697.9mg/L phosphate
(purple circles) between 19h and 21h of cultivation.
While for the lower phosphate supplementation, a sin-
gular offline measurement error is conceivable, for the
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higher supplementation, the maximum calculated CDW
of 3.0g/L underestimated multiple offline measure-
ments, ranging between 3.4g/L and 3.9g/L. Therefore,
here, an inaccurate PLS model is more likely. In total,
the RMSE¢, ¢y was calculated to be 0.12g/L (3.0%),
while the observed deviations of the prediction dataset
resulted in an RMSEp, 4 s of 0.26g/L (6.6%). Excluding
the cultures with the highest phosphate supplementa-
tion resulted in a reduced RMSEp g a1 — 1004 Of 0.16g/L
(4.3%).

The PLS modeling results for the pH value, shown in
Fig. 4C, are in accordance with the glycerol concentration
and the CDW. Again, the calculated values for the lim-
ited cultures described the PLS models more adequately
compared to the cultures with high phosphate supple-
mentation, which were systematically overestimated
between 12h and 19.5h of cultivation. Nevertheless, the
model correctly reflected the minimum pH value of 5.44,
which was not part of the calibration dataset. After the
glycerol is consumed, the model eventually calculated a
second, non-apparent decrease in the pH value for the
high phosphate supplementation. Transferring the PLS
model to the prediction dataset resulted in more sys-
tematic deviations, as shown in Fig. 4G. The PLS model
appropriately reflected the decline of the pH value dur-
ing the initial exponential growth phase. However, espe-
cially for the cultures with 87.2mg/L (yellow leftward
triangles) and 69.8 mg/L phosphate (orange diamonds),
the pH values were calculated to further decrease until
the end of the metabolic activity, despite being measured
to be constant. After the metabolic activity had ceased,
the calculated pH value increased to values approximat-
ing the measured values. For the cultures supplemented
with 697.9 mg/L phosphate, the calculated progression of
the pH value was qualitatively comparable to the cultures
supplemented with 244.3 mg/L phosphate (blue upward
triangles). However, the minimum calculated pH value
was 5.4 instead of the measured minimum value of 5.19.
In conclusion, the RMSE,; ¢ was calculated to be 0.038
(3.8%), whereas the described inaccuracies of the predic-
tion dataset resulted in an RMSEyp .4 ¢ of 0.085 (8.5%)
and a considerably reduced RMSEp g g1, —100% Of 0.04
(5.4%).

Exclusion of the scattered light

In the phosphate limitation experiment, while the cali-
bration dataset was described accurately, systematic
inaccuracies were observed when transferring the PLS
models to the prediction dataset. Therefore, overfitting
of the calibration data in general and the spectral data in
particular can be suggested. One way to investigate this
hypothesis is to modify the selection of included spec-
tral data. To exemplarily demonstrate the impact of the
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Fig. 4 (A-D) Calibration and (E-H) prediction of the PLS model for three offline parameters, based on 2D spectra (A-C, E-G) including and (D, H)
excluding the scattered light of H. polymorpha RB11 pC9-FMD (Py,,-GFP) cultivations at eight different phosphate (PO,>~) concentrations. This
figure is based on the data in Additional file 1: Fig. S7. The PLS models were calibrated with the linearly interpolated values of the filled symbols
and a total of 288 2D spectra from the two cultivation conditions shown in A-C. The models in Fig. 4D and H were generated including only the
fluorescence intensities. The PLS models for (A, E) glycerol, (B, F) CDW, and (C, D, G, H) pH value were generated using five, five, and three latent
variables, respectively. Solid and dotted lines describe the predicted parameter progression of duplicates. Crossed symbols describe the value for
the last offline sample taken after 44 h. Cultivation conditions: 48-well microtiter plate with round geometry, modified SYN6-MES medium, liquid

volume =800 L, shaking diameter =3 mm, shaking frequency = 1000 rpm, temperature =30°C
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spectral input data, additional PLS models were gener-
ated using only the fluorescence of the 2D spectra, as
shown in Additional file 1: Fig. S10.

The RMSEs for a variable number of LVs are shown in
Additional file 1: Fig. SOD-E. While for a low number of
LVs, the RMSEs of the calibration datasets were higher
than for the PLS models including the scattered light,
with increasing LVs, the RMSEs of the two models were
more comparable. The same holds true for the RMSEp, .
g1 and RMSEp 4 fan —100% Of the PLS models for the
glycerol concentration and the CDW. Only for the pH
value, excluding the scattered light resulted in an addi-
tional reduction of the RMSEp, .4 a1 — 100% 1he improved
PLS modeling performance for three LVs is visualized in
Fig. 4D and H.

For the cultures supplemented with 52.3mg/L phos-
phate, a more constant trajectory was calculated, whereas
for the culture with 244.3 mg/L phosphate, the previously
observed second pH increase was no longer exhibited
in the new model. For the prediction dataset in Fig. 4H,
the new PLS model resulted in a considerably better
alignment for the later phase of cultivation. Firstly, the
systematic overestimation of the pH decrease for the
strongly limited cultures was reduced. Further, also the
asymptotic behavior of the pH value observed for the cul-
tures with 139.6 mg/L phosphate after metabolic activ-
ity was terminated was described more correctly by the
new model. Nevertheless, also the new model did not
predict the minimum value of 5.19 for the cultures with
the 697.9mg/L phosphate correctly. In total, the PLS
model including only fluorescence intensities resulted in
an RMSE(, ¢ of 0.04 (4.0%), an RMSE;, . ¢ of 0.106
(10.6%) and an RMSEp,.q g1, - 100% Of 0.034 (4.6%).

As described before, this noticeable systematic
improvement of the prediction resulted from a change in
the dominating spectral dynamics due to the exclusion of
the scattered light. By applying PCA this change can be
visualized, as shown in Fig. 5.

The scores of the first principal component (PC1) for
the dataset including the scattered light accounted for an
explained variance of 99.64% and resembled the scattered
light intensities shown in Additional file 1: Fig. S7B. An
even higher explained variance of 99.82% was achieved
for the PC1 scores of the dataset including only the flu-
orescence intensities, for which the progression was
qualitatively comparable to the GFP fluorescence shown
in Additional file 1: Fig. S7C. With increasing PCs, the
remaining variance is successively described. However
also, the noise considerably increased, which is in good
accordance with the literature [52]. For the PC2 scores
of the dataset excluding the scattered light, the observed
plateau strongly resembled the progression of the pH
value. As it was not observed in any of the scores of the
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dataset including the scattered light, a connection to the
improved PLS model is conceivable. The reason why the
predictive performance of the model including the full
dataset is lower lies in the covariance-based algorithm of
the PLS regression. Thereby, although the scattered light
may not be optimal for describing the pH value, it com-
prises a very large amount of the spectral variance and is
thus also included in the model. This effect may be even
increased for increasing LVs. However, by excluding the
scattered light, these deteriorating online signals are no
longer considered for modeling. Instead, signal dynamics
for PLS model generation originate only from the inher-
ently pH-correlating fluorescence intensities.

Comparison of PLS models

In both, this and the previous study by Berg et al. [41],
PLS regression models were generated using the same
monitoring hardware and biological system. However,
while the previous paper described a simple glycerol con-
centration variation study, in this study, more complex
systems of secondary substrate limitations were inves-
tigated. As the workflow for generating the PLS models
was identical, the results can directly be compared, to
estimate the robustness of the methodology. In Fig. 6, a
summary of the relative RMSEp 4 ¢, (plain columns) and
RMSEp,eq. ful, — 100% (backward diagonal hatched columns)
is given. Additionally, also for the PLS models includ-
ing only the fluorescence intensities (Fl), the RMSE; g
full, —100% (forward diagonal hatched columns) and the
respective as RMSEp, o4 1 _ 1009 (Cross-hatched columns)
are shown. An analogous visualisation of the absolute
values is shown in Additional file 1: Fig. S11.

The glycerol-variation experiment of the previous study
resulted in low relative RMSEp, .4 ¢ with values between
3.5 and 5.3%. In contrast, for all limitation experiments
of this study, values above 5% were obtained. The highest
relative RMSEp, .4 ¢ Of up to 18.7% was calculated for the
glycerol concentration of the potassium limitation exper-
iment (K*). A reduction by more than 10% was obtained
when excluding the cultures with the highest potassium
supplementation (K* _g0). For the phosphate varia-
tion experiment, this exclusion procedure resulted in an
RMSEp,eq funl, — 100% Petween 5.4 and 4.3%. The additional
in-silico exclusion of the scattered light (PO,>~ @) fur-
ther reduced the RMSEp .y fu1 — 1009 for the pH value
from 5.4 to 4.6%. However, no considerable change in the
RMSE was observed for the CDW, while for the glycerol
concentration, the RMSEp .4 g1 — 100% €ven increased.

In conclusion, depending on the offline parameter,
the average relative RMSEp 4 ¢y for the PLS models
generated from the full 2D spectra ranged between 7.1
and 11.0%. A reduction to values between 6.0 and 6.4%
was achieved for the exclusion of the cultures with the
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Fig. 5 Scores of first to third principal component (PC1-PC3) over cultivation time, based on (A-C) 2D spectra including scattered light and
fluorescence, as well as based on (D-F) only fluorescence intensities for the cultivation of H. polymorpha RB11 pC9-FMD (Pyr-GFP) at different
phosphate (PO,>~) concentrations. The explained variance for each PC is shown in brackets. For clarity, only data of one replicate per cultivation
condition is shown. Only every 10th datapoint is indicated by a symbol. Asterisks in Fig. 5A and E indicate reversed Y-axis direction used for clarity.
Spectroscopic measurement settings: excitation wavelength range =280 nm - 700 nm (step size = 10 nm), emission wavelength range =278nm
—720nm (step size =0.45nm), integration time =30 ms. Cultivation conditions: 48-well microtiter plate with round geometry, modified SYN6-MES
medium, liquid volume =800 pL, shaking diameter =3 mm, shaking frequency = 1000 rpm, temperature =30°C

highest supplementation. Although these values still rep-
resented a considerable increase compared to the glyc-
erol variation experiment of Berg et al. [41], with relative
values below 10%, the PLS modeling results of the pre-
sented study can be considered a success. In fact, the
obtained relative RMSEs are well comparable to other
studies using fluorescence spectroscopic PLS modeling
in stirred tank batch reactors. For example, relative val-
ues between 3.8 and 9.1% have been reported for the
prediction of singular carbon sources and between 3.0
and 6.8% for the CDW [16, 54—56]. However, due to the
reduced experimental throughput in stirred tank reac-
tors, in these studies, only a limited number of different
cultivation conditions was used for external validation. In

conclusion, this further supports the high potential of the
2D fluorescence online monitoring technology in MTPs.
In addition to the comparison with other studies, the
PLS model performance can also be compared to the
respective conventional determination method of each
offline parameter (i.e., HPLC, gravimetry, pH-electrode).
For the glycerol concentration, the determined relative
RMSE of more than 5% is considerably higher than the
standard deviation of the implemented HPLC method,
which was below 0.2% (data not shown). In contrast, for
the CDW measurements, the determined relative RMSE
is in good agreement with the reported standard devia-
tions between 0.9 to 7% [57]. Finally, for the pH value, the
absolute RMSE of around 0.05 represents the higher end
of the tolerance of a single pH measurement. However,
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finally, it has to be stated, that the financial and person-
nel efforts for generating a comparable amount of offline
data by manual measurements is beyond any feasibility.
From this perspective, the PLS models based on 2D fluo-
rescence spectroscopy outperform any of the conven-
tional measurement methods.

Discussion

Secondary substrate limitations induce metabolic reac-
tions, which can positively impact the ratio between bio-
mass accumulation and product formation (i.e., GFP) [37,
47]. However, in this study, the changed spectral dynam-
ics resulted in a reduced PLS model performance com-
pared to the previous glycerol variation study [41]. The
reason for this can be found in the difference between
a primary (carbon source like, i.e. glycerol) and second-
ary substrate (i.e., Mg**, K*, PO,*") limitation. For the
previous study, both the biomass and the product for-
mation ceased as soon as the glycerol concentration was
depleted. This resulted in a constant relation between
the two parameters and, thus, in the established PLS
model to remain valid. In contrast, under secondary sub-
strate limitation, the carbon source remained available,
enabling further metabolic activity with a yet changed

metabolism. With the occurring changes in the spectral
dynamics and the relation between biomass and prod-
uct formation, the PLS models reached the performance
limits of the regression algorithm. Interestingly, for the
experiments of this study, no systematic improved per-
formance for either the limited or unlimited cultivation
conditions was observed. For example, for the magne-
sium limitation experiment, the glycerol concentration
(Fig. 2A, D) was well described for the unlimited condi-
tions. In contrast, in the potassium limitation experi-
ment, the PLS model of the pH value (Fig. 4C, G) shows
better performance for the limited cultures. Another
limitation in prediction performance was found for the
fully supplemented cultures of the potassium and phos-
phate limitation experiment. These conditions were not
covered by the calibration dataset and, thus, represented
an extrapolation of the PLS model, for which the per-
formance of the regression method is known to be low
[58]. Consequently, these conditions increased the RMSE
above the threshold of 10% and thus rendered the models
not acceptable, according to Yousefi-Darani et al. [51]. In
a subsequent data evaluation study, it should therefore be
reevaluated, if a changed composition of the calibration
dataset can improve the PLS modeling performance.
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Besides the impact of the changing signal dynamics on
the PLS modeling outcome, also the applied PLS meth-
odology, in general, and the validation approach, in par-
ticular, should be evaluated for assessing the capabilities
of the online monitoring system. An inaccurate linear
interpolation of the non-linear progression of the offline
parameters was used to purposely generate underper-
forming calibration models. However, by comparing the
calibration results to the more accurate representation
in form of the short sampling interval, the inaccuracies
can be identified and, thus, be used for internal valida-
tion. In the previous study, this discrepancy was used to
identify overfitting and as a guide for choosing the appro-
priate number of LVs [41]. An objective methodology
for choosing the number of LVs is of high importance,
as overfitted models likely include non-biogenic dynam-
ics, such as random noise and usually lead to poorly
transferable models. In practice, the previous study sug-
gested that overfitting can be identified by an increasing
RMSEc,; s and a decreasing RMSEc, g5 In the pre-
sent study, this trend was only observed for a few mod-
els, such as the CDW concentration of the magnesium
(Additional file 1: Fig. S4B) or the phosphate variation
experiment (Additional file 1: Fig. S9B). Presumably, the
trajectories of the short and the sparse sampling inter-
val were too similar for the limited cultures. Although,
thereby, the general applicability for other experimental
layouts was shown, the results of this study also point out
that additional efforts to increase the robustness of the
method are necessary. Thus, to generate more diverging
offline trajectories, an additional in silico resampling step
can be suggested. Mechanistic growth models could be
used to first interpolate raw offline values before a linear
interpolation is generated of selected time points. Here,
especially for the secondary substrate limitation experi-
ments, the results from PCA can be used to provide fur-
ther information on the apparent growth [59, 60] and,
thus, facilitate mechanistic modeling.

Another subject to elaborate on in future investiga-
tions is the chosen regression method. Although this
study further supports the reported strength of the PLS
regression algorithm for the inherent multicollinear-
ity of the 2D fluorescence spectra [61], the rudimentary
exclusion of the scattered light hinted at the further
potential for improvement. Following the literature, the
implementation of different wavelength selection algo-
rithms can be suggested [60, 62, 63]. For example, itera-
tive wavelength selection methods such as interval PLS
[64], recursive weighted PLS [65] or optimisation-ori-
ented methods such as ant colony optimisation [66] and
genetic algorithms [67] could be used. Moreover, non-
linear machine learning regression methods such as sup-
port vector machines or artificial neural networks should
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be considered. These advanced algorithms can possibly
overcome the limitations of the linear character of the
PLS regression and may even improve the prediction per-
formance for extrapolated cultivation conditions. Finally,
also the establishment of more general models should be
tested. For example, a common regression model for the
pH value of all three experiments of this study could be
established. However, comparable to the recent study on
Raman spectroscopy by Yousefi-Darani et al. [51], this
demands additional workflows for spectral alignment.

Finally, the PLS modeling results should be evaluated
in terms of a potential reduction in sampling efforts. As
described in Additional file 1: Fig. S1, three offline MTPs
were used to provide offline sampling data for model cali-
bration, as well as internal and external validation. This
extensive data allowed an estimation of the robustness
of the PLS models, which was found to be decreased, in
comparison to the previous glycerol concentration varia-
tion study [41]. In case the above-mentioned approaches
(e.g., wavelength selection) help to improve the modeling
performance for the more systematic inaccuracies, the
internal and external validation could be reduced to a
minimum. Comparable to the previous study, for the cur-
rent study, this would allow a reduction to only one MTP
for both monitoring and sampling. Nevertheless, for
more complex screening layouts (e.g., inductor concen-
tration variation screenings), the demand for monitored
cultivation conditions and offline samples may even be
higher than the provided 48 wells of the current system.
Therefore, a scale-out to parallel MTPs monitored within
the same cultivation system is desirable. For this, a first
proof of concept for a monochromator-based spectro-
scopic setup has already been demonstrated [10].

Conclusion

In the presented study, 2D fluorescence spectroscopy
was used for online monitoring of secondary substrate-
limited H. polymorpha cultures in MTPs. In combina-
tion with online monitoring of the OTR and extensive
offline sampling, the impact of the limitations on the
spectroscopic data was evaluated. Subsequently, for each
experiment, PLS models were generated based on spec-
tral data of two cultivation conditions. Internal and exter-
nal model validation was conducted using data not used
for calibration. In a direct comparison with the results
from a glycerol variation study, a decreased PLS model
performance was observed, which was attributed to an
altered carbon flux. However, the calculated RMSEs were
comparable to stirred tank PLS regression studies found
in literature, which underlines the potential of the high-
throughput 2D fluorescence spectroscopic monitoring
technology. In a final model refinement, additional scat-
tered light exclusion was shown to result in a change in
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the dominating spectral dynamics. This resulted in an
improved PLS model performance for the pH value of
the phosphate limitation experiment. As for the same
dataset, the predictability of the glycerol concentration
and the CDW did not improve, a high dependence of the
modeling results on the input data was suggested.

In conclusion, this study provides a practical example
for using the 2D fluorescence monitoring technology in
MTPs at elevated throughput. The successful genera-
tion and application of PLS models for cultivations with
secondary substrate limitations suggest promising appli-
cations in early-process development. The obtained
information on the apparent metabolism enables the cal-
culation of growth phase-dependent process parameters,
such as growth rates, substrate consumption rates, as
well as product formation rates. Furthermore, the study
supports the previously asserted potential for the reduc-
tion of sampling efforts during fermentation. In future
research, the acquired datasets can be used for develop-
ing more systematic data evaluation workflows for culti-
vations in the 2D fluorescence online monitoring system.

Methods

Microorganisms

The green fluorescent protein (GFP) expressing
Hansenula polymorpha RB11 pCl0-FMD (Pgryp.grp)
strain was used for all experiments. For storage at
—80°C, cryo cultures were prepared in a modified SYN6-
MES medium and supplemented with 150 g/L glycerol.

Media composition

Preparation of fully supplemented media

Analogue to a previous study [41], a modified SYN6-
MES mineral medium based on Jeude et al. [53] was
used for pre and main cultures. The basal solution com-
prised 1.0g/L KH,PO,, 7.66g/L (NH,),SO,, 27.3g/L
(140mM) 2-morpholinoethanesulfonic acid (MES),
3.0g/L MgSO,-7H,0, 3.3g/L KCl and 0.3g/L NaCl. The
pH was adjusted to 6.0 using 1M NaOH. After sterili-
sation at 121°C for 20minutes, a sterile-filtered trace
element solution was supplemented to provide final
concentrations of 0.65mg/L NiSO,-6H,0, 0.65mg/L
CoCl,6H,0, 0.65mg/L H,BO,, 0.65mg/L KI and
0.65mg/L Na,MoO,-2H,0. A sterile microelement solu-
tion was added to provide 66.5 mg/L EDTA (Titriplex III),
66.5mg/L (NH,),Fe(SO,),-6H,0, 5.5mg/L CuSO,-5H,0,
20mg/L  ZnSO,7H,0 and 26.5mg/L MnSO,-H,O.
Additionally, a sterile-filtered stock solution was pre-
pared to supplement 1.0g/L CaCl,-2H,O. A sterile vita-
min solution was added to supply 0.4 mg/L D-biotin and
133.4mg/L thiamine hydrochloride. For preparing the
vitamin stock solution, the D-biotin was first dissolved
in a 10mL mixture (1:1) of 2-propanol and deionised
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water. The thiamine hydrochloride was dissolved in 90 ml
of deionised water and mixed with the D-biotin solu-
tion. Next, glycerol was added to the media from a sterile
500g/L stock solution to achieve the final glycerol con-
centrations. Finally, sterile water was added to account
for differences in volumes.

Preparation of secondary substrate limited media solutions
Media with reduced secondary substrate concentrations
of magnesium (Mg?"), potassium (K') and phosphate
(PO,*>") were prepared according to Kottmeier et al. [47].
For each experiment, the basal medium was mixed with
a medium lacking the respective secondary substrate to
achieve the desired media composition.

For preparing the medium without magnesium, the
supplemented MgSO,-7H,0 was replaced by 1.81g/L
Na,SO,. The final magnesium concentrations, used dur-
ing cultivations, accounted for 1.8% (5.32mg/L), 1.4%
(4.14mg/L), 0.8% (2.37mg/L), 0.4% (1.18mg/L) and 0%
(0.0mg/L) of the standard magnesium concentration of
the modified SYN6-MES medium (100%, 295.8 mg/L).

For the medium without potassium, KH,PO, and
KCI were replaced by 0.845g/L (NH,)H,PO, to avoid
phosphate limitation. 2.92g/L NaCl was added to avoid
changes in osmolality. The final potassium concentrations
held for 5% (100.9mg/L), 4% (80.7 mg/L), 3% (60.5m/L),
2.5% (50.4mg/L), 1.75% (35.3mg/L), 1.25% (25.2mg/L),
1% (20.2mg/L) and 0% (0.0 mg/L) of the standard potas-
sium concentration of the SYN6-MES medium (100%,
2017.3mg/L).

For the medium without phosphate, KH,PO, was
replaced by 0.547g/L KCl to avoid a potassium limita-
tion. The final phosphate concentrations held for 35%
(244.3mg/L), 20% (139.6 mg/L), 15% (104.7 mg/L), 12.5%
(87.2mg/L), 10% (69.8mg/L), 7.5% (52.3mg/L) and 0%
(0.0mg/L) of the fully supplemented modified SYNG6-
MES medium (100%, 697.9 mg/L).

Precultures

Precultures were conducted in 250mL shake flasks at
a filling volume (V;) of 10mL modified SYN6-MES
medium supplemented with 10g/L glycerol. The shak-
ing frequency (n) was chosen to be 350 rpm at a shaking
diameter (d,) of 50mm. The temperature (T) was set to
30°C. The medium was inoculated from the cryo cultures
at an initial optical density measured at a wavelength of
600nm (ODy,) of 0.1. The precultures were harvested
after the OTR indicated no further growth (Additional
file 1: Fig. S12). After that, the cells were centrifuged and
thoroughly washed with either magnesium-free, potas-
sium-free, or phosphate-free basal medium solution
before being added to the main culture media.
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Main cultures

The method for the cultivation of the main cultures was
identical to Berg et al. [41]. The cultivations were con-
ducted in three devices (Additional file 1: Fig. S1, dashed
boxes) using up to five 48-round well MTPs with a trans-
parent bottom (MTP-R48-B, Beckman Coulter GmbH,
Aachen, Germany). Identical inoculation conditions were
ensured by preparing one inoculated stock solution per
initial cultivation condition, as indicated by different col-
ours in Additional file 1: Fig. S1. In all devices, the cul-
tures were continuously shaken at a shaking frequency
(n) of 1000rpm, a shaking diameter (d,) of 3mm and a
filling volume (V) of 0.8 mL. The cultivation temperature
was set to 30°C.

Online monitoring

Multi-wavelength 2D fluorescence online monitoring was
conducted in the MTP cultivation platform described by
Ladner et al. [12] (Additional file 1: Fig. S1B). For gener-
ating 2D spectra, the excitation wavelengths (A,,) were
scanned from 280 to 700 nm with an increment of 10 nm.
For each excitation wavelength, an emission spectrum,
ranging from 275 to 725nm at a resolution of 0.44nm,
was recorded, using an integration time of 30 ms. After
completing the recording of a 2D spectrum for all moni-
tored wells, an intermediate 10 min measurement break
was included, to reduce the mechanical wearing of the
device. During the measurement breaks, cultivation con-
ditions were maintained. Although not all wells of the
48-well MTPs were exploited in this study, still, 2D-spec-
tra were recorded. As a result, 2D spectra were measured
every 30 min for each well of the 48-well MTP.

For determining the OTRs of the individual cultiva-
tion conditions, the Respiration Activity MOnitor-
ing System (ULRAMOS, Flitsch et al., 2016) was used
(Additional file 1: Fig. S1A). The oxygen partial pres-
sure (pO,) of the gas phase in the headspace of every
individual well was measured by oxygen-sensitive
fluorescence spots, using the Stern-Volmer equation
for quenching. Subsequently, the OTR was calculated
according to Flitsch et al. [48].

Offline analytics

The MTPs (MTP-R48-OFF, Beckman Coulter, Aachen,
Germany) used for sampling (Additional file 1: Fig. S1C)
were incubated in a separate humidified incubator (ISF1-
X, Adolf Kithner AG, Birsfelden, Switzerland). The exact
sampling time points accounted for a sampling inter-
val as low as 1h. In total, 144 (Mg>"), 128 (K™) and 122
(PO,>") samples were taken from the three experiments,
respectively. At each sampling time, the culture broth
was manually withdrawn from one well per sampled con-
dition using a micro pipette. Due to the small shaking
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diameter, the orbital shaking was maintained during the
sampling. Thereby, oxygen limitation was avoided [35,
68]. The initial samples (t=0h) were taken from the
prepared inoculated medium of the main cultures. The
ODy, of the samples was determined using a photome-
ter (GENESYS 20, Thermo Scientific, Dreieich, Germany)
and micro cuvettes (PS, Carl Roth, Karlsruhe, Germany).
Measurements between 0.1 and 0.3a.u. were ensured by
sample dilution with a 0.9% (w/v) NaCl solution. The cell
dry weight (CDW) was calculated using a linear correla-
tion with the OD, (Additional file 1: Fig. S13). The pH
value was determined using a two-point calibrated pH
meter (HI21, HANNA instruments Inc., Woonsocket,
US, electrode: InLab Solids, Mettler Toledo GmbH,
Columbus, US). For pH measurements, undiluted culture
broth samples were used. The glycerol concentration was
determined by HPLC measurements, following the pro-
tocol of Berg et al. [41].

Spectral data processing and multivariate data analysis
The spectral data processing and MVDA were identi-
cal to the method described by Berg et al. [41], using
MATLAB 9.11.0.1769968 (R2021b) and the open-source
toolbox mdatools [69]. The raw 2D spectra were ini-
tially reduced to include only emission wavelengths (A,
between —10nm and+ 270 nm relative to the excitation
wavelength. A moving average filter with a window size
of 25 pixels (equivalent to 11.45nm) was applied for noise
reduction. The spectral data was further reduced to a
resolution of 2nm to reduce the processing time. No sig-
nificant deteriorating effect on the modeling results was
observed by this procedure (data not shown). For exclud-
ing the scattered light in silico, the intensities between
—10nm and+13nm relative to the excitation wave-
length were discarded. Finally, for each well, the spectral
data of each measurement cycle was referenced to the
respective first 2D spectrum by subtraction per wave-
length combination (I-Ij).

The temporal alignment of the online spectral data
(Additional file 1: Fig. S1B) and the offline measure-
ments (Additional file 1: Fig. S1C) was conducted by
linear interpolation of the latter. Subsequently, for each
time of spectral measurement, the interpolated offline
parameter values were extracted from the interpola-
tion. For PLS model generation, the calibration data-
set consisted of spectral replicates of two cultivation
conditions, including one high and one low secondary
substrate supplementation. The linear interpolation of
the calibration datasets included between six and eight
samples with a sampling interval of at least 5h. For vali-
dating the models, the linear interpolation included
all available samples leading to a sampling interval as
low as 1h. The prediction dataset consisted of spectral
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data of six cultivation conditions not used for calibra-
tion. Here, the linear interpolation included all avail-
able offline samples. The PLS models were generated for
each offline parameter using the SIMPLS algorithm [70]
before being evaluated by calculating the root-mean-

square error (RMSE).
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Additional file 1: Fig. S1. Overview of experimental monitoring and
sampling strategy used in the cultivation experiments of this study. Three
parallel cultivation devices (dashed boxes) were used for online (Fig. STA
and B, cross-hatched wells) and offline (Fig. S1C, unhatched wells)
monitoring of the cultures of eight different initial cultivation conditions
(I=VIIl). Grey hatched wells show wells filled with non-inoculated, fully

supplemented medium for control. Struck-through wells were not used in

the experiment. (A) For the limitation studies of magnesium and
phosphate, a yRAMOS cultivation system as described by Flitsch et al. [48]
was used, to monitor the metabolic activity in form of the oxygen transfer
rate (OTR). The number of replicates varied depending on the experiment
(Fig. S3 and S8). (B) Online 2D fluorescence data was generated using the
online monitoring cultivation system published by Ladner et al. [12]. (C)
Offline samples were taken in singlets from three additional microtiter
plates (MTPs). The total number of offline samples varied depending on
the experiment and cultivation condition. Adapted from Berg et al. [41].

Fig. S2. Exemplary 2D spectra recorded at different cultivation times for H.

polymorpha RB11 pC9-FMD (P,,,-GFP) cultivated at two different initial
cultivation conditions and non-inoculated medium. Spectra recorded for
cultures cultivated with a CDW,q of 0.03g/L and initial magnesium (Mg?*)
concentrations of 295.8 mg/L and 2.37 mg/L are shown in A-D (light blue
rectangle) and E-H (orange rectangle), respectively. I-L (black rectangle)
shows spectra for non-inoculated medium. Spectra are shown for
cultivation times of (A, E, ) Oh, (B, F, J) 12h, (C, G, K) 24 h, and (D, H, L)
30h. Spectroscopic measurement settings: excitation wavelength

range =280nm - 700 nm (step size =10nm), emission wavelength

range =278nm - 720 nm (step size =0.45 nm), integration time =30m:s.
Cultivation conditions: 48-well microtiter plate with round well geometry,
modified SYN6-MES medium, liquid volume =800 pL, shaking diam-
eter=3mm, shaking frequency = 1000 rpm, temperature =30°C. Fig. S3.
Time-resolved oxygen transfer rate (OTR) signals of individual H.
polymorpha RB11 pC9-FMD (Pg,-GFP) cultivations at different initial cell

dry weight (CDW,,) and magnesium (Mg”) concentrations. Solid, dashed,

and dotted lines describe the OTR of individual cultures used for
calculating the average and standard deviation shown in Fig. TA. The
number of replicates (n) is shown in the legend. Cultivation conditions:
48-well microtiter plate with round geometry, modified SYN6-MES
medium, liquid volume =800 pL, shaking diameter =3 mm, shaking
frequency = 1000 rpm, temperature = 30°C. Fig. S4. Impact of the
number of latent variables on the root-mean-square error (RMSE) for the
2D spectra-based PLS models of (A) glycerol, (B) cell dry weight (CDW)
and (C) pH of the magnesium variation experiment. The PLS models are
based on the data in Fig. 1. All PLS models were calibrated using offline
values from the linearly interpolated, 6 h sampling interval (Fig. 1D-F, filled
symbols) from which the RMSE, 5,5 (black circles) was calculated. The
RMSEc, ¢ (red upward triangles) was calculated from the 1.5h sampling
interval (Fig. 1D-F, filled and hollow symbols). The RMSEp, . ¢ (green
downward triangles) was calculated for the prediction dataset, and the
1.5h sampling interval was based on the offline values (Fig. 2D-F, hollow
symbols). Fig. S5. Time-resolved (A-B) online monitoring signals and (C-E)
offline sample measurements of H. polymorpha RB11 pC9-FMD (P,,-GFP)
cultivations at different potassium (K*) concentrations. (A) Scattered light
intensities (A, =A¢, =600 nm) and (C) GFP fluorescence intensities
(Aexy=420Nnm, A, =530nm) were extracted from 2D spectra of
duplicates, shown as solid and dotted lines. Hollow symbols indicate every
10th data point. Values of (C) glycerol, (D) cell dry weight (CDW), and (E)
pH value for cultures with an initial potassium concentration of
100.9mg/L (blue upward triangles) and 20.2 mg/L (pink squares),
respectively, are based on singular offline measurements. Hollow symbols
show offline measurements for the short sampling interval. Filled, linearly
interpolated symbols describe a sparse, more realistic sampling interval of
at least 5h. The vertical dashed line after 43 h describes the last
measurement included for PLS modeling. Cultivation conditions: 48-well
microtiter plate with round geometry, modified SYN6-MES medium, liquid
volume =800 L, shaking diameter =3 mm, shaking fre-

quency = 1000rpm, temperature =30°C. Fig. S6. Impact of the number
of latent variables on the root-mean-square error (RMSE) for the 2D
spectra-based PLS models of (A) glycerol, (B) cell dry weight (CDW) and
(C) pH of the potassium variation experiment. The PLS models are based
on the data in Fig. 1. All PLS models were calibrated using offline values
from the linearly interpolated, sparse sampling interval (Fig. S5C-E, filled
symbols), from which the RMSE¢; 5. (black circles) was calculated. The
RMSE, ¢ (red upward triangles) was calculated based on the linear
interpolation of all available offline samples (Fig. SSC-E, filled and hollow
symbols). The RMSEg, . 1, (green downward triangles) was calculated for
the prediction dataset and the respective offline values (Fig. 3D-F, hollow
symbols). For the RMSEp,. s, — 1000 (Dlue diamonds), the cultures with
2017.3mg/L potassium (Fig. S5, purple circles) were excluded from the
calculation. Fig. S7. Time-resolved (A-C) online monitoring signals and
(D-F) offline sample measurements of H. polymorpha RB11 pC9-FMD
(Peyp-GFP) cultivations at different phosphate (POf’) concentrations. (A)
The mean oxygen transfer rate (OTR) of culture replicates (n=2-3,
Additional file 1: Fig. S8) was determined by a uRAMOS device [48]. The
low standard deviations are shown as shaded areas and indicate good
reproducibility. Hollow symbols indicate every 15th data point. (B)
Scattered light intensities (A, =M., =600nm) and (C) GFP fluorescence
intensities (\,, =420 nm, A, =530nm) were extracted from 2D spectra of
duplicates, shown as solid and dotted lines. Hollow symbols indicate every
fifth data point. Values of (D) glycerol, (E) cell dry weight (CDW), and (F)
pH value for cultures with an initial phosphate concentration of

2443 mg/L (blue upward triangles) and 52.3mg/L (red downward
triangles), respectively, are based on singular offline measurements.
Hollow symbols show offline measurements for the short sampling. Filled,
linearly interpolated symbols describe a sparse, sampling interval of at
least 5h. The vertical dashed line after 34.5 h describes the last measure-
ment included for PLS modeling. Cultivation conditions: 48-well microtiter
plate with round geometry, modified SYN6-MES medium, liquid

volume =800 L, shaking diameter =3 mm, shaking fre-

quency = 1000 rpm, temperature = 30°C. Fig. $8. Time-resolved oxygen
transfer rate (OTR) signals of individual H. polymorpha RB11 pC9-FMD
(PeypGFP) cultivations at different phosphate (POf’) concentrations.
Solid, dashed, and dotted lines describe the OTR of individual cultures
used for calculating the average and standard deviation, shown in Fig.
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S7A.The number of replicates (n) is shown in the legend. Cultivation
conditions: 48-well microtiter plate with round geometry, modified
SYN6-MES medium, liquid volume =800 L, shaking diameter =3 mm,
shaking frequency = 1000 rpm, temperature = 30°C. Fig. $9. Impact of the
number of latent variables on the root-mean-square error (RMSE) for the
2D spectra-based PLS models of (A) glycerol, (B) cell dry weight (CDW)
and (C) pH of the phosphate variation experiment. Resulting errors are
shown for PLS models using the spectral dataset (A-C) including the
scattered light and fluorescence, and (D-F) including only the fluores-
cence. All PLS models were calibrated using offline values from the linearly
interpolated, sparse sampling interval (Fig. S7D-F, filled symbols), from
which the RMSEc; ¢ar5e (Dlack circles) was calculated. The RMSE¢ ¢ (red
upward triangles) was calculated based on the linear interpolation of all
available offline samples (Fig. S7D-F, filled and hollow symbols). The
RMSEp e i (green downward triangles) was calculated for the prediction
dataset and the respective offline values (Fig. 4E-H, hollow symbols). For
the calculation of the RMSEp ey g1, — 1000 (Dlue diamonds), the cultures with
697.9mg/L phosphate (Fig. 4E-H, Fig. S7D-F, purple circles) were excluded.
Fig. S10. Exemplary 2D spectra of H. polymorpha RB11 pC9-FMD
(Peyip-GFP) cultures after 24 h of cultivation cultivated at initial phosphate
(PO,*7) concentrations of (A, €) 697.9mg/L and (B, D) 52.3mg/L. Spectra
(A, B) including scattered light and fluorescence, as well as (C, D) spectra
including fluorescence only are shown. The scattered light exclusion was
conducted in silico, as described in the material and methods section.
Spectroscopic measurement settings: excitation wavelength

range =280nm — 700 nm (step size =10 nm), emission wavelength
range=278nm - 720nm (step size =0.45nm), integration time =30m:s.
Cultivation conditions: 48-well microtiter plate with round geometry,
modified SYN6-MES medium, liquid volume =800 pL, shaking
diameter=3mm, shaking frequency = 1000 rpm, temperature = 30°C.
Fig. S11. Comparison of absolute RMSEy o g for glycerol, CDW and pH
value for the PLS models generated in Berg et al. [41] and this study. Plain
columns show the RMSE based on the complete prediction datasets
from this study and the study by Berg et al. [41]. Backward diagonal
hatched columns describe the RMSE based on the complete prediction
dataset, except the culture holding the initial concentration of the
respective second substrate (— 100%). Forward-hatched columns
describe the RMSE calculated for spectral online datasets including
fluorescence (FI) only. For the diagonal cross-hatched columns,
additionally, the cultures with the initial concentration of the respective
second substrate, according to Jeude et al. [53], were excluded (— 100%).
Exact values as well as the number of LVs used for each model are
summarized in Additional file 2: Table S1. Fig. S12. Exemplary Oxygen
transfer rate (OTR) measured for the preculture of Hansenula polymorpha
RB11 pC9-FMD (P,n-GFP). Cultivation conditions: modified SYN6-MES
medium, 10g/L glycerol, initial optical density =0.1, 250 mL shake flask,
filling volume =10 mL, shaking frequency = 350rpm, shaking diam-
eter=50mm, T=30°C. Fig. S13. Linear correlation between cell dry
weight (CDW) and optical density at 600 nm (ODg). Cultures were
grown in a modified SYN6-MES medium according to the preculture
protocol. The shake flask cultures were harvested during exponential
growth before the dilution series were prepared with fresh medium. For
the ODg,, measurement of the diluted series, additional dilution was
conducted to allow measurements between 0.1 and 0.3. Adapted from
Berg et al. [41].

Additional file 2: Table S1. Absolute and relative RMSE of calibration

and prediction for PLS models of glycerol, CDW, and pH-value. Results are
shown for the experiments of this study and the previous study for glyc-
erol variation [41]. The RMSEs for calibration and prediction are shown for
the shortest available sampling interval (RMSE¢, ¢, RMSEp,eq ). The rela-
tive RMSE, shown in brackets, is calculated based on the offline parameter
range for the respective experiment.
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