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Abstract 

Background Non‑invasive online fluorescence monitoring in high‑throughput microbioreactors is a well‑established 
method to accelerate early‑stage bioprocess development. Recently, single‑wavelength fluorescence monitoring in 
microtiter plates was extended to measurements of highly resolved 2D fluorescence spectra, by introducing charge‑
coupled device (CCD) detectors. Although introductory experiments demonstrated a high potential of the new moni‑
toring technology, an assessment of the capabilities and limits for practical applications is yet to be provided.

Results In this study, three experimental sets introducing secondary substrate limitations of magnesium, potassium, 
and phosphate to cultivations of a GFP‑expressing H. polymorpha strain were conducted. This increased the complex‑
ity of the spectral dynamics, which were determined by 2D fluorescence measurements. The metabolic responses 
upon growth limiting conditions were assessed by monitoring of the oxygen transfer rate and extensive offline sam‑
pling. Using only the spectral data, subsequently, partial least‑square (PLS) regression models for the key parameters 
of glycerol, cell dry weight, and pH value were generated. For model calibration, spectral data of only two cultivation 
conditions were combined with sparse offline sampling data. Applying the models to spectral data of six cultures 
not used for calibration, resulted in an average relative root‑mean‑square error (RMSE) of prediction between 6.8 and 
6.0%. Thus, while demanding only sparse offline data, the models allowed the estimation of biomass accumulation 
and glycerol consumption, even in the presence of more or less pronounced secondary substrate limitation.

Conclusion For the secondary substrate limitation experiments of this study, the generation of data‑driven models 
allowed a considerable reduction in sampling efforts while also providing process information for unsampled cultures. 
Therefore, the practical experiments of this study strongly affirm the previously claimed advantages of 2D fluores‑
cence spectroscopy in microtiter plates.
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Background
Fluorophores are molecules that can undergo absorp-
tion and emission of energy upon excitation of light at a 
compound-specific wavelength. The radiative emission 
of fluorescent light occurs, when an electron of a sin-
glet excited state returns to the ground state. During this 
process, energy is partially dissipated by non-radiative 
vibrational relaxation. Consequently, fluorescence emis-
sion is observed at an increased wavelength compared 
to the excitation wavelength [1]. Coenzymes such as fla-
vin adenine dinucleotide (FAD), Nicotinamide adenine 
dinucleotide (NADH), or aromatic amino acids such as 
tryptophane and phenylalanine are naturally occurring 
intracellular fluorophores. Among others, their fluores-
cence intensity depends on the intracellular concentra-
tion or the pH value. This molecular feature has been 
exploited for online bioprocess monitoring for over 
50 years [2–4]. Over the time, the spectroscopical setups 
have advanced from the measurements of single wave-
length combinations to scanning measurements using 
filter wheels [5–7] and tunable grating-based monochro-
mators [8–10]. Recently, by introducing charge-coupled 
device (CCD)-based detectors, even measurement of 
continuous emission spectra was enabled in stirred tank 
reactors [11] and microtiter plates (MTPs) [12].

With the increased amount of available spectral data, 
also workflows and machine learning methods had to 
be adapted to the needs of bioprocess engineering. 
Mowbray et  al. classified the available algorithms into 
the groups of multivariate data analysis (MVDA), sup-
port vector machines, ensemble learning, artificial neu-
ral networks and Gaussian processes [13]. Of these, 
especially methods of MVDA, such as principal com-
ponent analysis (PCA) and partial least-square (PLS) 
regression, have routinely been applied within the 
related field of chemometrics [13, 14]. PCA is a dimen-
sion reduction technique, which allows the descrip-
tion of high dimensional data by only a few principal 
components (PCs). The PCs are iteratively generated, 
according to the maximum variance of the residual 
data in an orthogonal manner [15]. Thereby, besides 
dimensional reduction, PCA can be applied to separate 
dominant and less dominant spectral signal dynamics. 
This additional feature has successfully been used for 
describing cultivation processes in more detail [16, 17]. 
PLS regression is a supervised machine learning tech-
nique closely related to PCA. Instead of solely relying 
on independent spectral data, an additional dependent 
response dataset, such as a compound concentration, is 
included to generate covariance-based regression mod-
els. Applying the regression models to external spectral 
data, allows the prediction of the respective response 

variable without the need for offline measurement [18]. 
Within the field of bioprocess engineering, the imple-
mentations and applications of spectroscopic setups 
in combination with machine learning algorithms are 
constantly advancing and are, thus, frequently re-eval-
uated [13, 19–23].

Online fluorescence monitoring in high-throughput 
microbioreactors allows cost-efficient, parallel screen-
ing experiments. This advantage renders the technology 
an invaluable tool during early-stage bioprocess devel-
opment [24–26]. Successful applications have been 
reported for clone screening and genetic construct 
selection [27–31], substrate feeding [32, 33] and induc-
tion profiling [10, 34, 35]. Also, a systematic evalua-
tion of media compositions and cultivation conditions 
for improved microbial growth and product forma-
tion has been demonstrated [36–39]. For the recently 
introduced 2D fluorescence spectroscopy in MTPs, a 
successful proof-of-concept was shown for the cultiva-
tion of Escherichia coli and Hansenula polymorpha [12, 
40–42]. In these first studies, data-driven PLS mod-
eling was extensively tested for the variation of carbon 
sources and initial cell dry weights (CDW). In another 
study, scattered-light spectra were generated for the 
co-cultivation of Lactococcus lactis and Kluyveromyces 
marxianus. Data-driven modeling was used to calcu-
late the coculture composition [43]. Furthermore, the 
setup has been used for analysing autofluorescence and 
absorption of a pigment in Trichoderma reesei RUT- 
C30 and Streptomyces coelicolor A3 (2) mixed cultures 
[44–46].

This study aims to evaluate the capabilities of the new 
MTP-based monitoring system under more practical-
oriented conditions. The methodology for 2D fluores-
cence-based PLS modeling, presented by Berg et  al. 
[41], is applied to experimental data of higher complex-
ity. Following the H. polymorpha screening experiments 
of Kottmeier et al. [47], three separate experiments are 
conducted, with each varying the supplementation of 
one secondary substrate of magnesium  (Mg2+), potas-
sium  (K+), or phosphate  (PO4

3−). 2D fluorescence spec-
troscopy is used to monitor the dynamics of GFP and 
biomass accumulation, while further metabolic insights 
are obtained by the measurement of the oxygen transfer 
rate (OTR) and by extensive offline sampling. Subse-
quently, the spectral data of cultures of two cultivation 
conditions in combination with a subset of the offline 
data is then used to generate PLS models, before inter-
nal and external validation is conducted using data not 
used for calibration. Based on the results and the com-
parison to the study by Berg et al. [41], the capabilities 
and limitations of the 2D fluorescence monitoring tech-
nology in MTPs are assessed.
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Results
Magnesium limitation experiment
In the first cultivation experiment, the magnesium 
 (Mg2+) supplementation of the modified SYN6-MES 
medium was varied between 295.8 mg/L and 0 mg/L. In 
addition to the initial cell dry weight  (CDWt0) of 0.03 g/L, 
for the cultures with 295.8 mg/L magnesium also 0.06 g/L 
and 0.11 g/L were cultivated. Following the experimental 
layout described in Additional  file  1: Fig. S1, the result-
ing online data of the OTR, scattered light and GFP fluo-
rescence is shown in Fig. 1A-C. Exemplary recorded 2D 
spectra are shown in Additional file  1: Fig. S2. Offline 
sampling data for the cultures with 295.8 mg/L mag-
nesium and a  CDWt0 of 0.06 g/L (blue upward triangle) 
and 1.18 mg/L magnesium and a  CDWt0 of 0.03 g/L (red 

downward triangle), taken at a 1.5 h interval, are shown 
as hollow symbols in Fig. 1D-F. The filled, linearly inter-
polated symbols describe a more realistic sampling inter-
val of 6 h and are later used for PLS model calibration.

The OTR signals in Fig.  1A are comparable to the 
results of Kottmeier et al. [47], although being obtained 
in MTPs instead of shake flasks. The cultures with a mag-
nesium supplementation of 295.8 mg/L and a  CDWt0 
of 0.03 g/L (light blue pentagons) showed exponen-
tial growth until 22.3 h, with a maximum OTR value of 
34.5 mmol/L/h. Afterwards, the OTR dropped below 
5 mmol/L/h. Both the scattered light and the GFP signals 
followed this exponential growth pattern. Shortly before 
the maximum OTR was reached, a sudden increase was 
observed for the GFP signal, which is connected to the 

Fig. 1 Time‑resolved (A-C) online monitoring signals and (D-F) offline sample measurements of H. polymorpha RB11 pC9‑FMD  (PFMD‑GFP) 
cultivations at different initial cell dry weight  (CDWt0) and magnesium  (Mg2+) concentrations. (A) The mean oxygen transfer rate (OTR) of culture 
replicates (n = 2–3, Additional file 1:Fig. S3) was determined by a μRAMOS device [48]. The low standard deviations are shown as shaded areas and 
indicate good reproducibility. Hollow symbols indicate every sixth data point. (B) Scattered light (λex = λem = 600 nm) and (C) GFP fluorescence 
intensities (λex = 420 nm, λem = 530 nm) were extracted from 2D spectra of duplicates (solid and dotted lines). Hollow symbols indicate every 
fifth data point. Values of (D) glycerol, (E) cell dry weight (CDW), and (F) pH value are based on singular offline measurement from parallel 
cultivation, taken every 1.5 h (hollow and filled symbols). Filled, linearly interpolated symbols describe a sampling interval of 6 h. Cultivation 
conditions: 48‑well microtiter plate with round geometry, modified SYN6‑MES medium, liquid volume = 800 μL, shaking diameter = 3 mm, shaking 
frequency = 1000 rpm, temperature = 30 °C
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partial derepression of the FMD promotor due to low 
glycerol concentrations [49, 50]. After the increase, the 
GFP signals flattened asymptotically. The cultures with 
an increased  CDWt0 (purple circles, blue upward trian-
gles) described an earlier exponential increase, but were 
otherwise similar. With decreasing the magnesium sup-
plementation, the maximum OTR was reduced, and the 
final signal drop was successively replaced by a slight 
linear decrease. Accordingly, the scattered light signal 
was observed to transition from an exponential increase 
to a linear increase upon reaching the OTR maximum. 
For the GFP signal, a sudden stagnation was observed 
for the cultures supplemented with a magnesium sup-
plementation of up to 4.14 mg/L (yellow leftward trian-
gles). No considerable metabolic activity was measured 
for the cultures without magnesium (pink squares) and 
the wells containing only non-inoculated medium (black 
hexagons).

The offline data in Fig. 1D-F described an exponential 
increase of the CDW and an according glycerol and pH 
decrease during the unlimited growth phase. In total, 
around 4.1 g/L CDW were accumulated for the culture 
supplemented with 295.8 mg/L magnesium. The pH value 
decreased to a minimum of 5.48. For the culture sup-
plemented with 1.18 mg/L magnesium, the transition 
from an exponential OTR increase to a linear decrease 
resulted in a slow linear decrease and a residual glycerol 
concentration of 5.5 g/L at the end of the cultivation. 
Here, a total of 1.9 g/L CDW was accumulated, while the 
pH decreased to 5.75. For the 6 h sampling interval the 
exponential growth pattern was described inaccurately, 
as especially the time of glycerol depletion and the mini-
mum pH value were not correctly reflected.

Similar to the study by Berg et al. [41], the PLS mod-
els were generated based on online spectral data of two 
replicates and the linearly interpolated offline values of 
the sparse, 6 h sampling interval of the cultures shown in 
Fig.  1D-F. The prediction dataset consisted of the spec-
tral data of the remaining cultivation conditions shown 
in Fig. 1A-C. The OTR was not used for PLS modeling. 
The resulting root-mean-square error (RMSE) for differ-
ent numbers of latent variables (LVs) are shown in Addi-
tional file 1: Fig. S4. The appropriate number of LVs was 
identified by a decreasing  RMSECal, sparse, accompanied by 
an increase of the  RMSECal, full. According to Berg et  al. 
[41], at this point, the model starts to overfit the sparse 
data, instead of representing the inherent biology-based 
spectral dynamics. Following this methodology, the PLS 
models were generated using two LVs for the glycerol 
concentration and the CDW and three LVs for the pH 
value. The calculated offline parameter progressions for 
the calibration and the prediction dataset are shown in 
Fig. 2.

In Fig.  2A, the glycerol values calculated for the cul-
tures with 295.8 mg/L magnesium (blue upward trian-
gles) agreed well with the exponential decrease, described 
by the offline values of the short sampling interval. The 
lowest glycerol concentration is calculated at 0.15 g/L and 
coincided with the depletion of glycerol depletion accord-
ing to the sparse sampling interval. For the cultures with 
1.18 mg/L magnesium (red downward triangles), the ini-
tial non-linear glycerol decrease was calculated appro-
priately. However, according to the PLS model, glycerol 
consumption ceases after 19 h. This led to a final differ-
ence of 1.2 g/L between the calculated and the measured 
values, which represented the time point of the onset of 
limitation and the stagnating GFP signal (Fig.  1C). For 
the prediction dataset (Fig. 2D), good predictability of the 
glycerol concentration was observed during exponential 
growth, while under magnesium-limiting conditions, the 
glycerol consumption was underestimated. As a result, 
especially for the cultures supplemented with 2.37 mg/L 
(orange diamonds) and 4.14 mg/L magnesium (yellow 
leftward triangles), the calculated values considerably 
exceeded the measured values. In total, an  RMSECal, full 
of 0.57 g/L was calculated, while for the prediction data-
set, an  RMSEPred, full of 0.94 g/L resulted. Relative to the 
measured glycerol range of 11.98 g/L, this accounts for 
5.1% for the calibration dataset and 8.5% for the predic-
tion dataset (Additional file 2: Table S1).

The results for the PLS model of the CDW are shown 
in Fig. 2B and E. The CDW was accurately calculated for 
both cultivation conditions of the calibration dataset. For 
the prediction dataset, the calculated values agreed well 
with the measured values during the exponential growth. 
However, especially for the increasingly limited cultures, 
the PLS model described a premature growth stagnation. 
This stagnation led to the final CDW values being under-
estimated by as much as 0.5 g/L for the cultures with 
4.14 mg/L magnesium. In conclusion, an  RMSECal, full 
of 0.18 g/L (3.8%), and an  RMSEPred, full of 0.3 g/L (6.5%) 
were determined (Additional file 2: Table S1).

The PLS model of the pH value is shown in Fig. 2C and 
F. The model accurately reflected the initial pH decrease 
and the subsequent increase for the calibration cultures 
with 295.8 mg/L magnesium. However, the minimum 
value measured at 5.46 was calculated to be 5.55, which 
represented the lowest value of the 6 h sampling data-
set used for calibration. For the culture supplemented 
with 1.18 mg/L magnesium, the PLS model accurately 
described the pH value throughout the cultivation time. 
Transferring the model to the prediction dataset resulted 
in comparable observations. While the pH values of 
the strongly limited cultures were described accurately, 
deviations increased for the cultures of higher magne-
sium. This was especially observed for the time after the 
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metabolic activity ended. A systematic overestimation 
of the pH values was observed for the cultures with a 
 CDWt0 of 0.03 g/L of 295.8 mg/L magnesium (light blue 
pentagons). In summary, an  RMSECal, full of 0.025 (4.9%) 
was obtained, while for the  RMSEPred, full a value of 0.032 
(6.0%) resulted.

In conclusion, despite the changes in the scattered 
light and fluorescence dynamics, the resulting PLS mod-
els provide a reasonable overall accuracy. Although for 
individual cultivation conditions the predictive perfor-
mance showed shortcomings of the models, with a rela-
tive RMSE below 10%, the acceptance criterium for a 

transferable PLS model described by Yousefi-Darani et al. 
[51] is met.

Potassium limitation experiment
In the second experiment, the potassium  (K+) supple-
mentation to the modified SYN6-MES medium was 
varied. As for the previous experiment, the calculated 
RMSE included three very similar cultivation conditions, 
the variation of the  CDWt0 was omitted. Thereby, also 
the number of cultures grown under limited conditions 
could be increased. In total, eight cultivation conditions 

Fig. 2 (A-C) Calibration and (D-F) prediction of the PLS models for three offline parameters for H. polymorpha RB11 pC9‑FMD  (PFMD‑GFP) 
cultivations at different initial cell dry weight  (CDWt0) and magnesium  (Mg2+) concentrations. This figure is based on the data in Fig. 1. The PLS 
models were calibrated using the linearly interpolated values of the filled symbols and a total of 248 2D spectra of the two cultivation conditions 
shown in A-C. The PLS models for (A, D) glycerol, (B, E) CDW, and (C, F) pH value were generated using two, three, and two LVs, respectively. 
Solid and dotted lines describe the calculated parameter progression of duplicates. Hollow symbols in A‑F were used for model validation 
only. Cultivation conditions: 48‑well microtiter plate with round geometry, modified SYN6‑MES medium, liquid volume = 800 μL, shaking 
diameter = 3 mm, shaking frequency = 1000 rpm, temperature = 30 °C
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with potassium concentrations between 2017.3 mg/L and 
20.2 mg/L were investigated.

With decreasing potassium concentration, the online 
spectral data in Additional file 1: Fig. S5A and B described 
a transition into a decelerated linear increase for both the 
scattered light and the GFP intensity. This resulted in the 
maximum intensities being decreased by more than for 
the cultures with the lowest potassium concentration 
of 20.2 mg/L when compared to the fully supplemented 
cultures. Accordingly, also the offline data in Additional 
file 1: Fig. S5C-E described a reduced, linear growth and 
consumption during the limitation phase. Comparable to 
the previous experiment, the linear interpolation of the 
sparse sampling interval did not accurately describe the 
non-linear growth pattern and missed the exact time of 
glycerol depletion, as well as the correct minimum pH 
value.

Similar to the previous experiment, the PLS model was 
generated based on the spectral online and the sparse 
offline sampling data of the cultures with the second 
highest (100.9 mg/L potassium, blue upward triangles) 
and the lowest (20.2 mg/L potassium, pink squares) 
potassium supplementation. The prediction dataset 
consisted of duplicates of the remaining online moni-
tored cultivation conditions, shown in Additional file  1: 
Fig. S5A-B. The RMSEs resulting from the variation of 
LVs are shown in Additional file 1: Fig. S6. The  RMSECal, 

sparse and  RMSECal, full were of the same magnitude, as 
observed for the magnesium limitation experiment. Sim-
ilarly, a continuous decrease of the calculated values was 
observed for increasing LVs. An overall reduced RMSE 
was observed, when excluding the cultures with the high-
est potassium concentration from the prediction dataset 
 (RMSEPred, full, − 100%, blue diamonds). Following the pre-
viously described criteria for the final PLS models of the 
CDW and the pH value, three LVs were used, while for 
the glycerol concentration, four LVs were chosen. The 
resulting trajectories, calculated by the PLS models, are 
shown in Fig. 3.

In Fig. 3A and D, the calculated glycerol values showed 
a tendency towards the values of the interpolated sparse 
sampling interval. Consequently, for both the calibra-
tion and the prediction dataset, the glycerol progressions 
were described more accurately for lower potassium con-
centrations. For higher potassium supplementation, the 
glycerol consumption rates were underestimated, lead-
ing to the calculated glycerol depletion to occur later 
than determined by the measurements. For the culture 
supplemented with 2017.3 mg/L potassium (purple cir-
cles), the glycerol concentration was calculated to a 
value of − 3.5 g/L after 21 h. Here, a close connection to 
the increased scattered light (Additional file 1: Fig. S5A) 
can be assumed. In total, the determined  RMSECal, full 

is 0.51 g/L (4.7%), while for the prediction dataset, the 
 RMSEPred, full was calculated to 2.05 g/L (18.7%). Exclud-
ing the cultures with the highest potassium concentra-
tion resulted in a considerably reduced  RMSEPred, full, 

− 100% of 0.57 g/L (5.2%).
As for the glycerol concentration, also for the PLS 

model of the CDW, shown in Fig. 3B and E, higher inac-
curacies were observed for higher potassium concentra-
tions resulting from an underestimated growth rate. Only 
for the cultures with 2017.3 mg/L potassium, the calcu-
lated and the measured offline values were again in very 
good alignment during the exponential growth. However, 
after the exponential growth was terminated (between 
18 h and 42 h) non-plausible CDW fluctuations with 
deviations of up to 0.45 g/L were calculated. As a result, 
an  RMSECal, full of 0.15 g/L (4.0%) was calculated, while 
the  RMSEPred, full was determined to 0.55 g/L (14.6%). The 
 RMSEPred, full, − 100% was reduced to 0.29 g/L (8.4%) as the 
described fluctuations were omitted.

The calculated values for the pH value of the calibration 
dataset in Fig.  3C show a tendency of underestimation 
for the low potassium supplementation and an overesti-
mation for the high potassium supplementation. When 
applied to the prediction dataset (Fig. 3F), the PLS model 
accurately predicted the pH values for the cultures with 
potassium concentrations of up to 35.3 mg/L (orange dia-
monds). However, for higher potassium concentrations, 
the accuracy decreased. Considerable shortcomings were 
observed for the cultures of 2017.3 mg/L potassium, for 
which the measured minimal pH value was missed by 
0.14. In total, the  RMSECal, full of the PLS model was cal-
culated to 0.034 (4.3%), while the  RMSEPred, full was cal-
culated to 0.054 (6.9%). When excluding the cultures 
with the highest potassium concentration, the  RMSEPred, 

full, − 100% was reduced to 0.032 (6.5%). While this repre-
sents only a limited reduction of the percentage value, 
compared to the  RMSEPred, full, the absolute  RMSEPred, full, 

− 100% is nearly reduced by half.
In conclusion, the potassium experiment showed lower 

PLS modeling performance than the magnesium vari-
ation experiment. This partially resulted from the cho-
sen cultivation conditions and the reduced similarity 
between the calibration and prediction dataset.

Phosphate limitation experiment
In the third experiment, the supplementation of 
phosphate  (PO4

3−) was varied between 0 mg/L and 
697.9 mg/L. The resulting online and offline values 
are shown in Additional file  1: Fig. S7. The OTR sig-
nals indicated the onset of a limitation for phosphate 
concentrations of 139.6 mg/L (light blue pentagons) 
or less. The limitation led to a decreased maximum 
of the OTR, followed by a plateau of variable length. 
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Concurrently, the scattered light transitioned to a lin-
ear increase, while the GFP signal stagnated. Upon the 
final decrease of the OTR, an additional final increase 
of the GFP intensity was observed, the extend of which 
decreased with decreasing phosphate supplementation. 
Noteworthy, for all phosphate concentrations, the scat-
tered light signals reached comparable maximum val-
ues. For the cultures without phosphate (pink squares) 
and the non-inoculated medium (black hexagons), no 
considerable signal increase was observed.

Similar to the scattered light, the offline data in Addi-
tional file  1: Fig. S7D-F indicated a comparable CDW 
of 3.2 g/L CDW for both sampled conditions, despite 
a slower growth of the limited culture. In contrast, the 
higher phosphate supplementation led to a minimum 
pH value of 5.44, whereas for the lower supplementation 
a pH minimum of 5.8 was observed. Again, the linear 
interpolation of the sparse sampling interval introduced 
inaccuracies for the timing of the depletion of glycerol, 
the maximum CDW, and the minimum pH value for the 
cultures with the higher phosphate supplementation. For 

Fig. 3 (A-C) Calibration and (D-F) prediction of the PLS models for three offline parameters of H. polymorpha RB11 pC9‑FMD  (PFMD‑GFP) cultivations 
at different potassium  (K+) concentrations. This figure is based on the data from Additional file 1: Fig. S5. The PLS models were calibrated with the 
linearly interpolated values of the filled symbols and a total of 356 2D spectra of the two cultivation conditions shown in A‑C. The PLS models for (A, 
D) glycerol, (B, E) CDW, and (C, F) pH value were generated using four, three, and three LVs. Solid and dotted lines describe the calculated parameter 
progression of duplicates. The hollow symbols were used for model validation only. The crossed symbols describe the value for the last offline 
sample taken after 54 h. Cultivation conditions: 48‑well microtiter plate with round geometry, modified SYN6‑MES medium, liquid volume = 800 μL, 
shaking diameter = 3 mm, shaking frequency = 1000 rpm, temperature = 30 °C
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the culture of lower phosphate supplementation, the tra-
jectory was appropriately described.

The PLS models were generated based on the data of 
the first 34.5 h of cultivation. The calibration dataset 
included the cultivation conditions shown in Additional 
file 1: Fig. S7D-F, while the prediction dataset consisted 
of the remaining inoculated cultures. With increasing 
LVs, the  RMSECal, full, and the  RMSECal, sparse of the PLS 
models continuously decreased for all offline parameters 
as shown in Additional file  1: Fig. S9A-C. The two cali-
bration RMSEs of the glycerol concentration decreased 
in parallel, while for the CDW, the  RMSECal, full surpasses 
the  RMSECal, sparse for five LVs. For the pH value, the two 
values were nearly identical for all eight LVs. For the pre-
diction dataset, the glycerol and the CDW concentration 
showed a constant positive offset of the  RMSEPred, full to 
the RMSEs of the calibration datasets. Only for the pH 
value, a valley-shaped progression with a minimum of 
three LVs was observed. For this parameter, excluding 
the cultures of the highest phosphate supplementation 
resulted in a minimum  RMSEPred, full, − 100%, which was 
comparable to the RMSEs of the calibration datasets. 
In conclusion, the criterium for choosing the number 
LVs [41] did only apply for the CDW and led to five LVs. 
However, for the glycerol concentration and the pH value 
the criterium did not apply. Thus, five and three LVs were 
chosen subjectively, as these represented the minimum 
values of the  RMSEPred, full, − 100%. The resulting PLS mod-
els are shown in Fig. 4.

Comparable to the previous experiment, the PLS model 
for glycerol in Fig. 4A and E showed a tendency towards 
linear glycerol consumption for both the calibration 
and the prediction dataset. Consequently, the cultures 
with lower phosphate concentrations were predicted 
more accurately, while the exponentially grown cultures 
with phosphate supplementation of at least 244.3 mg/L 
showed slight deviations from the measured values. As a 
result, the  RMSECal, full was determined to 0.58 g/L (5.2%). 
With a  RMSEPred, full of 0.61 g/L (5.6%) and a  RMSEPred, 

full, − 100%, of 0.59 g/L (5.4%), very comparable values were 
achieved for the transfer to the prediction dataset.

Also, for the calculated CDW in Fig.  4B and F, a bet-
ter predictability for the cultures with lower phosphate 
supplementation was observed. However, when trans-
ferring the model to the prediction dataset, the noise 
of the calculated values significantly increased, while 
the reproducibility of the replicates decreased. Addi-
tional, notable deviations from the measured offline 
values were observable for the cultures with 104.7 mg/L 
(green rightward triangles) and 697.9 mg/L phosphate 
(purple circles) between 19 h and 21 h of cultivation. 
While for the lower phosphate supplementation, a sin-
gular offline measurement error is conceivable, for the 

higher supplementation, the maximum calculated CDW 
of 3.0 g/L underestimated multiple offline measure-
ments, ranging between 3.4 g/L and 3.9 g/L. Therefore, 
here, an inaccurate PLS model is more likely. In total, 
the  RMSECal, full was calculated to be 0.12 g/L (3.0%), 
while the observed deviations of the prediction dataset 
resulted in an  RMSEPred, full of 0.26 g/L (6.6%). Excluding 
the cultures with the highest phosphate supplementa-
tion resulted in a reduced  RMSEPred, full, − 100%, of 0.16 g/L 
(4.3%).

The PLS modeling results for the pH value, shown in 
Fig. 4C, are in accordance with the glycerol concentration 
and the CDW. Again, the calculated values for the lim-
ited cultures described the PLS models more adequately 
compared to the cultures with high phosphate supple-
mentation, which were systematically overestimated 
between 12 h and 19.5 h of cultivation. Nevertheless, the 
model correctly reflected the minimum pH value of 5.44, 
which was not part of the calibration dataset. After the 
glycerol is consumed, the model eventually calculated a 
second, non-apparent decrease in the pH value for the 
high phosphate supplementation. Transferring the PLS 
model to the prediction dataset resulted in more sys-
tematic deviations, as shown in Fig. 4G. The PLS model 
appropriately reflected the decline of the pH value dur-
ing the initial exponential growth phase. However, espe-
cially for the cultures with 87.2 mg/L (yellow leftward 
triangles) and 69.8 mg/L phosphate (orange diamonds), 
the pH values were calculated to further decrease until 
the end of the metabolic activity, despite being measured 
to be constant. After the metabolic activity had ceased, 
the calculated pH value increased to values approximat-
ing the measured values. For the cultures supplemented 
with 697.9 mg/L phosphate, the calculated progression of 
the pH value was qualitatively comparable to the cultures 
supplemented with 244.3 mg/L phosphate (blue upward 
triangles). However, the minimum calculated pH value 
was 5.4 instead of the measured minimum value of 5.19. 
In conclusion, the  RMSECal, full was calculated to be 0.038 
(3.8%), whereas the described inaccuracies of the predic-
tion dataset resulted in an  RMSEPred, full of 0.085 (8.5%) 
and a considerably reduced  RMSEPred, full, − 100% of 0.04 
(5.4%).

Exclusion of the scattered light
In the phosphate limitation experiment, while the cali-
bration dataset was described accurately, systematic 
inaccuracies were observed when transferring the PLS 
models to the prediction dataset. Therefore, overfitting 
of the calibration data in general and the spectral data in 
particular can be suggested. One way to investigate this 
hypothesis is to modify the selection of included spec-
tral data. To exemplarily demonstrate the impact of the 



Page 9 of 19Berg et al. Journal of Biological Engineering           (2023) 17:12  

Fig. 4 (A-D) Calibration and (E-H) prediction of the PLS model for three offline parameters, based on 2D spectra (A-C, E-G) including and (D, H) 
excluding the scattered light of H. polymorpha RB11 pC9‑FMD  (PFMD‑GFP) cultivations at eight different phosphate  (PO4

3−) concentrations. This 
figure is based on the data in Additional file 1: Fig. S7. The PLS models were calibrated with the linearly interpolated values of the filled symbols 
and a total of 288 2D spectra from the two cultivation conditions shown in A-C. The models in Fig. 4D and H were generated including only the 
fluorescence intensities. The PLS models for (A, E) glycerol, (B, F) CDW, and (C, D, G, H) pH value were generated using five, five, and three latent 
variables, respectively. Solid and dotted lines describe the predicted parameter progression of duplicates. Crossed symbols describe the value for 
the last offline sample taken after 44 h. Cultivation conditions: 48‑well microtiter plate with round geometry, modified SYN6‑MES medium, liquid 
volume = 800 μL, shaking diameter = 3 mm, shaking frequency = 1000 rpm, temperature = 30 °C
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spectral input data, additional PLS models were gener-
ated using only the fluorescence of the 2D spectra, as 
shown in Additional file 1: Fig. S10.

The RMSEs for a variable number of LVs are shown in 
Additional file 1: Fig. S9D-F. While for a low number of 
LVs, the RMSEs of the calibration datasets were higher 
than for the PLS models including the scattered light, 
with increasing LVs, the RMSEs of the two models were 
more comparable. The same holds true for the  RMSEPred, 

full and  RMSEPred, full, − 100% of the PLS models for the 
glycerol concentration and the CDW. Only for the pH 
value, excluding the scattered light resulted in an addi-
tional reduction of the  RMSEPred, full, − 100%. The improved 
PLS modeling performance for three LVs is visualized in 
Fig. 4D and H.

For the cultures supplemented with 52.3 mg/L phos-
phate, a more constant trajectory was calculated, whereas 
for the culture with 244.3 mg/L phosphate, the previously 
observed second pH increase was no longer exhibited 
in the new model. For the prediction dataset in Fig. 4H, 
the new PLS model resulted in a considerably better 
alignment for the later phase of cultivation. Firstly, the 
systematic overestimation of the pH decrease for the 
strongly limited cultures was reduced. Further, also the 
asymptotic behavior of the pH value observed for the cul-
tures with 139.6 mg/L phosphate after metabolic activ-
ity was terminated was described more correctly by the 
new model. Nevertheless, also the new model did not 
predict the minimum value of 5.19 for the cultures with 
the 697.9 mg/L phosphate correctly. In total, the PLS 
model including only fluorescence intensities resulted in 
an  RMSECal, full of 0.04 (4.0%), an  RMSEPred, full of 0.106 
(10.6%) and an  RMSEPred, full, − 100% of 0.034 (4.6%).

As described before, this noticeable systematic 
improvement of the prediction resulted from a change in 
the dominating spectral dynamics due to the exclusion of 
the scattered light. By applying PCA this change can be 
visualized, as shown in Fig. 5.

The scores of the first principal component (PC1) for 
the dataset including the scattered light accounted for an 
explained variance of 99.64% and resembled the scattered 
light intensities shown in Additional file 1: Fig. S7B. An 
even higher explained variance of 99.82% was achieved 
for the PC1 scores of the dataset including only the flu-
orescence intensities, for which the progression was 
qualitatively comparable to the GFP fluorescence shown 
in Additional file  1: Fig. S7C. With increasing PCs, the 
remaining variance is successively described. However 
also, the noise considerably increased, which is in good 
accordance with the literature [52]. For the PC2 scores 
of the dataset excluding the scattered light, the observed 
plateau strongly resembled the progression of the pH 
value. As it was not observed in any of the scores of the 

dataset including the scattered light, a connection to the 
improved PLS model is conceivable. The reason why the 
predictive performance of the model including the full 
dataset is lower lies in the covariance-based algorithm of 
the PLS regression. Thereby, although the scattered light 
may not be optimal for describing the pH value, it com-
prises a very large amount of the spectral variance and is 
thus also included in the model. This effect may be even 
increased for increasing LVs. However, by excluding the 
scattered light, these deteriorating online signals are no 
longer considered for modeling. Instead, signal dynamics 
for PLS model generation originate only from the inher-
ently pH-correlating fluorescence intensities.

Comparison of PLS models
In both, this and the previous study by Berg et  al. [41], 
PLS regression models were generated using the same 
monitoring hardware and biological system. However, 
while the previous paper described a simple glycerol con-
centration variation study, in this study, more complex 
systems of secondary substrate limitations were inves-
tigated. As the workflow for generating the PLS models 
was identical, the results can directly be compared, to 
estimate the robustness of the methodology. In Fig. 6, a 
summary of the relative  RMSEPred, full (plain columns) and 
 RMSEPred, full, − 100% (backward diagonal hatched columns) 
is given. Additionally, also for the PLS models includ-
ing only the fluorescence intensities (Fl), the  RMSEPred, 

full, − 100% (forward diagonal hatched columns) and the 
respective as  RMSEPred, full, − 100% (cross-hatched columns) 
are shown. An analogous visualisation of the absolute 
values is shown in Additional file 1: Fig. S11.

The glycerol-variation experiment of the previous study 
resulted in low relative  RMSEPred, full, with values between 
3.5 and 5.3%. In contrast, for all limitation experiments 
of this study, values above 5% were obtained. The highest 
relative  RMSEPred, full of up to 18.7% was calculated for the 
glycerol concentration of the potassium limitation exper-
iment  (K+). A reduction by more than 10% was obtained 
when excluding the cultures with the highest potassium 
supplementation  (K+ (− 100%)). For the phosphate varia-
tion experiment, this exclusion procedure resulted in an 
 RMSEPred, full, − 100% between 5.4 and 4.3%. The additional 
in-silico exclusion of the scattered light  (PO4

3− (Fl)) fur-
ther reduced the  RMSEPred, full, − 100% for the pH value 
from 5.4 to 4.6%. However, no considerable change in the 
RMSE was observed for the CDW, while for the glycerol 
concentration, the  RMSEPred, full, − 100% even increased.

In conclusion, depending on the offline parameter, 
the average relative  RMSEPred, full for the PLS models 
generated from the full 2D spectra ranged between 7.1 
and 11.0%. A reduction to values between 6.0 and 6.4% 
was achieved for the exclusion of the cultures with the 
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highest supplementation. Although these values still rep-
resented a considerable increase compared to the glyc-
erol variation experiment of Berg et al. [41], with relative 
values below 10%, the PLS modeling results of the pre-
sented study can be considered a success. In fact, the 
obtained relative RMSEs are well comparable to other 
studies using fluorescence spectroscopic PLS modeling 
in stirred tank batch reactors. For example, relative val-
ues between 3.8 and 9.1% have been reported for the 
prediction of singular carbon sources and between 3.0 
and 6.8% for the CDW [16, 54–56]. However, due to the 
reduced experimental throughput in stirred tank reac-
tors, in these studies, only a limited number of different 
cultivation conditions was used for external validation. In 

conclusion, this further supports the high potential of the 
2D fluorescence online monitoring technology in MTPs.

In addition to the comparison with other studies, the 
PLS model performance can also be compared to the 
respective conventional determination method of each 
offline parameter (i.e., HPLC, gravimetry, pH-electrode). 
For the glycerol concentration, the determined relative 
RMSE of more than 5% is considerably higher than the 
standard deviation of the implemented HPLC method, 
which was below 0.2% (data not shown). In contrast, for 
the CDW measurements, the determined relative RMSE 
is in good agreement with the reported standard devia-
tions between 0.9 to 7% [57]. Finally, for the pH value, the 
absolute RMSE of around 0.05 represents the higher end 
of the tolerance of a single pH measurement. However, 

Fig. 5 Scores of first to third principal component (PC1‑PC3) over cultivation time, based on (A-C) 2D spectra including scattered light and 
fluorescence, as well as based on (D-F) only fluorescence intensities for the cultivation of H. polymorpha RB11 pC9‑FMD  (PFMD‑GFP) at different 
phosphate  (PO4

3−) concentrations. The explained variance for each PC is shown in brackets. For clarity, only data of one replicate per cultivation 
condition is shown. Only every 10th datapoint is indicated by a symbol. Asterisks in Fig. 5A and E indicate reversed Y‑axis direction used for clarity. 
Spectroscopic measurement settings: excitation wavelength range = 280 nm – 700 nm (step size = 10 nm), emission wavelength range = 278 nm 
– 720 nm (step size = 0.45 nm), integration time = 30 ms. Cultivation conditions: 48‑well microtiter plate with round geometry, modified SYN6‑MES 
medium, liquid volume = 800 μL, shaking diameter = 3 mm, shaking frequency = 1000 rpm, temperature = 30 °C



Page 12 of 19Berg et al. Journal of Biological Engineering           (2023) 17:12 

finally, it has to be stated, that the financial and person-
nel efforts for generating a comparable amount of offline 
data by manual measurements is beyond any feasibility. 
From this perspective, the PLS models based on 2D fluo-
rescence spectroscopy outperform any of the conven-
tional measurement methods.

Discussion
Secondary substrate limitations induce metabolic reac-
tions, which can positively impact the ratio between bio-
mass accumulation and product formation (i.e., GFP) [37, 
47]. However, in this study, the changed spectral dynam-
ics resulted in a reduced PLS model performance com-
pared to the previous glycerol variation study [41]. The 
reason for this can be found in the difference between 
a primary (carbon source like, i.e. glycerol) and second-
ary substrate (i.e.,  Mg2+,  K+,  PO4

3−) limitation. For the 
previous study, both the biomass and the product for-
mation ceased as soon as the glycerol concentration was 
depleted. This resulted in a constant relation between 
the two parameters and, thus, in the established PLS 
model to remain valid. In contrast, under secondary sub-
strate limitation, the carbon source remained available, 
enabling further metabolic activity with a yet changed 

metabolism. With the occurring changes in the spectral 
dynamics and the relation between biomass and prod-
uct formation, the PLS models reached the performance 
limits of the regression algorithm. Interestingly, for the 
experiments of this study, no systematic improved per-
formance for either the limited or unlimited cultivation 
conditions was observed. For example, for the magne-
sium limitation experiment, the glycerol concentration 
(Fig. 2A, D) was well described for the unlimited condi-
tions. In contrast, in the potassium limitation experi-
ment, the PLS model of the pH value (Fig. 4C, G) shows 
better performance for the limited cultures. Another 
limitation in prediction performance was found for the 
fully supplemented cultures of the potassium and phos-
phate limitation experiment. These conditions were not 
covered by the calibration dataset and, thus, represented 
an extrapolation of the PLS model, for which the per-
formance of the regression method is known to be low 
[58]. Consequently, these conditions increased the RMSE 
above the threshold of 10% and thus rendered the models 
not acceptable, according to Yousefi-Darani et al. [51]. In 
a subsequent data evaluation study, it should therefore be 
reevaluated, if a changed composition of the calibration 
dataset can improve the PLS modeling performance.

Fig. 6 Comparison of the relative  RMSEPred, full for glycerol, CDW, and pH value for the PLS models generated in Berg et al. [41] and this study. 
Backward diagonal hatched columns describe  RMSEPred, full, based on the complete prediction dataset, except the culture holding the initial 
concentration of the respective secondary substrate according to Jeude et al. [53] (− 100%). Forward‑hatched columns describe the  RMSEPred, full, 
calculated for spectral online datasets including only the fluorescence intensities (Fl). For the diagonal cross‑hatched columns, additionally, the 
cultures with the highest initial concentration were excluded. The individual values are given in Additional file 2: Table S1
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Besides the impact of the changing signal dynamics on 
the PLS modeling outcome, also the applied PLS meth-
odology, in general, and the validation approach, in par-
ticular, should be evaluated for assessing the capabilities 
of the online monitoring system. An inaccurate linear 
interpolation of the non-linear progression of the offline 
parameters was used to purposely generate underper-
forming calibration models. However, by comparing the 
calibration results to the more accurate representation 
in form of the short sampling interval, the inaccuracies 
can be identified and, thus, be used for internal valida-
tion. In the previous study, this discrepancy was used to 
identify overfitting and as a guide for choosing the appro-
priate number of LVs [41]. An objective methodology 
for choosing the number of LVs is of high importance, 
as overfitted models likely include non-biogenic dynam-
ics, such as random noise and usually lead to poorly 
transferable models. In practice, the previous study sug-
gested that overfitting can be identified by an increasing 
 RMSECal,full and a decreasing  RMSECal,sparse. In the pre-
sent study, this trend was only observed for a few mod-
els, such as the CDW concentration of the magnesium 
(Additional file  1: Fig. S4B) or the phosphate variation 
experiment (Additional file 1: Fig. S9B). Presumably, the 
trajectories of the short and the sparse sampling inter-
val were too similar for the limited cultures. Although, 
thereby, the general applicability for other experimental 
layouts was shown, the results of this study also point out 
that additional efforts to increase the robustness of the 
method are necessary. Thus, to generate more diverging 
offline trajectories, an additional in silico resampling step 
can be suggested. Mechanistic growth models could be 
used to first interpolate raw offline values before a linear 
interpolation is generated of selected time points. Here, 
especially for the secondary substrate limitation experi-
ments, the results from PCA can be used to provide fur-
ther information on the apparent growth [59, 60] and, 
thus, facilitate mechanistic modeling.

Another subject to elaborate on in future investiga-
tions is the chosen regression method. Although this 
study further supports the reported strength of the PLS 
regression algorithm for the inherent multicollinear-
ity of the 2D fluorescence spectra [61], the rudimentary 
exclusion of the scattered light hinted at the further 
potential for improvement. Following the literature, the 
implementation of different wavelength selection algo-
rithms can be suggested [60, 62, 63]. For example, itera-
tive wavelength selection methods such as interval PLS 
[64], recursive weighted PLS [65] or optimisation-ori-
ented methods such as ant colony optimisation [66] and 
genetic algorithms [67] could be used. Moreover, non-
linear machine learning regression methods such as sup-
port vector machines or artificial neural networks should 

be considered. These advanced algorithms can possibly 
overcome the limitations of the linear character of the 
PLS regression and may even improve the prediction per-
formance for extrapolated cultivation conditions. Finally, 
also the establishment of more general models should be 
tested. For example, a common regression model for the 
pH value of all three experiments of this study could be 
established. However, comparable to the recent study on 
Raman spectroscopy by Yousefi-Darani et  al. [51], this 
demands additional workflows for spectral alignment.

Finally, the PLS modeling results should be evaluated 
in terms of a potential reduction in sampling efforts. As 
described in Additional file 1: Fig. S1, three offline MTPs 
were used to provide offline sampling data for model cali-
bration, as well as internal and external validation. This 
extensive data allowed an estimation of the robustness 
of the PLS models, which was found to be decreased, in 
comparison to the previous glycerol concentration varia-
tion study [41]. In case the above-mentioned approaches 
(e.g., wavelength selection) help to improve the modeling 
performance for the more systematic inaccuracies, the 
internal and external validation could be reduced to a 
minimum. Comparable to the previous study, for the cur-
rent study, this would allow a reduction to only one MTP 
for both monitoring and sampling. Nevertheless, for 
more complex screening layouts (e.g., inductor concen-
tration variation screenings), the demand for monitored 
cultivation conditions and offline samples may even be 
higher than the provided 48 wells of the current system. 
Therefore, a scale-out to parallel MTPs monitored within 
the same cultivation system is desirable. For this, a first 
proof of concept for a monochromator-based spectro-
scopic setup has already been demonstrated [10].

Conclusion
In the presented study, 2D fluorescence spectroscopy 
was used for online monitoring of secondary substrate-
limited H. polymorpha cultures in MTPs. In combina-
tion with online monitoring of the OTR and extensive 
offline sampling, the impact of the limitations on the 
spectroscopic data was evaluated. Subsequently, for each 
experiment, PLS models were generated based on spec-
tral data of two cultivation conditions. Internal and exter-
nal model validation was conducted using data not used 
for calibration. In a direct comparison with the results 
from a glycerol variation study, a decreased PLS model 
performance was observed, which was attributed to an 
altered carbon flux. However, the calculated RMSEs were 
comparable to stirred tank PLS regression studies found 
in literature, which underlines the potential of the high-
throughput 2D fluorescence spectroscopic monitoring 
technology. In a final model refinement, additional scat-
tered light exclusion was shown to result in a change in 
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the dominating spectral dynamics. This resulted in an 
improved PLS model performance for the pH value of 
the phosphate limitation experiment. As for the same 
dataset, the predictability of the glycerol concentration 
and the CDW did not improve, a high dependence of the 
modeling results on the input data was suggested.

In conclusion, this study provides a practical example 
for using the 2D fluorescence monitoring technology in 
MTPs at elevated throughput. The successful genera-
tion and application of PLS models for cultivations with 
secondary substrate limitations suggest promising appli-
cations in early-process development. The obtained 
information on the apparent metabolism enables the cal-
culation of growth phase-dependent process parameters, 
such as growth rates, substrate consumption rates, as 
well as product formation rates. Furthermore, the study 
supports the previously asserted potential for the reduc-
tion of sampling efforts during fermentation. In future 
research, the acquired datasets can be used for develop-
ing more systematic data evaluation workflows for culti-
vations in the 2D fluorescence online monitoring system.

Methods
Microorganisms
The green fluorescent protein (GFP) expressing 
Hansenula polymorpha RB11 pC10-FMD  (PFMD-GFP) 
strain was used for all experiments. For storage at 
− 80 °C, cryo cultures were prepared in a modified SYN6-
MES medium and supplemented with 150 g/L glycerol.

Media composition
Preparation of fully supplemented media
Analogue to a previous study [41], a modified SYN6-
MES mineral medium based on Jeude et  al. [53] was 
used for pre and main cultures. The basal solution com-
prised 1.0 g/L  KH2PO4, 7.66 g/L  (NH4)2SO4, 27.3 g/L 
(140 mM) 2-morpholinoethanesulfonic acid (MES), 
3.0 g/L  MgSO4·7H2O, 3.3 g/L KCl and 0.3 g/L NaCl. The 
pH was adjusted to 6.0 using 1 M NaOH. After sterili-
sation at 121 °C for 20 minutes, a sterile-filtered trace 
element solution was supplemented to provide final 
concentrations of 0.65 mg/L  NiSO4·6H2O, 0.65 mg/L 
 CoCl2·6H2O, 0.65 mg/L  H2BO4, 0.65 mg/L KI and 
0.65 mg/L  Na2MoO4·2H2O. A sterile microelement solu-
tion was added to provide 66.5 mg/L EDTA (Titriplex III), 
66.5 mg/L  (NH4)2Fe(SO4)2·6H2O, 5.5 mg/L  CuSO4·5H2O, 
20 mg/L  ZnSO4·7H2O and 26.5 mg/L  MnSO4·H2O. 
Additionally, a sterile-filtered stock solution was pre-
pared to supplement 1.0 g/L  CaCl2·2H2O. A sterile vita-
min solution was added to supply 0.4 mg/L D-biotin and 
133.4 mg/L thiamine hydrochloride. For preparing the 
vitamin stock solution, the D-biotin was first dissolved 
in a 10 mL mixture (1:1) of 2-propanol and deionised 

water. The thiamine hydrochloride was dissolved in 90 ml 
of deionised water and mixed with the D-biotin solu-
tion. Next, glycerol was added to the media from a sterile 
500 g/L stock solution to achieve the final glycerol con-
centrations. Finally, sterile water was added to account 
for differences in volumes.

Preparation of secondary substrate limited media solutions
Media with reduced secondary substrate concentrations 
of magnesium  (Mg2+), potassium  (K+) and phosphate 
 (PO4

3−) were prepared according to Kottmeier et al. [47]. 
For each experiment, the basal medium was mixed with 
a medium lacking the respective secondary substrate to 
achieve the desired media composition.

For preparing the medium without magnesium, the 
supplemented  MgSO4·7H2O was replaced by 1.81 g/L 
 Na2SO4. The final magnesium concentrations, used dur-
ing cultivations, accounted for 1.8% (5.32 mg/L), 1.4% 
(4.14 mg/L), 0.8% (2.37 mg/L), 0.4% (1.18 mg/L) and 0% 
(0.0 mg/L) of the standard magnesium concentration of 
the modified SYN6-MES medium (100%, 295.8 mg/L).

For the medium without potassium,  KH2PO4 and 
KCl were replaced by 0.845 g/L  (NH4)H2PO4 to avoid 
phosphate limitation. 2.92 g/L NaCl was added to avoid 
changes in osmolality. The final potassium concentrations 
held for 5% (100.9 mg/L), 4% (80.7 mg/L), 3% (60.5 m/L), 
2.5% (50.4 mg/L), 1.75% (35.3 mg/L), 1.25% (25.2 mg/L), 
1% (20.2 mg/L) and 0% (0.0 mg/L) of the standard potas-
sium concentration of the SYN6-MES medium (100%, 
2017.3 mg/L).

For the medium without phosphate,  KH2PO4 was 
replaced by 0.547 g/L KCl to avoid a potassium limita-
tion. The final phosphate concentrations held for 35% 
(244.3 mg/L), 20% (139.6 mg/L), 15% (104.7 mg/L), 12.5% 
(87.2 mg/L), 10% (69.8 mg/L), 7.5% (52.3 mg/L) and 0% 
(0.0 mg/L) of the fully supplemented modified SYN6-
MES medium (100%, 697.9 mg/L).

Precultures
Precultures were conducted in 250 mL shake flasks at 
a filling volume  (VL) of 10 mL modified SYN6-MES 
medium supplemented with 10 g/L glycerol. The shak-
ing frequency (n) was chosen to be 350 rpm at a shaking 
diameter  (d0) of 50 mm. The temperature (T) was set to 
30 °C. The medium was inoculated from the cryo cultures 
at an initial optical density measured at a wavelength of 
600 nm  (OD600) of 0.1. The precultures were harvested 
after the OTR indicated no further growth (Additional 
file 1: Fig. S12). After that, the cells were centrifuged and 
thoroughly washed with either magnesium-free, potas-
sium-free, or phosphate-free basal medium solution 
before being added to the main culture media.
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Main cultures
The method for the cultivation of the main cultures was 
identical to Berg et  al. [41]. The cultivations were con-
ducted in three devices (Additional file 1: Fig. S1, dashed 
boxes) using up to five 48-round well MTPs with a trans-
parent bottom (MTP-R48-B, Beckman Coulter GmbH, 
Aachen, Germany). Identical inoculation conditions were 
ensured by preparing one inoculated stock solution per 
initial cultivation condition, as indicated by different col-
ours in Additional file  1: Fig. S1. In all devices, the cul-
tures were continuously shaken at a shaking frequency 
(n) of 1000 rpm, a shaking diameter  (d0) of 3 mm and a 
filling volume  (VL) of 0.8 mL. The cultivation temperature 
was set to 30 °C.

Online monitoring
Multi-wavelength 2D fluorescence online monitoring was 
conducted in the MTP cultivation platform described by 
Ladner et al. [12] (Additional file 1: Fig. S1B). For gener-
ating 2D spectra, the excitation wavelengths (λex) were 
scanned from 280 to 700 nm with an increment of 10 nm. 
For each excitation wavelength, an emission spectrum, 
ranging from 275 to 725 nm at a resolution of 0.44 nm, 
was recorded, using an integration time of 30 ms. After 
completing the recording of a 2D spectrum for all moni-
tored wells, an intermediate 10 min measurement break 
was included, to reduce the mechanical wearing of the 
device. During the measurement breaks, cultivation con-
ditions were maintained. Although not all wells of the 
48-well MTPs were exploited in this study, still, 2D-spec-
tra were recorded. As a result, 2D spectra were measured 
every 30 min for each well of the 48-well MTP.

For determining the OTRs of the individual cultiva-
tion conditions, the Respiration Activity MOnitor-
ing System (μRAMOS, Flitsch et  al., 2016) was used 
(Additional file  1: Fig. S1A). The oxygen partial pres-
sure  (pO2) of the gas phase in the headspace of every 
individual well was measured by oxygen-sensitive 
fluorescence spots, using the Stern-Volmer equation 
for quenching. Subsequently, the OTR was calculated 
according to Flitsch et al. [48].

Offline analytics
The MTPs (MTP-R48-OFF, Beckman Coulter, Aachen, 
Germany) used for sampling (Additional file 1: Fig. S1C) 
were incubated in a separate humidified incubator (ISF1-
X, Adolf Kühner AG, Birsfelden, Switzerland). The exact 
sampling time points accounted for a sampling inter-
val as low as 1 h. In total, 144  (Mg2+), 128  (K+) and 122 
 (PO4

3−) samples were taken from the three experiments, 
respectively. At each sampling time, the culture broth 
was manually withdrawn from one well per sampled con-
dition using a micro pipette. Due to the small shaking 

diameter, the orbital shaking was maintained during the 
sampling. Thereby, oxygen limitation was avoided [35, 
68]. The initial samples (t = 0 h) were taken from the 
prepared inoculated medium of the main cultures. The 
 OD600 of the samples was determined using a photome-
ter (GENESYS 20, Thermo Scientific, Dreieich, Germany) 
and micro cuvettes (PS, Carl Roth, Karlsruhe, Germany). 
Measurements between 0.1 and 0.3 a.u. were ensured by 
sample dilution with a 0.9% (w/v) NaCl solution. The cell 
dry weight (CDW) was calculated using a linear correla-
tion with the  OD600 (Additional file 1: Fig. S13). The pH 
value was determined using a two-point calibrated pH 
meter (HI21, HANNA instruments Inc., Woonsocket, 
US, electrode: InLab Solids, Mettler Toledo GmbH, 
Columbus, US). For pH measurements, undiluted culture 
broth samples were used. The glycerol concentration was 
determined by HPLC measurements, following the pro-
tocol of Berg et al. [41].

Spectral data processing and multivariate data analysis
The spectral data processing and MVDA were identi-
cal to the method described by Berg et  al. [41], using 
MATLAB 9.11.0.1769968 (R2021b) and the open-source 
toolbox mdatools [69]. The raw 2D spectra were ini-
tially reduced to include only emission wavelengths (λem) 
between − 10 nm and + 270 nm relative to the excitation 
wavelength. A moving average filter with a window size 
of 25 pixels (equivalent to 11.45 nm) was applied for noise 
reduction. The spectral data was further reduced to a 
resolution of 2 nm to reduce the processing time. No sig-
nificant deteriorating effect on the modeling results was 
observed by this procedure (data not shown). For exclud-
ing the scattered light in silico, the intensities between 
− 10 nm and + 13 nm relative to the excitation wave-
length were discarded. Finally, for each well, the spectral 
data of each measurement cycle was referenced to the 
respective first 2D spectrum by subtraction per wave-
length combination (I-I0).

The temporal alignment of the online spectral data 
(Additional file  1: Fig. S1B) and the offline measure-
ments (Additional file  1: Fig. S1C) was conducted by 
linear interpolation of the latter. Subsequently, for each 
time of spectral measurement, the interpolated offline 
parameter values were extracted from the interpola-
tion. For PLS model generation, the calibration data-
set consisted of spectral replicates of two cultivation 
conditions, including one high and one low secondary 
substrate supplementation. The linear interpolation of 
the calibration datasets included between six and eight 
samples with a sampling interval of at least 5 h. For vali-
dating the models, the linear interpolation included 
all available samples leading to a sampling interval as 
low as 1 h. The prediction dataset consisted of spectral 
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data of six cultivation conditions not used for calibra-
tion. Here, the linear interpolation included all avail-
able offline samples. The PLS models were generated for 
each offline parameter using the SIMPLS algorithm [70] 
before being evaluated by calculating the root-mean-
square error (RMSE).
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Additional file 1: Fig. S1. Overview of experimental monitoring and 
sampling strategy used in the cultivation experiments of this study. Three 
parallel cultivation devices (dashed boxes) were used for online (Fig. S1A 
and B, cross‑hatched wells) and offline (Fig. S1C, unhatched wells) 
monitoring of the cultures of eight different initial cultivation conditions 
(I–VIII). Grey hatched wells show wells filled with non‑inoculated, fully 
supplemented medium for control. Struck‑through wells were not used in 
the experiment. (A) For the limitation studies of magnesium and 
phosphate, a μRAMOS cultivation system as described by Flitsch et al. [48] 
was used, to monitor the metabolic activity in form of the oxygen transfer 
rate (OTR). The number of replicates varied depending on the experiment 
(Fig. S3 and S8). (B) Online 2D fluorescence data was generated using the 
online monitoring cultivation system published by Ladner et al. [12]. (C) 
Offline samples were taken in singlets from three additional microtiter 
plates (MTPs). The total number of offline samples varied depending on 
the experiment and cultivation condition. Adapted from Berg et al. [41]. 
Fig. S2. Exemplary 2D spectra recorded at different cultivation times for H. 
polymorpha RB11 pC9‑FMD  (PFMD‑GFP) cultivated at two different initial 
cultivation conditions and non‑inoculated medium. Spectra recorded for 
cultures cultivated with a  CDWt0 of 0.03 g/L and initial magnesium  (Mg2+) 
concentrations of 295.8 mg/L and 2.37 mg/L are shown in A‑D (light blue 
rectangle) and E‑H (orange rectangle), respectively. I‑L (black rectangle) 
shows spectra for non‑inoculated medium. Spectra are shown for 
cultivation times of (A, E, I) 0 h, (B, F, J) 12 h, (C, G, K) 24 h, and (D, H, L) 
30 h. Spectroscopic measurement settings: excitation wavelength 
range = 280 nm – 700 nm (step size = 10 nm), emission wavelength 
range = 278 nm – 720 nm (step size = 0.45 nm), integration time = 30 ms. 
Cultivation conditions: 48‑well microtiter plate with round well geometry, 
modified SYN6‑MES medium, liquid volume = 800 μL, shaking diam‑
eter = 3 mm, shaking frequency = 1000 rpm, temperature = 30 °C. Fig. S3. 
Time‑resolved oxygen transfer rate (OTR) signals of individual H. 
polymorpha RB11 pC9‑FMD  (PFMD‑GFP) cultivations at different initial cell 
dry weight  (CDWt0) and magnesium  (Mg2+) concentrations. Solid, dashed, 

and dotted lines describe the OTR of individual cultures used for 
calculating the average and standard deviation shown in Fig. 1A. The 
number of replicates (n) is shown in the legend. Cultivation conditions: 
48‑well microtiter plate with round geometry, modified SYN6‑MES 
medium, liquid volume = 800 μL, shaking diameter = 3 mm, shaking 
frequency = 1000 rpm, temperature = 30 °C. Fig. S4. Impact of the 
number of latent variables on the root‑mean‑square error (RMSE) for the 
2D spectra‑based PLS models of (A) glycerol, (B) cell dry weight (CDW) 
and (C) pH of the magnesium variation experiment. The PLS models are 
based on the data in Fig. 1. All PLS models were calibrated using offline 
values from the linearly interpolated, 6 h sampling interval (Fig. 1D‑F, filled 
symbols) from which the  RMSECal, sparse (black circles) was calculated. The 
 RMSECal, full (red upward triangles) was calculated from the 1.5 h sampling 
interval (Fig. 1D‑F, filled and hollow symbols). The  RMSEPred, full (green 
downward triangles) was calculated for the prediction dataset, and the 
1.5 h sampling interval was based on the offline values (Fig. 2D‑F, hollow 
symbols). Fig. S5. Time‑resolved (A-B) online monitoring signals and (C-E) 
offline sample measurements of H. polymorpha RB11 pC9‑FMD  (PFMD‑GFP) 
cultivations at different potassium  (K+) concentrations. (A) Scattered light 
intensities (λex = λem = 600 nm) and (C) GFP fluorescence intensities 
(λex = 420 nm, λem = 530 nm) were extracted from 2D spectra of 
duplicates, shown as solid and dotted lines. Hollow symbols indicate every 
10th data point. Values of (C) glycerol, (D) cell dry weight (CDW), and (E) 
pH value for cultures with an initial potassium concentration of 
100.9 mg/L (blue upward triangles) and 20.2 mg/L (pink squares), 
respectively, are based on singular offline measurements. Hollow symbols 
show offline measurements for the short sampling interval. Filled, linearly 
interpolated symbols describe a sparse, more realistic sampling interval of 
at least 5 h. The vertical dashed line after 43 h describes the last 
measurement included for PLS modeling. Cultivation conditions: 48‑well 
microtiter plate with round geometry, modified SYN6‑MES medium, liquid 
volume = 800 μL, shaking diameter = 3 mm, shaking fre‑
quency = 1000 rpm, temperature = 30 °C. Fig. S6. Impact of the number 
of latent variables on the root‑mean‑square error (RMSE) for the 2D 
spectra‑based PLS models of (A) glycerol, (B) cell dry weight (CDW) and 
(C) pH of the potassium variation experiment. The PLS models are based 
on the data in Fig. 1. All PLS models were calibrated using offline values 
from the linearly interpolated, sparse sampling interval (Fig. S5C‑E, filled 
symbols), from which the  RMSECal, sparse (black circles) was calculated. The 
 RMSECal, full (red upward triangles) was calculated based on the linear 
interpolation of all available offline samples (Fig. S5C‑E, filled and hollow 
symbols). The  RMSEPred, full (green downward triangles) was calculated for 
the prediction dataset and the respective offline values (Fig. 3D‑F, hollow 
symbols). For the  RMSEPred, full, − 100% (blue diamonds), the cultures with 
2017.3 mg/L potassium (Fig. S5, purple circles) were excluded from the 
calculation. Fig. S7. Time‑resolved (A-C) online monitoring signals and 
(D-F) offline sample measurements of H. polymorpha RB11 pC9‑FMD 
 (PFMD‑GFP) cultivations at different phosphate  (PO4

3−) concentrations. (A) 
The mean oxygen transfer rate (OTR) of culture replicates (n = 2–3, 
Additional file 1: Fig. S8) was determined by a μRAMOS device [48]. The 
low standard deviations are shown as shaded areas and indicate good 
reproducibility. Hollow symbols indicate every 15th data point. (B) 
Scattered light intensities (λex = λem = 600 nm) and (C) GFP fluorescence 
intensities (λex = 420 nm, λem = 530 nm) were extracted from 2D spectra of 
duplicates, shown as solid and dotted lines. Hollow symbols indicate every 
fifth data point. Values of (D) glycerol, (E) cell dry weight (CDW), and (F) 
pH value for cultures with an initial phosphate concentration of 
244.3 mg/L (blue upward triangles) and 52.3 mg/L (red downward 
triangles), respectively, are based on singular offline measurements. 
Hollow symbols show offline measurements for the short sampling. Filled, 
linearly interpolated symbols describe a sparse, sampling interval of at 
least 5 h. The vertical dashed line after 34.5 h describes the last measure‑
ment included for PLS modeling. Cultivation conditions: 48‑well microtiter 
plate with round geometry, modified SYN6‑MES medium, liquid 
volume = 800 μL, shaking diameter = 3 mm, shaking fre‑
quency = 1000 rpm, temperature = 30 °C. Fig. S8. Time‑resolved oxygen 
transfer rate (OTR) signals of individual H. polymorpha RB11 pC9‑FMD 
 (PFMD‑GFP) cultivations at different phosphate  (PO4

3−) concentrations. 
Solid, dashed, and dotted lines describe the OTR of individual cultures 
used for calculating the average and standard deviation, shown in Fig. 
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S7A. The number of replicates (n) is shown in the legend. Cultivation 
conditions: 48‑well microtiter plate with round geometry, modified 
SYN6‑MES medium, liquid volume = 800 μL, shaking diameter = 3 mm, 
shaking frequency = 1000 rpm, temperature = 30 °C. Fig. S9. Impact of the 
number of latent variables on the root‑mean‑square error (RMSE) for the 
2D spectra‑based PLS models of (A) glycerol, (B) cell dry weight (CDW) 
and (C) pH of the phosphate variation experiment. Resulting errors are 
shown for PLS models using the spectral dataset (A-C) including the 
scattered light and fluorescence, and (D-F) including only the fluores‑
cence. All PLS models were calibrated using offline values from the linearly 
interpolated, sparse sampling interval (Fig. S7D‑F, filled symbols), from 
which the  RMSECal, sparse (black circles) was calculated. The  RMSECal, full (red 
upward triangles) was calculated based on the linear interpolation of all 
available offline samples (Fig. S7D‑F, filled and hollow symbols). The 
 RMSEPred, full (green downward triangles) was calculated for the prediction 
dataset and the respective offline values (Fig. 4E‑H, hollow symbols). For 
the calculation of the  RMSEPred, full, − 100% (blue diamonds), the cultures with 
697.9 mg/L phosphate (Fig. 4E‑H, Fig. S7D‑F, purple circles) were excluded. 
Fig. S10. Exemplary 2D spectra of H. polymorpha RB11 pC9‑FMD 
 (PFMD‑GFP) cultures after 24 h of cultivation cultivated at initial phosphate 
 (PO4

3−) concentrations of (A, C) 697.9 mg/L and (B, D) 52.3 mg/L. Spectra 
(A, B) including scattered light and fluorescence, as well as (C, D) spectra 
including fluorescence only are shown. The scattered light exclusion was 
conducted in silico, as described in the material and methods section. 
Spectroscopic measurement settings: excitation wavelength 
range = 280 nm – 700 nm (step size = 10 nm), emission wavelength 
range = 278 nm – 720 nm (step size = 0.45 nm), integration time = 30 ms. 
Cultivation conditions: 48‑well microtiter plate with round geometry, 
modified SYN6‑MES medium, liquid volume = 800 μL, shaking 
diameter = 3 mm, shaking frequency = 1000 rpm, temperature = 30 °C. 
Fig. S11. Comparison of absolute  RMSEPred, full for glycerol, CDW and pH 
value for the PLS models generated in Berg et al. [41] and this study. Plain 
columns show the RMSE based on the complete prediction datasets 
from this study and the study by Berg et al. [41]. Backward diagonal 
hatched columns describe the RMSE based on the complete prediction 
dataset, except the culture holding the initial concentration of the 
respective second substrate (− 100%). Forward‑hatched columns 
describe the RMSE calculated for spectral online datasets including 
fluorescence (Fl) only. For the diagonal cross‑hatched columns, 
additionally, the cultures with the initial concentration of the respective 
second substrate, according to Jeude et al. [53], were excluded (− 100%). 
Exact values as well as the number of LVs used for each model are 
summarized in Additional file 2: Table S1. Fig. S12. Exemplary Oxygen 
transfer rate (OTR) measured for the preculture of Hansenula polymorpha 
RB11 pC9‑FMD  (PFMD‑GFP). Cultivation conditions: modified SYN6‑MES 
medium, 10 g/L glycerol, initial optical density = 0.1, 250 mL shake flask, 
filling volume = 10 mL, shaking frequency = 350 rpm, shaking diam‑
eter = 50 mm, T = 30 °C. Fig. S13. Linear correlation between cell dry 
weight (CDW) and optical density at 600 nm  (OD600). Cultures were 
grown in a modified SYN6‑MES medium according to the preculture 
protocol. The shake flask cultures were harvested during exponential 
growth before the dilution series were prepared with fresh medium. For 
the  OD600 measurement of the diluted series, additional dilution was 
conducted to allow measurements between 0.1 and 0.3. Adapted from 
Berg et al. [41].

Additional file 2: Table S1. Absolute and relative RMSE of calibration 
and prediction for PLS models of glycerol, CDW, and pH‑value. Results are 
shown for the experiments of this study and the previous study for glyc‑
erol variation [41]. The RMSEs for calibration and prediction are shown for 
the shortest available sampling interval  (RMSECal,full,  RMSEPred,full). The rela‑
tive RMSE, shown in brackets, is calculated based on the offline parameter 
range for the respective experiment.
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