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Abstract 

Background Early diagnosis of Pancreatic Ductal Adenocarcinoma (PDAC) is the main key to surviving cancer 
patients. Urine proteomic biomarkers which are creatinine, LYVE1, REG1B, and TFF1 present a promising non‑invasive 
and inexpensive diagnostic method of the PDAC. Recent utilization of both microfluidics technology and artificial 
intelligence techniques enables accurate detection and analysis of these biomarkers. This paper proposes a new 
deep‑learning model to identify urine biomarkers for the automated diagnosis of pancreatic cancers. The proposed 
model is composed of one‑dimensional convolutional neural networks (1D‑CNNs) and long short‑term memory 
(LSTM). It can categorize patients into healthy pancreas, benign hepatobiliary disease, and PDAC cases automatically.

Results Experiments and evaluations have been successfully done on a public dataset of 590 urine samples of three 
classes, which are 183 healthy pancreas samples, 208 benign hepatobiliary disease samples, and 199 PDAC samples. 
The results demonstrated that our proposed 1‑D CNN + LSTM model achieved the best accuracy score of 97% and 
the area under curve (AUC) of 98% versus the state‑of‑the‑art models to diagnose pancreatic cancers using urine 
biomarkers.

Conclusion A new efficient 1D CNN‑LSTM model has been successfully developed for early PDAC diagnosis using 
four proteomic urine biomarkers of creatinine, LYVE1, REG1B, and TFF1. This developed model showed superior per‑
formance on other machine learning classifiers in previous studies. The main prospect of this study is the laboratory 
realization of our proposed deep classifier on urinary biomarker panels for assisting diagnostic procedures of pancre‑
atic cancer patients.

Keywords Microfluidics, Pancreatic cancer, Urine biomarkers, Artificial intelligence, Convolutional neural networks, 
Long short‑term memory

Introduction
Pancreatic cancer (PC) is the third leading cause of death 
in the world as reported by cancer statistics in 2022 [1]. 
Pancreatic ductal adenocarcinoma (PDAC) is the most 
common type of exocrine tumor affecting the pancreas 
[2]. Although PDAC is the 12th most common cancer 
worldwide, its aggressive nature and the lack of obvious 
symptoms make it a major public health burden. The 
PDAC has the lowest 5-year overall survival rate of any 
malignancy due to late diagnosis (11%) [1]. The proce-
dure of early PDAC diagnosis is the main key to surviving 
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cancer patients. That requires a concerted effort among 
clinicians, radiologists, biologists, and computer 
scientists.

Clinical data is the initial stage in the diagnosing pro-
cess of any disease. Electronic health records (EHR) 
represent tremendous heterogeneous data. EHRs con-
tain clinical information such as diagnoses, procedures, 
information within clinical notes, and medications. 
Recent studies succeeded in identifying high-risk PDAC 
patients from national EHRs [3]. Such population-based 
studies improve awareness of PDAC risk and recom-
mend patients for more diagnostic procedures like bio-
marker testing and medical image scanning [4]. Medical 
imaging-guided procedures are fundamental techniques 
for diagnosing PDAC, including magnetic resonance 
imaging (MRI), computed tomography (CT), endo-
scopic ultrasound (EUS), and Immuno-Positron Emission 
Tomography (Immuno-PET) [5]. Despite the difficulty 
of imaging early pancreatic cancer, numerous promising 
recent studies are reported in [6]. The high cost of radi-
ological imaging makes it an unlikely choice for general 
PDAC screening. As a result, the researchers’ attention 
turns to utilizing biomarkers as a preliminary step toward 
PDAC early detection. There are rapid developments in 
genomic sequencing and their different strategies such 
as proteomics, epigenomics, and transcriptomics cre-
ate large-scale multi-omics data. The Cancer Genome 
Atlas (TCGA) project [7] was established by the National 
Cancer Institute in 2006. It provides multi-omics data 
for more than 20,000 tumors spanning 33 cancer types. 
Many recent efforts have been made to integrate omics 
science with cancer research for different cancer types 
including PDAC [8, 9]. According to these studies, 
informative biomarkers with genomics can assist pathol-
ogists to get more advanced PDAC indicators.

Body fluids are rich with informative biomarkers that 
are crucial for the early identification of PDAC [10, 11]. 
For example, cyst fluid, pancreatic juice, and bile need 
invasive procedures like surgery or endoscopy to be 
collected. Blood is also a minimally invasive, inexpen-
sive, and reproducible source of tumor biomarkers [12]. 
It is enriched with proteomic biomarkers such as car-
bohydrate antigen 19–9 (CA19-9) and transcriptomic 
biomarkers based on RNA sequencing which is called 
Circulating micro RNAs (miRNAs) [13, 14]. In addi-
tion, blood exosomes which are nano-sized, extracellu-
lar vesicles that carry various pathogenic RNAs, DNAs, 
and proteins were used to diagnose cancerous cells in the 
pancreas [15].

Urine represents a promising alternative body fluid for 
biomarker discovery. It is an ideal fluid for public diag-
nostic screening tests because patients may easily pro-
vide a significant volume of it in an entirely non-invasive 

inexpensive way [16]. Like blood, urine contains pro-
teomic biomarkers in addition to transcriptomic bio-
markers miRNAs. In 2015, Radon et  al. [17] proposed 
a three-protein biomarker panel that is able to detect 
patients with early-stage PDAC in urine samples. They 
considered TFF1, LYVE-1, and REG1A as candidate pro-
teomic biomarkers. On the micro-scale, a study reported 
the use of miRNA in urine for early detection of PDAC 
[18]. In 2020, Debernardi et al. [19] improved the exist-
ing panel by substituting REG1A with REG1B. In addi-
tion, they can differentiate between benign hepatobiliary 
disease and PDAC cases which represent a challenge in 
early-stage of PDAC because of the overlapping symp-
toms. They validate their panel using the PancRISK score 
[19]. The accurate detection and quantification of bio-
markers in liquid biopsy are the millstone for the success 
of body fluid-based diagnostics methods which can be 
achieved using micro-and nano-based technologies [20].

Rapid technical innovation in microfluidics and nano-
fluidic technologies allows the detection of high-quality 
biomarkers from liquid biopsies with high specificity, and 
sensitivity [21, 22]. Different microfluidic chips have been 
designed for different body fluids such as blood [23], 
and urine [24]. Microfluidics technologies can improve 
cancer diagnosis by analyzing various tumor biomark-
ers such as circulating tumor DNA (ctDNA), circulat-
ing tumor cells (CTC), cell-free DNA (cfDNA), cell-free 
RNAs (cfRNAs), tumor-secreted exosomes, and proteins 
[25, 26]. However, the clinical interpretation of these bio-
markers and their inter-relationships remain a challenge. 
Therefore, artificial intelligence (AI) plays an important 
role in assisting clinicians to automatically analyze the 
extracted biomarkers and detect PDAC at early stages.

Machine learning (ML) and deep learning (DL) tech-
niques have recently become the core of computer-
aided diagnosis (CAD) that can deal with different 
forms of clinical data, medical images, genomics, and 
biomarkers. Figure  1 shows a generic schematic dia-
gram of AI-based applications to categorize pancre-
atic patients into three main groups, namely healthy 
and two diseased cases of benign and PDAC, based on 
various forms of input medical data. ML models can 
learn from patient data in a supervised or unsupervised 
manner to predict the health status of the pancreas, as 
proposed in previous studies [22, 27–29]. Advanced 
DL methods can learn from complex, interrelated, and 
non-linear features in medical datasets to gain higher 
diagnostic ability. Hence, some studies employed DL 
models to detect PDAC tumors using medical imaging 
modalities, such as multi-parametric MRI [30, 31] and 
CT [32]. Convolutional neural network (CNN) is one 
of the main DL architectures for accomplishing medi-
cal diagnosis tasks of cancer tumors [33, 34]. Recurrent 
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neural networks (RNNs) are also widely used as a deep 
learning model for processing sequential data [35]. One 
of the most common types of RNNs is Long short-term 
memory (LSTM) networks, which can be integrated 
with CNNs to improve classification performance in 
many medical applications [36–38] and PC detection in 
EUS images [39].

In this article, we propose a new DL model to 
enhance diagnostic procedures of pancreatic patients 
using urine biomarkers. This study contributed the fol-
lowing advancements:

• Integrated one-dimensional (1D) CNN with LSTM 
has been proposed to aid the accurate detection of 
PDAC based on inexpensive urine biomarkers.

• A comparative evaluation of different ML and 
DL models has been done to verify the promis-
ing results of our developed 1D CNN + LSTM for 
identifying diseased pancreas cases of benign and 
PDAC.

• The developed model achieved outperformance in 
the accurate multi-class classification of pancreatic 
patients into three groups, namely healthy pancreas, 

benign, and PDAC cases versus other AI-based mod-
els in the current existing state-of-the-art studies.

The rest of this article is structured as follows. Sec-
tion "Related Works" gives a review of the related works 
including different clinical modalities with previous ML 
and DL models to identify PC cases. Section "Dataset and 
methods" describes both the tested dataset of urine bio-
markers and our developed 1D CNN + LSTM classifier 
in detail. Experiments including results evaluation and 
discussion of this study are presented in Sects. "Medical 
data"  and "1D Convolutional Neural Network", respec-
tively. At the end of the paper, the conclusion and future 
directions of this research work are given in Section 
"Long short-term memory layer".

Related Works
This section explores how AI can support early diag-
nosis of PDAC using different diagnostic methods. We 
focus on early diagnosis systems based on urine prot-
eomic biomarkers because it is the ultimate goal of this 
study. A population-based study made by Lee et al. [28] 

Fig. 1 Schematic diagram of applying artificial intelligence techniques to assist diagnosis of pancreatic cancer patients using different forms of 
medical data
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represented a predictive model for the early screening of 
high-risk patients. They accredited that their diagnostic 
model will support medical care community to know the 
risk of pancreatic cancer. Their study was built on Taiwan 
Health Insurance Database (NHIRD). They used four 
models including logistic regression (LR), deep neural 
networks DNN, ensemble learning, and voting ensemble 
to develop their predictive model. The model achieved 
accuracy ranging from 73 to 75%, and the area under 
curve (AUC) from 0.71 to 0.76.

Many studies have utilized AI techniques to assist radi-
ologists with interpreting medical images. Liang et  al. 
[30] developed a CNN model for auto-segmentation of 
pancreatic gross tumor volume (GTV) in multiparamet-
ric MRI. They employed a square window-based CNN 
architecture with three convolutional layer blocks for 
automatic segmentation of the pancreatic GTV. They 
achieved mean values and standard deviations of the 
performance metrics on the test set as, dice similarity 
coefficient (DSC) = 0.73 ± 0.09 and mean surface dis-
tance (MSD) = 1.82 ± 0.84 mm. Chen et al. [32] validated 
a new deep learning (DL)–based tool to detect pancre-
atic cancer on CT scans with reasonable sensitivity for 
tumors smaller than 2  cm. Their DL tool distinguished 
between CT malignant and control studies with 89.7% 
sensitivity, 92.8% specificity, and 0.95 AUC. In addition, 
the EUS imaging modality needs real-time decision sup-
port to differentiate between pancreatic cancer (PC) and 
non-pancreatic cancer (NPC) lesions. Tian et  al. [37] 
suggested that the YOLOv5m would generate attrac-
tive results and allow for real-time detection using EUS 
images. The suggested model resulted in 95% sensitivity, 
75% specificity, and 0.85 AUC.

On the genomic scale, Long et al. [27] integrated data 
mining and multi-omics data for the identification and 
validation of oncogenic biomarkers of pancreatic cancer. 
They constructed their prediction model based on a ran-
dom forest (RF) algorithm because it is an easy-to-com-
prehend approach. They successfully explored hidden 
biological insights from multi-omics data and suggested 
robust biomarkers for early diagnosis, prognosis, and 
management of PC. The proposed RF model reported an 
accuracy of 96%.

Using blood samples, Lee et  al. [13] identified 
(miRNA) biomarkers derived from blood serum and 
used them to build the prediction model for PC. They 
selected 39 miRNA markers using a smoothly clipped 
absolute deviation-based penalized support vector 
machine (SVM) and built a PC diagnosis model. Their 
model obtained an accuracy of 93% and an AUC of 
0.98. Hsu et al. [14] suggested a new machine-learning 
model that combines plasma-based biomarker CA19-9 
and methylation signals to build a joint multi-omics 

prediction model for PDAC. This approach achieved 
a sensitivity of 93% and a specificity of 96%. Ko et  al. 
[15] combined machine learning and nanofluidic tech-
nology to diagnose PC using exosomes. They developed 
a multichannel nanofluidic system to analyze crude 
clinical samples. Then, the linear discriminant analysis 
(LDA) algorithm is applied to these exosomes to assist 
in the final diagnosis of cancer patients. This prediction 
model resulted in an AUC of 0.81 for classifying pan-
creatic tumors versus healthy samples.

For urine specimens, Debernardi et  al. [18] identified 
diagnostic (miRNAs) for early-stage PDAC. They applied 
LR algorithms to determine the discriminatory candi-
date miRNA biomarkers. The best results of these mod-
els were a sensitivity of 83.3%, a specificity of 96.2%, and 
an AUC of 0.92. Blyuss et al. [40] developed a urine bio-
marker-based risk (PancRISK) score for stratified screen-
ing of pancreatic cancer patients. This model was built 
based on the three-protein biomarker panel in addition 
to urine creatinine and age. They compared the results of 
several ML algorithms including neural network (NN), 
random forest (RF), support vector machine (SVM), 
neuro-fuzzy (NF) system, and LR model. Then, they used 
LR to incorporate it into a PancRISK score. The PancRisk 
score can stratify between two cases (PDAC) and con-
trols (healthy patients), resulting in a specificity of 90% 
and AUC of 0.94. ALPU et al. [41] studied different regu-
larization methods based on the LR model. This compar-
ative study was conducted on the developed biomarker 
panel in [19]. It is found that the LR model with adaptive 
group lasso estimator outperformed other regularization 
techniques in terms of performance measures. The best 
classification model resulted in an accuracy score of 76% 
and an AUC of 0.77. A deep-learning-based PDAC diag-
nostic system was proposed in [42]. The proposed system 
used an enhanced CNN model to classify pancreatic dis-
eases based on a multi-categorical urine biomarker panel, 
achieving 95% accuracy and 0.97 AUC.

Dataset and methods
Medical data
The public dataset of this study was collected by Deber-
nardi et  al. [19]. It includes four featured urinary bio-
markers, which are creatinine, LYVE1, REG1B, and 
TFF1. Creatinine is a protein that indicates the func-
tionality of the kidney. YVLE1 is an acronym for lym-
phatic vessel endothelial hyaluronan receptor 1. It is a 
protein that potentially has a role in malignant tumors. 
The third biomarker REG1B is also a protein and may 
be associated with regenerating cells of the pancreas. 
Finally, trefoil factor 1 (TFF1) is a protein, which is 
potentially a prognostic biomarker associated with the 
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development of PDAC disease. This dataset contains 
a total of 590 urine samples. It is divided into three 
patient groups, namely healthy patients (183 sam-
ples), benign and PDAC cases of 208 and 199 samples, 
respectively, as illustrated in Table 1.

1D Convolutional Neural Network
CNN represents an effective tool to extract features and 
accomplish classification tasks in medicine [33]. In this 
study, it has been developed to identify pancreas dis-
eases by analyzing 1D data of urine biomarkers. The 
general architecture of 1D CNN includes convolutional 
operations, subsampling, dropout regularization, and 
SoftMax layers [43], as shown in Fig.  2. Each layer of 
the general 1D CNN architecture can be described as 
follows. Convolutional and subsampling layers provide 
feature detection of input 1D samples by performing 
different filtering operations via convolutions, kernels, 
and rectifier linear unit (ReLU). The max pooling layer 
performs a pooling process to select the most promi-
nent features from the overall feature map covered by 
the predefined filter. The function of Flatten layer is 
to reshape the multi-dimensional feature map array 
into a single 1D array, as depicted in Fig. 2. To prevent 
neural network overfitting, the dropout is applied as a 

regularization technique for self-modifying the archi-
tecture of CNN. Then, the outputs of fully connected 
network layer are processed by a SoftMax function to 
give the final output of predicted classes.

Long short‑term memory layer
The LSTM is one of the most popular architectures of 
recurrent neural networks (RNNs) to manipulate data 
sequentially [44]. The main problem of RNN’s vanishing 
gradients or long-term dependencies has been solved in the 
LSTM network, because it can ignore useless information 
in the neural network for long sequence datasets, such as 
urine biomarkers in this study. An LSTM layer has mainly 
three successive gates, i.e., forget gate, input and output 
gates [44], as shown in Fig. 3. The forget gate is responsible 
for passing or ignoring data/information flow, as defined by

where Ft is the output of forget gate, WF and bF present 
the weight matrix and bias coefficient associated with 
forget gate. Xt is the current timestamp input and ht-1 is 
the previous timestamp hidden state. σ is the sigmoid 
activation function. In Fig.  3, Ct and Ct-1 present the 
updating and current timestamp cell states, respectively, 
such that Ct-1 is multiplied by Ft as given in (2).

The input gate selects the information to be updated 
using the sigmoid function, It, then compresses the input 
sequence in the range of -1 and 1 using the hyperbolic tan-
gent (tanh) function, ˜Ct , to add the immediate state to the 
long-term impact. The mathematical expressions of the 
input gate are presented as

(1)Ft=σ(WF × [Xt , ht−1]+ bF )

(2)Ct−1×Ft=
0, Ft = 0

Ct−1, Ft = 1

Table 1 Clinical dataset characteristics of urine samples 
associated with pancreatic patients in this study

Health status Total 
Samples 
No

Gender (Sample 
No.)

The age range 
in years (median 
value)

Healthy Patients 183 Female (115) 26 – 89 (58)

Male (68) 30 – 87 (55)

Benign 208 Female (101) 26 – 82 (53)

Male (107) 29 – 82 (55)

PDAC 199 Female (83) 42 – 88 (68)

Male (116) 29 – 87 (67)

Fig. 2 Main layers of 1D convolution neural network for predicting n classes
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where WI and bI present the weight matrix and bias coef-
ficient associated with the input gate, while WC and bC 
are the weight matrix and bias coefficient associated with 
the candidate state ˜Ct.

The third gate of the LSTM block is the output gate, 
Ot, which determines the consideration of the long-
term effect and updates the outputs of both the current 
cell state, Ct, and the hidden state, ht, using the sigmoid 
and tanh functions, as depicted in Fig.  3. The related 

(3)It = σ(WI × [xt , ht−1]bI )

(4)C̃t = tanh (Wc × [Xt , ht−1]+ bc)

mathematical expressions of the output gate are given as 
follows.

where WO and bO are the weight matrix and bias coeffi-
cient associated with the output gate outcome Ot.

Automated pancreatic cancer classification
Figure  4 depicts our proposed smart urine biomark-
ers classification framework for diagnosing pancreatic 

(5)Ot=σ(WO × [Xt , ht−1]+ bO)

(6)ht = Ot × tanh (Ct)

Fig. 3 Basic structure of LSTM block

Fig. 4 Proposed smart urine biomarkers classification to diagnose pancreatic cancers using 1D CNN‑LSTM
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patients using 1D CNN-LSTM model. First, urine sam-
ples are taken from the patient. Second, urine microfluid-
ics device is used to extract four featured biomarkers, i.e., 
creatinine, LYVE1, REG1B and TFF1, as described above. 
Then, these four urine biomarkers are fed into our devel-
oped 1D CNN-LSTM classifier to predict one of three 
classes, which are healthy pancreas, benign and PDAC 
diseases, as shown in Fig.  4. Detailed structural layers 
of the 1D CNN-LSTM model are depicted in Fig.  5. It 
includes an input data layer, two 1D convolutional layers, 
one maximum pooling layer, one LSTM, one fully con-
nected dense layer, and final SoftMax output layer. The 
1D CNN-LSTM is considered a lightweight deep neural 
network with fully trainable parameters of 83,8111.

Experiments
Experimental setting
Experiments have been retrospectively conducted to 
analyze the PDAC classification performance of our 

developed 1D CNN-LSTM and other machine-learning 
models, based on the public pancreas dataset of urine 
biomarkers [19]. The implementation of all tested deep 
classifiers has been done via Anaconda Navigator V2.3 
of Python programming language with Tensorflow-
Keras packages and web-based interactive computing 
notebook (Jupyter V6.4) [45]. These experiments were 
conducted on a high-performance computing (HPC) lap-
top equipped with 8 GB NVIDIA GeForce GPU, 16 GB 
RAM, 256 GB SSD and Intel Core i7-12700H (12th Gen) 
processor.

Using cross-validation estimation [46], a confusion 
matrix is generated to evaluate the PDAC classification 
performance of developed 1D CNN-LSTM and other 
tested models in this study. As shown in Fig. 6, the con-
fusion matrix has four expected outcomes by compar-
ing ground-truth pancreas conditions with the predicted 
results of any tested classifier. These outcomes are true 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN). In addition, five evaluation metrics, 
i.e., accuracy, recall or sensitivity, precision, F1-score 
and AUC have been used to verify the performance of all 
tested classifiers. Here, other models, i.e., RF, multi-layer 
perceptron (MLP) neural network, and 1D CNN without 
LSTM have been implemented to be compared with the 
performance of our developed 1D CNN-LSTM model.

For starting the training phase of all tested models, the 
urine samples dataset, as illustrated in Table 1, was ran-
domly split 80 –20 percent, such that the testing phase 
used 20% of these urine samples, i.e., 118 of 590 samples 
for accomplishing multi-class classification procedure of 
healthy pancreas, benign and PDAC cases.

4.2 Results and evaluation
Figure  7 shows the confusion matrices for multi-class 
classification of urine biomarkers into healthy pancreas, 
benign, and PDAC cases. These results are achieved by 
our 1D CNN-LSTM and three AI-based models, which 
are MLP neural network, RF, and 1D CNN. The devel-
oped 1D CNN-LSTM model achieved the highest accu-
racy with no misclassified samples of the PDAC case, but 
only two urine samples are misclassified for both healthy 
pancreas and benign cases. In the absence of an LSTM 
layer, the classification performance of 1D CNN model is 
decreased, such that the number of misclassified samples 
is increased for the healthy pancreas (3 samples) and the 
benign case (5 samples), but no misclassified sample is 
detected for the PDAC. The MLP neural network and RF 
could not handle the classification task of urine biomark-
ers precisely, achieving the worst accuracy scores in these 
experiments.

Six quantitative metrics, named recall (sensitivity), 
precision, specificity, F1-score, AUC and accuracy, have 

Fig. 5 Developed 1D CNN‑LSTM model for pancreatic cancer 
classification
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been applied to evaluate all tested classifiers, as illus-
trated in Table 2. The developed 1D CNN-LSTM and 1D 
CNN still achieved the best accuracy scores of 97% and 
93%, respectively. They can be used to diagnose PDAC 
cases accurately. In contrast, MLP network and RF classi-
fiers achieved the worst accuracy scores of approximately 
75%. But the RF model showed better performance than 
the MLP network model to identify pancreas conditions.

Using the same urine biomarkers analysis, Table  3 
illustrates a comparative performance evaluation of our 
developed 1D CNN-LSTM with other AI-based models 
in previous studies of automated pancreatic cancer diag-
nosis. Machine learning models such as logistic regres-
sion (LR) [41] could not achieve a high accuracy score 
(76%) similar to the performance of the RF classifier in 
Table  2. Additionally, other models like support vector 
machine (SVM) and neural network (NN) showed an 
improvement in identifying PDAC cases with AUC = 0.94 
[40]. In [42], the application of the employed CNN model 
achieved 95% accuracy to identify pancreatic cancer con-
ditions. However, our developed 1D CNN-LSTM showed 
superior classification performance over these previous 
classifiers by achieving the best values of classification 
evaluation metrics and the highest accuracy score of 97%.

Discussion
Intelligent CAD systems have recently become popu-
lar in the clinical routine of patients, particularly in the 
diagnostic procedure of cancer diseases such as the 

PDAC. Featured urine biomarkers, named creatinine, 
LYVE1, REG1B, and TFF1 can be extracted from urine 
microfluidics devices. Here, these four urine biomark-
ers have been successfully analyzed using our developed 
1D CNN-LSTM classifier to identify healthy pancreas, 
benign and PDAC patients, as depicted in Fig. 4. As illus-
trated in Tables  2 and 3, the above evaluation results 
demonstrated that the developed 1D CNN-LSTM out-
performs other AI-based models in previous studies with 
the highest accuracy score of 97%.

Traditional machine learning models, e.g., LR, RF, and 
SVM showed insufficient performance to identify pan-
creatic cancer conditions accurately, as introduced pre-
viously in [40]. Therefore, supervised 1D CNN-LSTM 
classifier has been developed to perform automated 
multi-class classification of 1D urine biomarkers, iden-
tifying the health status of pancreatic patients correctly. 
As described above, the advantageous architecture of the 
LSTM block showed its capability to ignore useless infor-
mation in the neural network for long sequence datasets, 
such as urine biomarkers. Hence, the LSTM layer in our 
developed model (see Fig.  5) has a main role in signifi-
cantly improving the classification performance of 1D 
CNN from an accuracy score of 93% to 97%, as given in 
Table  2. Moreover, it showed better classification per-
formance than the previous CNN model (95% accuracy) 
[42], as illustrated in Table  3. Furthermore, the struc-
ture of the developed 1D CNN-LSTM model is simple 
and efficient to achieve targeted diagnostic procedures 

Fig. 6 Confusion matrix with evaluation metrics for analyzing the performance of tested classifiers in this study
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Fig. 7 Confusion matrices of the classified healthy pancreas, benign, and PDAC cases using all tested classifiers

Table 2 Evaluation of all tested classifiers to diagnose pancreatic cancers using urine biomarkers

a Best performance value is indicated in bold. Abbreviations are already defined in the context

Classifier Pancreas Condition Recall Precision Specificity F1‑score AUC Accuracy

MLP Network Healthy case 0.63 0.76 0.87 0.69 0.80 0.70

Benign 0.64 0.61 0.72 0.62 0.69

PDAC 0.84 0.74 0.78 0.79 0.79

Random Forest Healthy case 0.73 0.83 0.91 0.78 0.89 0.75

Benign 0.67 0.65 0.77 0.66 0.74

PDAC 0.87 0.79 0.84 0.82 0.84

1D CNN Healthy case 0.90 0.97 0.99 0.93 0.99 0.93

Benign 0.89 0.95 0.97 0.92 0.95

PDAC 1.00 0.90 0.93 0.95 0.98

1D CNN‑LSTM Healthy case 0.94 1.00 1.00 0.97 0.99 0.97a

Benign 0.95 0.95 0.97 0.95 0.96

PDAC 1.00 0.96 0.97 0.98 0.99
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for pancreatic cancers without high-cost computing 
resources, e.g., GPUs.

The lack of public medical datasets is a common prob-
lem for training supervised learning models, because the 
number of training samples affects mainly their classifi-
cation performance. Therefore, accuracy scores of CNN 
and machine learning classifiers of pancreas cancers are 
relatively limited to 97%. Consequently, developing deep 
learning models such as a generative adversarial network 
(GAN) presents a good solution to handle small medi-
cal datasets in semi-supervised or unsupervised learning 
frameworks [47, 48]. Also, meta-heuristic optimization 
techniques such as Teaching–Learning-Based Optimi-
zation (TLBO) [49, 50] can be applied to automatically 
update the design of the 1D CNN-LSTM model. Never-
theless, our developed classifier is still capable of achiev-
ing a successful and automated diagnosis of pancreas 
cancer diseases based on urine biomarkers.

Conclusion and future work
In this article, a new efficient 1D CNN-LSTM model is 
successfully developed for multi-class classification of pan-
creas cancer patients using featured urine biomarkers. The 
classification results categorize the pancreas condition into 
healthy pancreas, benign and PDAC cases. The developed 
model achieved the highest values of evaluation metrics 
including an accuracy of 97% compared to other machine-
learning and CNN-based models in the literature, as illus-
trated in Table  3. Developed CNN models with and/or 
without the LSTM layer achieved accurate identification of 
tested PDAC samples, as depicted in Fig. 7.

The main prospect of this research work is to inte-
grate our developed 1D CNN-LSTM with an actual urine 
microfluidics device for conducting online clinical trials 
on urine samples of pancreatic cancer patients. Addition-
ally, the Internet of medical things (IoMT) technology 
can be utilized in this field of study to provide a mobile-
based automatic diagnosis of patient samples via medical 
cloud services.
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