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Abstract 

Advancements in digital technology have brought modelling to the forefront in many disciplines from healthcare 
to architecture. Mathematical models, often represented using parametrised sets of ordinary differential equations, 
can be used to characterise different processes. To infer possible estimates for the unknown parameters, these models 
are usually calibrated using associated experimental data. Structural and practical identifiability analyses are a key 
component that should be assessed prior to parameter estimation. This is because identifiability analyses can provide 
insights as to whether or not a parameter can take on single, multiple, or even infinitely or countably many values 
which will ultimately have an impact on the reliability of the parameter estimates. Also, identifiability analyses can 
help to determine whether the data collected are sufficient or of good enough quality to truly estimate the param‑
eters or if more data or even reparameterization of the model is necessary to proceed with the parameter estimation 
process. Thus, such analyses also provide an important role in terms of model design (structural identifiability analy‑
sis) and the collection of experimental data (practical identifiability analysis). Despite the popularity of using data 
to estimate the values of unknown parameters, structural and practical identifiability analyses of these models are 
often overlooked. Possible reasons for non‑consideration of application of such analyses may be lack of awareness, 
accessibility, and usability issues, especially for more complicated models and methods of analysis. The aim of this 
study is to introduce and perform both structural and practical identifiability analyses in an accessible and informa‑
tive manner via application to well established and commonly accepted bioengineering models. This will help 
to improve awareness of the importance of this stage of the modelling process and provide bioengineering research‑
ers with an understanding of how to utilise the insights gained from such analyses in future model development.

Introduction
The use of mathematical models has risen considerably 
over the last decade, with many industries utilising mod-
els to represent processes that are of practical impor-
tance in today’s modern world [1–3]. In bioengineering, 
models have been developed e.g. to characterise protein 
regulation, metabolic changes in cells and pharmacoki-
netic and pharmacodynamic processes [4–7]. Represent-
ing these processes in a mathematical form has further 
advanced our knowledge and understanding of funda-
mental mechanisms and dynamics involved in these pro-
cesses across many sectors, eventually reducing reliance 
on animal testing, improving the optimisation of process 
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manufacture, and reducing in cost and time expenses 
[8–11].

Typically, first principle models in bioengineering 
often comprise sets of parameterised (nonlinear) ordi-
nary differential equations (ODEs). These equations 
are often derived through application of the fundamen-
tal law of mass balance to represent changes that occur 
over time in the highlighted states [12]. These states and 
ODEs generally have sets of parameters which need to 
be accounted for either through experimental insights or 
more commonly through “fitting” the model developed 
to available data.

The results generated by these methods may yield 
parameter estimates that provide model simulation out-
puts that are closely aligned with the data, however, they 
do not ascertain whether these estimates are the only 
estimates capable of capturing the data. An issue is that 
some unknown parameters within the given model may 
take on any value from an infinite number of possible val-
ues yet still permit good (visual) agreement between sim-
ulated model responses and the data and this decreases 
the reliability of such parameter estimates and the model 
itself.

Structural identifiability analysis (SIA) can be used 
to investigate whether parameters can take on unique, 
finite, or infinite (thus termed structurally unidentifi-
able) values for the given model outputs/observations, 
but such analysis is not commonly employed in many 
preliminary modelling processes [13–15]. SIA is used 
to determine whether a parameter can be uniquely or 
otherwise identified based on the postulated system of 
model ODEs, known input(s) and, in particular, model 
output(s) (as the number of measured outputs for the 
same ODE system can alter the identifiability of the 
model). Such analysis thus offers important support for 
experiment design as well as robust parameter estima-
tion, especially in the case where unidentifiability has 
been established. Some parameters may also have strong 
correlations with others in the model, and such depend-
ence may be determined from a SIA where only  a cer-
tain parameter combination  set can be identified rather 
than the individual parameters themselves. In this case a 
plausible model redesign would be to treat the parameter 
combination as one parameter via an appropriate model 
reparameterisation.

Despite the fundamental insights that can be gained 
from SIA and the importance of having a structur-
ally identifiable model, especially where certain model 
parameters may have important physical or practical 
significance, several models have been published in the 
literature which have been shown to be structurally uni-
dentifiable [14–16]. As structural identifiability is a pre-
requisite to experiment design and system identification/

parameter estimation, It is crucially important to per-
form SIA prior to data collection, as the results obtained 
from SIA can be used to highlight which parameters 
need to be measured as well as how many outputs need 
to be observed. Moreover, the model can be redesigned if 
the SIA results deem the model to be structurally uniden-
tifiable for the given experiments and proposed model 
structure.

Analysis as to whether unknown model parameters 
can be identified based not only on the postulated system 
model but also on the data that can be used to estimate 
these parameter values, a process known as practical 
identifiability analysis (PIA), is seemingly performed 
even less often [17]. Both forms of analysis should be 
employed as core components in the model building pro-
cess. There are multiple methods and tools that are avail-
able for both SIA and PIA [14, 17, 18]. However, these 
tools can be challenging to access, utilise and in some 
instances be restrictive, which may be a reason for their 
lack of generic usage. For SIA, the Laplace  transform 
approach, for example, is limited to linear models only 
[13, 14]. PIA approaches are present in the literature, 
however the tools that are available are limited and these 
studies typically express the fundamentals and practice 
for a specialised audience. Nevertheless, we advocate that 
both SIA and PIA should be attempted, or at the very 
least considered, every time that a model is being fitted to 
data with the aim of parameter estimation.

This study aims to provide an accessible step-by step 
process on both performing structural and practical 
identifiability analyses with application to models in bio-
engineering. Specifically, in the Methods section, both 
accessible and technical explanations of the approaches 
to performing structural (section "Structural identifiabil-
ity analysis") and practical identifiability analysis (section 
"Practical identifiability analysis") will be given. Moreo-
ver, the tools that are used are applicable to both linear 
and non-linear models, steps on how to access and uti-
lise these tools will be shown (section "Implementation 
of identifiability tools and associated codes"). The final 
Methods section (section "Models and data used for the 
analysis") will introduce three exemplar bioengineer-
ing models which will be subsequently analysed in the 
Results section.

Methods
Figure 1 summarises the important steps that should be 
performed in order to develop a model that can be used 
reliably for making parameter predictions:

Both structural and practical identifiability analyses 
are required in order to develop a predictive model with 
increased reliability.
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Structural identifiability analysis
Accessible definition
For an intuitive approach to structural identifiability, 
consider the equations below:

where a and b are unknown parameters and y(t) , the 
measured output, is always known. Parameter a in Eqn(1) 
can be identified as one unique solution because y(t) 
can be divided by 2 to identify a . Parameter a can also 
be identified in Eqn(2); however, this will result in two 
solutions; a negative value and a positive value, thus a is 
said to be locally identifiable. Lastly, since neither of the 
parameters a nor b are known, Eqn(3) is said to be struc-
turally unidentifiable. This is because an infinite number 
of possible values for a and b can give rise to the same 
response.

Technical definition
The basic form for the mathematical models to be con-
sidered is as follows:

where f  and g are vector functions of their argu-
ments, p ∈ R

p is a p-dimensional vector of parameters, 
x(t) ∈ R

n is the n-dimensional state variable vector, 
u(t) ∈ R

r is the r-dimensional input vector and y(t) ∈ R
m 

are the m-dimensional measured outputs [15].
For model (4), a parameter pi is said to be identifiable if 

the following equation holds true:

(1)y(t) = a× 2

(2)y(t) = a2 × 2

(3)y(t) = a+ b

(4)M :

ẋ(t, p) = f (x(t),u(t), p),
y(t, p) = g(x(t), p),

x0 = x(t0, p)

where p∗ is an alternative parameter vector. If Eqn(5) 
holds for any p∗i  , then pi is said to be globally identifiable. 
If Eqn(5) holds for a neighbourhood vector of p∗i  , then pi 
is said to be locally identifiable. Finally, if Eqn(5) does not 
hold true for any pi locally or globally then pi is said to be 
structurally unidentifiable. For a model to be deemed to 
be structurally identifiable, all its parameters must be at 
least locally identifiable.

Methods for performing structural identifiability analysis
There are multiple methods that can be used to perform 
SIA [14]. The two methods that will be used in this paper 
are the Taylor series approach and the Exact Arithme-
tic Rank (EAR) approach. The Taylor series approach 
is a simple concept to understand and a simple way to 
analyse the structural identifiability of parameters. The 
EAR approach has been developed into a freely available 
MATHEMATICA tool [19], which enables users to enter 
their system of ODEs, input(s), and output(s), and will 
determine if the system is at least locally identifiable. This 
tool also identifies which parameters need to be known 
(a priori) in order for the system to be identifiable [14, 
20–23].

In the Taylor series approach, a 1-dimensional obser-
vation function y(t) can be expanded as a Taylor series 
around a known time point, which in practice is usually a 
known initial condition when t = 0:

where y′ refers to the first derivative of y and n refers to 
the nth term in the Taylor series expansion. It is assumed 
that all derivatives that appear as coefficients in the Tay-
lor series of the observed outputs are unique and measur-
able and are thus known [13, 14]. Therefore, it is possible 
to investigate the solutions for the unknown parameters 

(5)y(t, p) = y
(

t, p∗
)

⇒ pi = p∗i

(6)

y(t) = y(0)+ y′(0)(t)+
y′′(0)

2!
(t)2 + · · · +

yn(0)

n!
(t)n+

Fig. 1 Brief overview of the model development process for predictive models
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within these coefficients. A single or multiple solution(s) 
(not infinite solutions) would indicate that the parameter 
is identifiable like Eqns (3-4). As the number of coef-
ficients derived from the Taylor series expansion is infi-
nite, for linear systems, there are limits which have been 
determined on the maximum number of coefficients 
that are needed in order to determine whether a model 
is at least locally identifiable [14]. For linear systems the 
maximum number of coefficients is 2n− 1 , where n is 
the number of states. The same upper bound rule can 
be applied for non-linear systems, however, this is not a 
strict upper bound limit [14]. For example, if a linear sys-
tem of ODEs comprises of two states then a third linearly 
independent coefficient would be the last coefficient that 
could be used in order to determine the structural identi-
fiability of the system.

Like the Taylor series approach, the observation y(t) 
in the EAR approach is also differentiated with respect 
to time. However, the derivatives here are based on par-
tial derivatives with respect to the states, inputs, and 
the parameters. Once computed the Jacobian matrix is 
formed of these partial derivatives and its rank is then 
assessed [24]. A Jacobian with full rank would indi-
cate that all the columns (i.e., the parameters) are lin-
early independent from each other which would suggest 
that the model is at least locally identifiable. A deficient 
matrix rank would suggest that some of the parameters 
are dependent on each other (which would make this 
model structurally unidentifiable) and would also pro-
vide information on the number of degrees of freedom 
required for the parameter set/model to be deemed at 
least locally identifiable.

To interpret this analysis in an intuitive way, consider 
Eqn(3). Parameters a and b are entirely dependent on 
each other, in other words any value that is placed for a , 
will also always change the value of b.

Practical identifiability analysis
Structural identifiability only considers the structure of 
the system of ODEs, the model inputs and, in particular, 
what the measured outputs are. It does not consider how 
the outputs are measured, in other words the associated 
data. PIA aims to assess whether the parameters can be 
at least locally identified based on the system of ODEs 
and the associated experimental data. It is worth empha-
sising that a model needs to be structurally identifiable 
for it to be practically identifiable. While there are mul-
tiple methods for performing a PIA, this study will focus 
on the profile likelihood approach.

Profile likelihood analysis: technical explanation
In the profile likelihood approach, a particular parameter 
pi is discretised using a step size (determined by many 

factors including the upper and lower boundary values of 
pi and the initial pi estimate) and the other parameters in 
the model (called nuisance parameters) are then reopti-
mised using the new values of pi to fit to the data. The 
loglikelihood ratio is used to determine whether the new 
fit to the data is significantly different or improved with 
respect to the previous fit to the data (e.g. a model with 
pi(1) compared to a model with pi(2))  [25]. A likelihood 
based 95% CI threshold is generated based on the χ2 dis-
tribution and the mode’s number of degrees of freedom. 
If the 95% CI is finite, then the parameter is practically 
identifiable. If the 95% CI is infinite, then the parameter 
is practically unidentifiable.

Profile likelihood analysis: accessible explanation
Figure  2 visualises the general steps for computing the 
profile likelihood for the parameters:

Figure  2A depicts a simple structurally identifiable 
model ( y = a(t)+ 3 ) with one parameter ( a ) as well as 
an estimated value obtained for a . Figure 2B provides an 
exemplar fitting of the model (black dashed line) to the 
observed data (blue dots). Based on the observations 
and the number of parameters, the number of degrees 
of freedom for this particular model can be computed. 
In this example, the number of degrees of freedom is 
nine as there are 10 observations and one parameter that 
can vary. Figure  2C visualises a χ2 distribution which, 
together with the number of degrees of freedom for 
y = a(t)+ 3 , can be used to obtain the 95% CI.

Figure  2D visualises a structurally identifiable param-
eter as the value of a changes (depicted by the differ-
ent coloured lines in the plot), the output response also 
changes. In parameter estimation, the data are assessed 
to evaluate how probable it is that the data can be gen-
erated based on the estimated parameter value, this sta-
tistic is known as the likelihood (usually, the goal is to 
minimise the negative log likelihood [26]). In Figure 2E, 
the different values used for a generate different loglike-
lihood values. These values are compared to each other 
using the loglikelihood ratio to determine if there is a 
significant difference between them. Figure 2F provides a 
practically identifiable profile likelihood curve. The blue 
dashed line depicts the profile likelihood where different 
values for a are compared to the previous estimates and 
generate different χ2 values (which are computed using 
the likelihood ratio - note that in some tools the y-axis is 
also referred to as the negative log likelihood as well as 
χ2 ). The red line depicts the 95% CI which the estimates 
need to cross on both sides in order for the parameter to 
be deemed as practically identifiable. If the 95% CIs are 
finite then the parameter is practically identifiable (e.g., 
a ). However, if the 95% CIs are infinite then the param-
eter is practically unidentifiable.
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Implementation of identifiability tools and associated 
codes
Both the Taylor series approach and the EAR approach 
were performed in MATHEMATICA. The PIA was con-
ducted in MATLAB using the data2dynamics toolkit [27, 
28]. All of the relevant scripts and codes used for both 
structural and practical identifiability can be found in the 
associated Github repository [29].

Models and data used for the analysis
All the models that have been used for this study have 
been published [30–32]. Data were extracted from the 
published reports using web plot digitizer, a tool that can 
be used to extract approximate data from figures [33]. 
Thus it is important to note that the PIA performed here 
is based on approximate data observations and not the 
actual data observations. The models have been rewrit-
ten in terms of notation for ease of interpreting the 
model states and parameters. All other assumptions are 
included in each of the relevant model sections.

Model 1
A two-state mRNA model comprising of reactions includ-
ing transcription, mRNA degradation, translation and pro-
tein degradation was developed to assess the mechanism of 

mRNA and protein regulation during cooler temperatures 
[30]. The system of ODEs defining the model are as follows:

where mRNA denotes mRNA activity and Protein depicts 
protein activity. k1 to k4 refer to the transcription rate, 
mRNA degradation rate, translation rate and protein deg-
radation rate, respectively. For this model, we assume that 
both model states are observed and thus measured and all 
parameters k1 to k4 are unknown. The initial conditions are 
assumed to be mRNA(0) = 2.5 and Protein(0) = 6.5 , both 
with arbitrary units (a.u.).

Model 2
A three-state bioreactor model was developed to charac-
terise cell growth in a bioreactor set-up [32]. The system of 
ODEs defining the model are given as follows:

(7)
d(mRNA)

dt
= k1 − k2 ×mRNA

(8)
d(Protein)

dt
= k3 ×mRNA− k4 × Protein

(9)
d(Glucose)

dt
= Dr × (GF − Glucose)− rglu × X

Fig. 2 Simplistic overview of practical identifiability analysis using the profile likelihood process. NLL: negative log likelihood. A Example model 
with parameter estimate. B Example model fitting to observed data. C Chi‑ squared ( χ2 ) distribution (orange) for the associated model. D Model 
simulation based on different values for a . E Different negative loglikelihood values based on the different parameter estimates. F: profile likelihood 
of a . Note that some tools will use χ2 and negative loglikelihood interchangeably for the profile likelihood plots. Each of the steps are explained 
below
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where Glucose and Lactate refer to the concentrations of 
glucose and lactate in the bioreactor respectively. X refers 
to the concentration of the cells in the bioreactor. Dr is 
the dilution rate and GF is the glucose concentration in 
the feed, both of which are provided by the modeller. 
In the published study, Dr is 0.033  hr-1 and GF  is 7mM. 
rglu and rlac refers to the consumption rate of glucose 
and production rate of lactate respectively. µmax is the 
maximum growth rate of the cells. kmglu and kilac are the 
saturation constant of glucose and inhibition constant of 
lactate respectively. The original paper utilises this model 
along with an intracellular metabolic model in order to 
perform the predictions. However, given that only the 
ODEs are given, the analysis will be based on the ODE 
system alone. The following assumptions are made about 
the model: All states are observed and all parameters: 
{ rglu , rlac , µmax , kmglu , kilac } are unknown. The initial con-
ditions for each of the state are as follows: Glucose(0) = 
1.01mM, Lactate(0) = 3.98mM and X(0) = 0.46  x106 
cells/mL.

Model 3
A two-state model was developed for erythroblast 
growth inhibition [31]. The system of ODEs defining the 
model is as follows:

Where X and I refer to concentration of the cells and 
the inhibitor concentration respectively. rg and rd refer to 
the growth rate and the inhibitor decay rate respectively. 
a and b refer to the inhibitory sensitivity and threshold 
respectively. This model has been adapted from model 3 
of the original study and assumes that only X is observed. 
While in the original model the exponent term was 
ea×(b−I) , the parameter estimates provided in the arti-
cle match with the model system presented above. The 
parameters ks and kc were replaced by a and b respec-
tively to dissociate them from being rate parameters. 
All parameters { rg , rd , a , b } are assumed to be unknown. 
The initial conditions are assumed to be X(0) = 4.45x106 
cells/mL, and I(0) =  0x106 cells/mL.

(10)
d(Lactate)

dt
= −Dr × Lactate+ rlac × X

(11)

d(X)

dt
= ((µmax ×

Glucose

kmglu +Glucose
×

kilac

kilac + (Lactate)2
)− Dr )× X

(12)
d(X)

dt
=

rg × X
(

1+ ea×(I−b)
)

(13)
d(I)

dt
=

rg × X
(

1+ ea×(I−b)
) − rd × I

To utilise the EAR tool, this system of ODEs will need 
to be simplified (in order for it to align with software 
requirements that the model is polynomial in form) 
by introducing a new state to replace the exponential 
term. This can be performed as follows:

e−a×b can be replaced by a parameter rab and ea×I can be 
replaced by a new state termed ϕ . A differential equation 
defining this new state also needs to be derived to yield 
the augmented model to have the required state space 
form, thus the new augmented system of ODEs for model 
3 is given by:

The initial condition for ϕ is 1 a.u. and this state is 
also not observed.

Results
The SIA of model 1 is described in section "Model 1", 
The SIA, the model parameter estimates and the PIA 
for model 2 is described in section "Model 2" and for 
model 3, in section "Model 3". There are no associated 
experimental data with the mRNA model thus PIA is 
only performed on models 2 and 3. For the profile like-
lihood plots the thresholds are based on the thresh-
olds  values that are displayed for each of the profile 
likelihood plots  (which are generated using the Data-
2Dynamics tool). While the Data2Dynamics results do 
provide a value for the threshold (known as “merit”), 
the value that is given is not always the same as the 
threshold that the tool automatically displays in the 
plots. For users who simply wish to utilise the plots 
generated by the Data2Dynamics tool, this is not an 
issue. However for users who wish to extract the data 
and plot in other software, then the threshold that is 
marked on the plots should be used.

Model 1
Structural identifiability results
To understand how the states can be evaluated at t = 0 , 
the first three derivatives for mRNA(t) and Protein(t) are 
described as follows:

(14)ea×(I−b)
= e−a×b

× ea×I

(15)
d(X)

dt
=

rg × X

(1+ rab × ϕ)

(16)
d(I)

dt
=

rg × X

(1+ rab × ϕ)
− rd × I

(17)
d(ϕ)

dt
= ϕ × a× (

rg × X

(1+ rab × ϕ)
− rd × I)
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Replacing t with 0 in mRNA(t) and Protein(t) changes 
these terms to the initial conditions of mRNA and Protein 
respectively and can be used to provide the Taylor series 
coefficients for the analysis.

The ascending coefficients for the derivatives of the 
observations need to be generated, thus mRNA and 
Protein can be differentiated as follows when evaluated at 
t = 0:

Recall that all these coefficients are assumed to be 
unique for these observations and known. The follow-
ing steps can then be used to identify all of the model 
parameters:

1) The parameter k2 can be identified from Eqns (25-
26) by substituting Eqn(25) into Eqn(26) which leaves k2 
as the only unknown parameter.

(18)mRNA′(t) = k1 − k2 ×mRNA(t)

(19)mRNA
′ ′

(t) = −k2 × (k1 − k2 ×mRNA(t))

(20)mRNA′′′(t) = k2
2
× (k1 − k2 ×mRNA(t))

(21)Protein′(t) = k3 ×mRNA(t)− k4 × Protein(t)

(22)Protein′′(t) = k3 × (k1 − k2 ×mRNA(t))− k4 × (k3 ×mRNA(t)− k4 × Protein(t))

(23)Protein
′′′(t) = −k2×k3×(k1 − k2 ×mRNA(t))−k4×(k3×(k1 − k2 ×mRNA(t))−k4×(k3 ×mRNA(t)− k4 × Protein(t)))

(24)mRNA(0) = 2.5

(25)mRNA′(0) = k1 − k2 × 2.5

(26)mRNA′′(0) = −k2 × (k1 − k2 × 2.5)

(27)mRNA
′ ′ ′

(0) = (k1 − k2 × 2.5)× k2
2

(28)Protein(0) = 6.5

(29)Protein′(0) = k3 × 2.5− k4 × 6.5

(30)
Protein

′′(0) = k3 × (k1 − k2 × 2.5)− k4 × (k3 × 2.5− k4 × 6.5)

(31)Protein′′′(0) = −(k1 − 2.5× k2)×k2×k3−k4×((k1−2.5×k2)×k3−(2.5× k3 − 6.5× k4)×k4

2) Since k2 is now identifiable, k1 can be identified from 
Eqn(25).

3)  k3 can be solved and replaced using Eqn(29).

4) The new solution for k3 can be used in Eqn(30) 
which leaves k4 as the only unknown parameter and thus 

k4 is identifiable.
5) With k4 , being identified k3 can now be identified 

from Eqn(33).
Since all parameters have now been identified and 

shown to have unique solutions in terms of the known 
Taylor series coefficients, the mRNA model is therefore 
structurally uniquely identifiable based on the assump-
tion that both mRNA and Protein are observed. If only 
mRNA was observed, then model 1 would be structurally 
unidentifiable. Knowledge of k3 and k4 would be needed 
to make model 1 identifiable if only mRNA was observed.

Figure 3 visualises the impact on changing the values of 
k1 and k3 on mRNA and protein activity.

Changes in k1 have an impact on both mRNA and pro-
tein activity (Figure 3, A and B). However, changes in k3 
do not change the mRNA activity (Figure 3C).

For model 1, if the only observed output is mRNA, 
then the model is structurally unidentifiable. This out-
come is visualised in Figure 3C, where if only mRNA is 
observed, modifying the parameter k3 does not impact 
mRNA activity. Therefore for those wishing to utilise 
model 1, where mRNA alone is observed, any of the val-
ues in Figure 3C can be used for k3 and the mRNA activ-
ity over time will be identical. This ultimately reduces the 

reliability and confidence in the estimated optimal value 
for the parameter k3.

While this result could feasibly be determined based 
on the ODE system of model 1, the main goal was to 
visually showcase an unidentifiable parameter compared 
to an identifiable parameter. Model 1 with only protein 
observed is still structurally identifiable. Therefore, the 
decision was made to utilise model 1 to showcase model 
simulation for an unidentifiable parameter.

(32)newmRNA′′(0) = −k2 ×mRNA′(0)

(33)k3 = 2.6× k4 + 0.4 × Protein′(0)
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Model 2
Structural identifiability results
Based on the system of ODEs and that all of the states are 
observed, applying the EAR approach, model 2 is struc-
turally (locally) identifiable (at least).

Parameter estimates
The estimates were obtained using a nonlinear least square 
solver in MATLAB. Since Dr and GF are assumed to be 
known, the values of Dr and GF are estimated to be 0.017 
 hr-1 and 0.131 mM respectively. While the original study 
does provide values for Dr and GF , during the analysis the 
use of the original values (0.033  hr-1 for Dr and 7mM for 
GF ) would often result in negative predictive values for 
glucose concentration. For demonstration purposes, the 
decision was made to re-estimate these parameters and 
subsequently assume they are known a priori . It is impor-
tant to note that this analysis is based on the ODE system 
only unlike the original paper which is based on both the 
ODE system and the intracellular metabolic model.

Figure  4 visualises the predictions vs observations 
obtained for model 2:

Figure 4A and Figure 4C show that the model predic-
tions do follow the trajectory of the observed glucose 

and cell concentrations. Figure 4B shows that the model 
predictions are not able to capture the trajectory of the 
lactate data.

The estimates along with the 95% CI are summarised 
in Table 1

Practical identifiability analysis
Case 1: rglu , rlac , µmax , kmglu , kilac are unknown The pro-
file likelihood plots for all the unknown parameters in 
model 2 is presented in Figure 5:

The parameter rglu is the only parameter in model 
2 case 1 where the 95% CI threshold is not crossed for 
lower values. In Figure 5D, the parameter rglu does cross 
the threshold at 0.228 (pmol/cell)/hr (Table 1). Based on 
this result, model 2 case 1 is practically unidentifiable.

Case 2: rglu is  known This practical identifiability out-
come is only achieved when rglu (assuming only one 
parameter can be measured) is known. rglu is assumed to 
be 0.032 (pmol/cell)/hr. Table 2 provides the new 95% CIs 
for model 2 case 2:

Note that the parameter estimates are the same as the 
estimates in Table 1.

Fig. 3 Change in mRNA (A and C) and Protein (B and D) activity due to change in k1 and k3 values. Initial values for the simulation are as follows: k1 
and k3 = 0.25, k2 and k4 = 0.5, mRNA(0) = 2.5 and Protein(0) = 6.5
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In Table 2, all of the parameters have values which cross 
the 95% CI threshold at the lower and upper bounds. Fig-
ure 6C, and Table 2 shows µmax crossing the upper 95% 
CI threshold at 0.333  hr-1, which is lower than in model 2 
case 1 (Table 1). The 95% CI for the parameter rlac is the 
same in Tables  1 and 2 (0.010 – 0.030). Based on these 
results model 2 case 2 is practically identifiable.

Model 3
Structural identifiability results
Based on the system of ODEs and that X is observed, 
applying the EAR approach, model 3 is structurally 
(locally) identifiable (at least).

Parameter estimates
Figure  6 visualises the predictions vs observations 
obtained for model 3:

The model is able to simulate the general logarithmic 
pattern experienced by the extracted cell concentration 
data, including the steady increase in cell concentration 
during the first 12 hours (Figure 6).

The estimates along with the 95% CI are summarised 
in Table 3.

Practical identifiability analysis
case 1:rg , rd , a , b are unknown The profile likelihood 
plots for all the unknown parameters in model 3 is pre-
sented in Figure 7:

The parameter a , is the only parameter in model 3 
case 1 which does not cross the 95% CI threshold at 
both sides (Figure  7). In Table  3, the parameter a does 
cross the threshold at 6.804 ((cellsx106/mL)-1). Based on 
these results, model 3 case 1 is practically unidentifiable.

case 2: b is known This practical identifiability outcome 
is only achieved if b (assuming only one parameter can be 
measured) is known. b is assumed to be 3.4  cellsx106/mL. 
Table 4 provides the new 95% CIs for model 3 case 2:

Fig. 4 Predictions vs observations for glucose (A), lactate (B) and cell concentration (C) using the estimates summarised in Table 1. Dashed lines 
represent the model simulation whereas the dots represent the extracted experimental data

Table 1 Parameter estimates and 95% CIs for model 2 case 1

Summary of parameter estimates and 95% CIs for model 2 case 1. Values are 
displayed to three decimal places

Parameters Value 95% CI Lower 
bound

95% CI 
Upper 
bound

rglu((pmol/cell)/hr) 0.032 Infinite 0.228

rlac((nmol/cell)/hr) 0.020 0.010 0.029

µmax(hr‑1) 0.078 0.056 0.368

kmglu(mM) 0.221 0.022 3.265

kilac((mM)2) 10.954 1.890 36.099



Page 10 of 13Wanika et al. Journal of Biological Engineering           (2024) 18:20 

Note that the parameter estimates are the same as 
the estimates in Table  4. All of the parameters cross 
the 95% CI threshold for both lower and higher values 
. The parameter a now has a shorter 95% confidence 
interval (Table 4) compared to model 3 case 1 (Table 3). 
Based on these results model 3 case 2 is practically 
identifiable.

Discussion
Models that are structurally and practically identifiable 
enable researchers to have increased confidence in the 
parameter estimates that are obtained during the param-
eter fitting process. An unidentifiable model can still 
obtain a close fit to the experimental data, however the 
estimates obtained from the structurally or practically 

unidentifiable parameter can take on various values with-
out changing the predicted output and thus obtaining the 
same outcome.

This guide utilises two different methods to perform 
the structural identifiability analysis. The Taylor series 
approach is a method that can be applied in any soft-
ware/tool that can handle symbolic computations (i.e., 
that can manipulate mathematical expressions). How-
ever, for more complex models, the coefficients can 
become challenging to solve [14]. Moreover, the Taylor 
series approach can become time exhaustive for complex 
models. The EAR approach allows users to simply define 
the system of ODEs, declare the observed states and 
identify which of the parameters are known. The tool will 
indicate whether or not a model is identifiable and in the 
event that the model is unidentifiable, the user can fur-
ther explore how many parameters are needed in order 
to make the model identifiable and which parameters are 
unidentifiable. The EAR approach offers a convenient way 
for modellers to understand the structural identifiability 
of their models. However, the EAR approach requires a 
license for MATHEMATICA and for complex models 
may require simplification of the original model, as in the 
case for model 3. In addition to this, in instances where 
the model may be too complex, the EAR approach may 
indicate that a model is unidentifiable when in reality, the 

Fig. 5 Profile likelihood for model 2 case 1. The Red line depicts the 95% CI threshold which is at 77.259. The Blue line depicts the estimated values 
for each of the parameters of interest. The 95% CI for each parameter can be found in Table 1

Table 2 95% confidence intervals for model 2 case 2

Summary of the 95% CI for model 2 case 2. Values are displayed to three decimal 
places

Parameters Lower bound Upper bound

rlac((nmol/cell)/hr) 0.010 0.030

µmax(hr‑1) 0.056 0.333

kmglu(hr‑1) 0.020 1.708

kilac((mM)2) 3.397 37.280
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model is identifiable. Therefore it is important to com-
pare the results obtained using multiple approaches in 
order to fully evaluate the structural identifiability of a 
model.

For models that are structurally unidentifiable, a model 
redesign, measuring more outputs, or knowledge of some 
(or in some cases all) of the unidentifiable parameters can 
be incorporated in order to make a structurally unidenti-
fiable model identifiable (Figure 1).

The results for models 2 and 3 highlight the fact that 
just because a model is structurally identifiable this does 
not mean that a model is also practically identifiable. 
Moreover, the analysis of both models 2 and 3 empha-
sise two important points. For model 2, even if a model 
is both structurally and practically identifiable (if rglu 
is known and all parameter estimates remain the same, 
which will generate the same predictions vs observa-
tions as Figure 4), this does not mean that the model is 

necessarily able to capture all of the data as evidenced 
in Figure 4B. In this instance the model was not able to 
fully capture the changes in lactate concentration. This 
would suggest that the model although structurally and 
practically identifiable, would need to be redesigned in 
some appropriate way in order to simulate the observed 
changes in lactate concentration. The analysis of model 
3 indicates that, even if a structurally identifiable model 
does produce a good fit to the data, this does not neces-
sarily mean that the model is practically identifiable as 
parameter a is practically unidentifiable for model 3 case 
1. All three processes (structural and practical identifi-
ability analyses and model fitting) are required in order 
to produce a model that is considered to provide a robust 
representation of the data.

As mentioned in the introduction section, possible 
methods to make structurally unidentifiable models 
identifiable include, where practically feasible, the pos-
sible inclusion of additional observed outputs as well 
as the potential re-design or reparameterisation of the 
ODE system. Structural identifiability analysis should 
be performed prior to experimental design. In Figure 1, 
one of the methods to combat practical unidentifi-
ability is to increase the data streams available through 
wider experimentation or the collection of outputs of 
additional state variables. An increase in sample size 
will result in a narrower 95% CI which can make infi-
nite intervals become finite. Another option which was 

Fig. 6 Predictions vs observations for cell concentration using the estimates summarised in Table 3. Dashed lines represent the model simulation 
whereas the dots represent the extracted experimental data

Table 3 Parameter estimates and 95% CIs for model 3 case 1

Summary of parameter estimates and 95% CIs for model 3 case 1. Values are 
displayed to three decimal places

Parameters Value Lower bound Upper bound

rg(hr‑1) 0.057 0.048 0.050

a((cellsx106/mL)‑1) 2.6 6.804 Infinite

b(cellsx106/mL) 3.4 3.609 3.894

rd(hr‑1) 0.005 0.011 0.015
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used for both models 2 and 3 was to assume  that one 
of the unknown parameters was known. This change 
alters the degrees of freedom which also influences 
the χ2 value. However, unlike structurally identifiabil-
ity where it is the unidentifiable parameters that need 
to be known, for practical identifiability, knowledge of 
practically identifiable parameters can also influence 
the practical identifiability of a model. This could pos-
sibly be linked to the dynamic structure of the ODE 
system and how certain parameters are related to each 
other, which can be viewed through the analysis of the 
Taylor series coefficients. It is therefore important to 
analyse the practical identifiability results based on dif-
ferent scenarios pertaining to knowledge of different 
parameters to assess which case is the optimal set up.

The main limitations with practical identifiability analy-
sis are that it is very sensitive to the data used and the pri-
mary parameter estimations. The data that were used to 
perform the PIA for both models 2 and 3 were extracted 

from the relevant studies in the literature, moreover 
one model was made to simulate multiple observations. 
Therefore, it is possible that with actual data the results 
may be different. It is also plausible that some of the esti-
mates obtained are not feasible for the system that the 
model is attempting to represent. However, this further 
drives the need that awareness of structural and practi-
cal identifiability is crucial to allow more users to freely 
access and evaluate their models. Finally, a structurally 
and practically identifiable model does not necessarily 
indicate that the identified model is the best model for 
the data prediction. Further analysis would be necessary 
to identify which model a user should ultimately choose 
to best represent the data.

Conclusions
In conclusion, models from bioengineering were ana-
lysed for their structural and practical identifiability in an 
accessible manner which will hopefully incentivise more 
users to also utilise these tools and assess their models to 
support experiment design and robust parameter estima-
tion. Further research will include analysing the practical 
identifiability of these models to identify whether optimal 
experimental conditions can be set up for model develop-
ment, robust estimation of unknown model parameters 
and output optimisation.
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