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Abstract

vector production.

Background: Dendritic cells (DCs) are antigen-presenting immune cells that interact with T cells and have been
widely studied for vaccine applications. To achieve this, DCs can be manipulated by lentiviral vectors (LVs) to
express antigens to stimulate the desired antigen-specific T cell response, which gives this approach great potential
to fight diseases such as cancers, HIV, and autoimmune diseases. Previously we showed that LVs enveloped with
an engineered Sindbis virus glycoprotein (SVGmu) could target DCs through a specific interaction with DC-SIGN, a
surface molecule predominantly expressed by DCs. We hypothesized that SVGmu interacts with DC-SIGN in a
mannose-dependent manner, and that an increase in high-mannose structures on the glycoprotein surface could
result in higher targeting efficiencies of LVs towards DCs. It is known that 1-deoxymannojirimycin (DMJ) can inhibit
mannosidase, which is an enzyme that removes high-mannose structures during the glycosylation process. Thus,
we investigated the possibility of generating LVs with enhanced capability to modify DCs by supplying DMJ during

Results: Through western blot analysis and binding tests, we were able to infer that binding of SVGmu to DC-SIGN
is directly related to amount of high-mannose structures on SVGmu. We also found that the titer for the LV
(FUGW/SVGmu) produced with DMJ against 293T.DCSIGN, a human cell line expressing the human DC-SIGN
atnibody, was over four times higher than that of vector produced without DMJ. In addition, transduction of a
human DC cell line, MUTZ-3, yielded a higher transduction efficiency for the LV produced with DMJ.

Conclusion: We conclude that LVs produced under conditions with inhibited mannosidase activity can effectively
modify cells displaying the DC-specific marker DC-SIGN. This study offers evidence to support the utilization of DMJ
in producing LVs that are enhanced carriers for the development of DC-directed vaccines.

Background

Dendritic cells (DCs) are immune cells that are able to
present antigens to T cells in a major histocompatibility
complex (MHC)-restricted manner. These antigens are
usually obtained by phagocytosis of pathogens encoun-
tered by the DCs [1]. The naive T cells are activated by
the interaction with the antigen-presenting DCs and are
then able to recognize the corresponding pathogens. To
utilize this mechanism for therapeutic applications such
as immunizations and vaccinations, DCs can be loaded
with antigens to stimulate antigen-specific CD8+ and
CD4+ T cell responses [1-4]. Another method of
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modifying DCs to present desired antigens is to geneti-
cally alter the cells by using liposomes or gene-gun, or by
viral transduction with replication-incompetent viral vec-
tors [5,6]. The benefits of these strategies are the
increased time of antigen presentation, the ability to pre-
sent both MHC I and II epitopes, and the ability to
include genes for immomodulatory molecules that may
enhance DC function [7]. Currently, adenoviral, gamma-
retrovial, and lentiviral vectors (LVs) are studied for the
viral vector delivery strategy [8-11]. LVs pose an advan-
tage in their ability to transduce non-dividing cells, which
is beneficial for in vivo immunization [12-16]. However,
these recombinant viral vectors are known to have broad
specificity and are able to transduce multiple cell types,
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which can inevitably result in genetic modification of
undesired cells and reduce vaccine efficacy [17,18].

A surface molecule present on immature DCs, Dendri-
tic Cell-specific ICAM3-grabbing Nonintegrin
(DC-SIGN), is well-displayed and a suitable target for
DC-specific transduction [18,19]. DC-SIGN is a C-type
(Ca**-dependent) lectin that is able to rapidly bind to
and endocytose antigenic materials [20]. It is a type II
transmembrane protein that is displayed as a tetramer,
and consists of a short, N-terminal cytoplasmic tail that
contains intracellular sorting motifs, a transmembrane
region, an extracellular stalk, and a C-terminal carbohy-
drate-recognition domain (CRD) [21-23]. It was reported
that the Sindbis virus (SV), a member of the alphavirus
genus and the Togaviridae family, is able to recognize
and bind to DCs through DC-SIGN [24]. However, the
SV glycoprotein (SVG) also has the ability to bind to cell-
surface heparin sulfate (HS), which is expressed by many
cell types, and therefore LVs pseudotyped with SVG have
a broad tropism [25,26]. Further studies showed that the
HS binding site of SVG can be mutated [27] so that the
resulting SVGmu glycoprotein can selectively recognize
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and bind to DC-SIGN [28]. Thus, SVGmu-pseudotyped
LVs can specifically target and recognize DCs, delivering
antigens that enable T cell activation for immunization
and vaccine purposes [28-30].

The study of DC-SIGN binding to other proteins has
shown that binding occurs in a carbohydrate-dependent
manner [20,31]; in fact, Sindbis viruses produced in
mosquito cells, which limit glycoprotein processing and
carbohydrate trimming, yielded higher transduction effi-
ciencies for DC-SIGN-bearing cells compared to viruses
produced in mammalian cells [24]. The high-mannose
structures on gpl120 have also been studied and have
been determined to be critical for recognition to DC-
SIGN [32,33]. Mannosidase is a calcium-dependent
enzyme that removes mannose from N-linked glycopro-
teins in the ER and Golgi [34]. 1-deoxymannojirimycin
(DM]J, Figure 1A) is a chemical that can inihibit
o-mannosidase I in the Golgi by binding to the top of
its C-terminal a-hairpin, which is located at the bottom
of the active site cavity [34-36]. This effectively halts the
processing of the oligosaccharide at MangyGlcNAc,
(Figure 1B) [37]. It has been reported that DC-SIGN
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Figure 1 Chemical structure of DMJ and its inhibition mechanism. (A) Comparison of the chemical and structural composition of DMJ to
that of mannose. (B) Schematic diagram of the mechanism by which DMJ inhibits class | a1,2-mannosidase in the Golgi. a1,2-mannosidase |
normally trims the a1,2-linked mannose on glycoproteins; however, DMJ inhibits a.1,2-mannosidase | activity and thus restricts the
oligosaccharide processing to high-mannose forms.
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binds to MangGlcNAc, 130-fold more tightly than it
does to mannose [31]. Thus, we hypothesized that
SVGmu also binds to DC-SIGN through high-mannose
structures, and that the addition of DM]J inhibits the
activities of a.1,2-mannosidase I, which would allow for
a greater amount of high-mannose structures on the
surface of SVGmu-pseudotyped LVs. In this study, we
test this hypothesis and show that SVGmu-bearing LVs
produced under DM]J treatment can modify cells expres-
sing the DC-specific marker DC-SIGN more efficiently.

Results and Discussion

Transient transfection of 293T cells to produce
SVGmu-pseudotyped LVs

To assess the viability of producing LVs in media con-
taining DM]J, 293T cells were transiently transfected
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with a lentiviral backbone plasmid (FUGW) encoding a
green fluorescent protein (GFP) reporter gene driven by
the human ubiqutin-C promoter [38], packaging plas-
mids, and a plasmid encoding either SVGmu or vesicu-
lar stomatitis virus glycoprotein (VSVG). VSVG has
widely been used to pseudotype LVs and the resulting
vectors have a very broad tropism [26]. Thus, we
included VSVG in our transfection to produce a control
vector that is not DC-SIGN-targeting. Analysis of the
transfected cells two days later by flow cytometry
showed comparable results between the samples with
and without DM]J added, with slightly higher values for
SVGmu-staining in the cells transfected with SVGmu
and cultured with DM]J (Figure 2). Cells transfected with
SVGmu stained positively for SVGmu and expressed
GFP, while the control cells transfected with VSVG
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Figure 2 DMJ does not reduce SVGmu production or display on vector-producing cells. 293T cells were transiently transfected by the
lentiviral backbone vector encoding the GFP gene (FUGW), packaging constructs (REV and RRE), and a plasmid encoding either SVGmu or VSVG.
SVGmu-staining and flow cytometry analysis of the cells two days post-transfection revealed that cells cultured with or without DMJ exhibited
similar levels of SVGmu and GFP, indicating that the presence of DMJ did not restrict either glycoprotein or LV production. Control cells
transfected by VSVG were similarly unaffected by DMJ and SVGmu-negative, as expected.
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were only GFP-positive. These results indicate that the
addition of DM]J to the cell culture media does not
adversely affect the transfection of 293T cells.

Verification of SVGmu and high-mannose
oligosaccharides on the vector surface

To verify the presence of SVGmu on the vector particle
surface produced in media containing DM]J, we employed
a labeling scheme to generate vectors that encapsulated
GFP-Vpr (GFP fused with the HIV accessory protein Vpr
[39]). A transient co-transfection protocol similar to
what was described above, was utilized to generate the
GFP-labeled particles, except that the lentiviral backbone
plasmid FUW, which lacks the GFP reporter gene,
replaced FUGW, and an additional plasmid encoding
GFP-Vpr was included in the co-transfection procedure
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[39]. The resulting vectors (FUW-GFP-Vpr/SVGmu +/-
DM]J or FUW-GFP-Vpr/VSVG) were loaded onto cover
slips, stained for SVGmu, and analyzed by confocal ima-
ging. The SVGmu envelope glycoprotein was confirmed
to be displayed on the FUW-GFPVpr/SVGmu vectors
produced both with and without DM] by the colocaliza-
tion of the GFP and SVGmu signals (Figure 3). As a con-
trol, FUW-GFPVpr/VSVG vector particles were also
analyzed. As expected, while these particles were GFP-
positive, they did not stain for SVGmu.

Next, the SVGmu-enveloped vector (FUGW/SVGmu)
produced either with or without DMJ was concentrated
by ultracentrifugation and then digested by EndoH, an
enzyme that selectively breaks apart high-mannose struc-
tures by cleaving the chitobiose core from N-linked
glycoproteins [20]. A western blot analysis of the EndoH-
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Figure 3 SVGmu is incorporated onto the vector surface for LVs produced with or without DMJ. Fresh viruses were produced with the
addition of an additional plasmid, GFP-Vpr to fluorescently label the vector core. Vectors produced with or without DMJ were then stained for
SVGmu and analyzed by confocal microscopy. Visualization of the vector particles showed that SVGmu was efficiently incorporated in both types
of vectors. VSVG-pseudotyped vectors were included as a control.
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treated vector particles confirmed the presence of high-
mannose structures for the LVs produced with DM] by
yielding a lower molecular weight species (Figure 4). In
contrast, the vector produced without DMJ did not give
as low of a molecular weight species when digested by
EndoH, which is evidence of less high-mannose struc-
tures present on the vector surface. We believe that this
supports our hypothesis that the untreated vector con-
tains mostly complex sugars on the envelope glycopro-
tein, along with some hybrid sugars (both mannose and
complex sugars) and/or high-mannose sugars.

Evaluation of cell-vector binding to DC-SIGN
Two experiments were performed to investigate whether
SVGmu does in fact recognize and bind to human DC-
SIGN and whether binding of SVGmu-bearing LVs
(FUGW/SVGmu) to 293T.DCSIGN, a stable 293T cell
line expressing human DCSIGN, is enhanced by the
addition of DM] to vector-producing cells. In the first
experiment, 293T.DCSIGN cells were fixed with 4% par-
aformaldehyde followed by incubation with fresh super-
natant containing FUGW/SVGmu. The cell-vector
complexes were then stained for SVGmu and analyzed
by flow cytometry. As expected, the vector produced
with DMJ bound more readily to the cells, as shown by
the higher percentage of SVGmu staining (Figure 5A).
Next, a radioactive-labeling assay was used to test the
cell-vector binding responses for LVs produced with and
without DMJ, with an additional comparison to control
293T cells, which lacked DC-SIGN expression. 293T and
293T.DCSIGN cells were seeded onto 96-well plates over-
night. The cells were then washed by PBS and incubated
with concentrated, **S-labeled LVs for one hour. A second
wash with PBS removed unbound vectors and the cells
were lysed before they were pipetted into scintillation vials
for analysis. A mannose inhibition assay was also employed
to test the dependency of vector binding on the mannose-

Page 5 of 11

rich structures of the envelope glycoprotein. Mannose was
incubated with the cells prior to the addition of LVs to
block the binding sites that are mannose-linked. A much
higher amount of radioactivity was detected in FUGW/
SVGmu(DMJ+) incubated with 293T.DCSIGN as com-
pared to FUGW/SVGmu(DM]J-) (Figure 5B). In contrast,
DM]J did not greatly alter the binding ability of FUGW/
SVGmu to 293T cells; vectors produced with and without
DM] resulted in a low incidence of binding. Although the
addition of mannose lowered the amount of cell-vector
binding measured with both types of LVs (DMJ+ and
DMJ-) and both types of cells (293T.DCSIGN and 293T), it
had the most significant effect on the binding of FUGW/
SVGmu(DMJ+) to the 293T.DCSIGN cells. This data sug-
gests that the enhanced ability of the LV to bind to DC-
SIGN we observed was the result of its greater availability
of high-mannose structures, and that this interaction can
be blocked by competitive inhibition with mannose.

Transduction of cells with LVs produced with DMJ

LVs produced with DMJ were used to transduce 293T
and 293T.DCSIGN cells to test the effect of the
improved binding on cell transduction. Fresh vector
supernatants were added to cells of each type, followed
by spin-infection. The cells were then analyzed for GFP
expression by flow cytometry after three days of incuba-
tion. A p24 ELISA assay was also performed to ensure
that the concentrations of the different viruses were
comparable. FUGW/SVGmu(DM]J+) transduced 293T.
DCSIGN cells with the greatest efficiency (25.34%) -
more than three-folds higher than the FUGW/SVGmu
(DMJ-) vector (7.45%) (Figure 6A). Both types of LVs
had a similar amount of transduction for the control
293T cells. These results validate our expectation that
more highly infective targeting vectors can be produced
with the addition of DMJ in the cell culture media dur-
ing vector production.

FUGW/SVGmu FUGW/SVGmu
(+) DMJ (-) DMJ
EndoH — + = +
150 kDa —>
100 kDa —>
2

Figure 4 LVs produced in DMJ contain more high-mannose structures. Vectors were produced with or without DMJ, concentrated, and
digested by EndoH, an enzyme that cleaves high-mannose structures. A western blot analysis of the undigested and digested vectors showed
that the vectors produced in DMJ had a lower molecular weight after EndoH digestion compared to that of the vectors produced without DMJ.
These results infer that the vector produced with DMJ had more high-mannose structures than the vector produced without DMJ.
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Figure 5 LVs produced in DMJ bind more readily to human DCSIGN than vectors produced without DMJ. (A) Vectors produced with or
without DMJ were incubated with fixed 293T.DCSIGN cells, a cell line that stably displays human DCSIGN. Flow cytometric analysis of SVGmu-
stained cells revealed that the vectors produced in DMJ bound to the DCSIGN-expressing cells over 6 times more readily than the vectors
produced without DMJ. (B) Vectors were labeled with [355]-Trans and incubated with either 293T or 293T.DCSIGN cells. A mannose inhibition
assay was also included to determine the dependency of vector-receptor binding on the mannose-rich structures on the vector. Radioactivity
analysis revealed that the vector produced with DMJ bound much more readily to the 293T.DCSIGN cells than to the 293T cells, while the
addition of mannose greatly reduced cell-vector binding. Vectors produced without DMJ did not exhibit as much of a difference between
binding to the 293T.DCSIGN cells and the 293T cells, while the presence of mannose reduced vector levels in both of the cell lines.




Tai et al. Journal of Biological Engineering 2011, 5:1
http://www.jbioleng.org/content/5/1/1

Page 7 of 11

Counts

400

200

W

0.25

0.20

0.15

0.10

0.05

Transduction titer (x10% TU/ml)

A 400 A

300 -

FUGW/SVGmuU (-)DMJ

FUGW/SVGmu (+)DMJ

HH

- 20

-15

- 10

Figure 6 LVs produced with DMJ transduced DCSIGN-expressing cells much more efficiently than LVs produced without DMJ. (A) LVs
were produced either with or without DMJ and spin-infected with 293T and 293T.DCSIGN cells. Although FUGW/SVGmu(DMJ-) preferentially
transduced 293T.DCSIGN cells, FUGW/SVGmu(DMJ+) was over three-fold more efficient in transducing 293T.DCSIGN cells while maintaining
similar levels of background transduction to 293T cells. (B) LVs produced with DMJ yielded higher vector titers for DCSIGN-expressing cells
compared with LVs produced without DMJ. Vector titers for both FUGW/SVGmu +/- DMJ were analyzed for 293T.DCSIGN and 293T cells. On
293T.DCSIGN cells, FUGW/SVGmu(DMJ+) yielded titers over three-folds higher than those of FUGW/SVGmu(DMJ-), while titers for 293T cells for

FUGW/SVGmu
() DMJ
FUGW/SVGmu
(+) DMJ

|
|
|

293T.DCSIGN

FUGW/SVGmu
(-) DMJ

FUGW/SVGmu
(+) DMJ

FUGW/VSVG
() DMJ

293T

both vectors were similarly low. FUGW/VSVG +/- DMJ was included as a control.

FUGW/VSVG
(+) DMJ

293T.DCSIGN

ly 300 f,k
M 745 | 2534
300 | J ! (I \ | —
‘ ‘.‘ 200 I 5
[ | 293T.DCSIGN
2004 | | J |
| H
| 100 ) )
100 I‘ | | '.n*
L ’ Fi
‘-’ | f I 'l,-\‘u
i : '_m\».\‘ art s i ! - J‘“"""‘MWWJHW_ ‘\\"'*m
1 10! 102 1 1 1! s 1c°
FUGW/SVGmu (-)DMJ FUGW/SVGmu (+)DMJ
1 N,
Ht“ 432 401l 409
 — N
n |
| a0 |
| [ 293T
1 ] | [ ]
[ 200
(. f |
8 f t‘ ‘I ‘I
[ o I
) \ { \
4 I“\‘-« A - T T 1] d '"\“ et *
1P 10! 100 10 1 1 1 10°
GFP
P <0.0001 P <0.0001 )
|I!
- 25

(lw/nL s01x) 4oy uononpsues |




Tai et al. Journal of Biological Engineering 2011, 5:1
http://www. jbioleng.org/content/5/1/1

Vector titers were then calculated for FUGW/SVGmu
+/- DMJ against 293T and 293T.DCSIGN cells. FUGW/
VSVG +/- DM]J were also included as controls. Tripli-
cate experiments were performed, where cells were
spin-infected with various fresh vector supernatants that
had been serially diluted. Three days later, the cells were
washed and analyzed for GFP expression by flow cyto-
metry. As expected, FUGW/SVGmu(DM]+) yielded a
higher transduction titer with 293T.DCSIGN cells, with
an average value of 0.26 x 10° TU/ml, as compared to
FUGW/SVGmu(DM]J-), which had an average transduc-
tion titer of 0.08 x 10° TU/ml (Figure 6B). FUGW/
SVGmu +/- DM] both transduced 293T cells similarly
with titers of ~0.04 x 10° TU/ml. As an additional con-
trol, 293T.DCSIGN cells were also tranduced by
FUGW/VSVG +/- DMJ and titers of 22.60 x 10° TU/ml
and 24.60 x 10° TU/ml, respectively, were obtained.
Thus, our titer measurement confirms that FUGW/
SVGmu(DM]J+) transduced 293T.DCSIGN cells three
times more efficiently than FUGW/SVGmu(DM]-) did,
and that both FUGW/SVGmu +/- DM] transduced
293T cells at an equally low rate. The addition of DM]
to the production of the FUGW/VSVG vector did not
significantly alter the vector titer against 293T.DCSIGN.

One group demonstrated that LVs pseudotyped with a
similarly modified Sindbis virus envelope glycoprotein
produced without DM] treatment did not bind to DC-
SIGN and target DC-SIGN-positive cells [40]. The
mutations used in their envelope protein were identical
except for the addition of a ZZ domain versus the HA
tag employed in our system. However, previous studies
in our laboratory have shown that SVGmu binds with
DC-SIGN and targets transduction to DC-SIGN-positive
cells [28]. Also, compared with our data for wild-type
Sindbis envelope-bearing LVs, their pseudotyped vectors
are less infectious (Virus-receptor mediated transduction
of dendritic cells by lentiviruses enveloped with glyco-
proteins derived from Semliki Forest virus and Ross
River virus, submitted). Perhaps these differences in
infectious vector production are indicative of an abun-
dance of non-infectious particles that conceal interac-
tions between the glycoprotein and DC-SIGN. Other
differences, such as our use of a clonally-expanded DC-
SIGN-expressing cell line and other experimental set-
tings, may further contribute to the reported inability to
observe increased transduction efficiencies for DC-SIGN
bearing cell lines with SVGmu envelope-bearing LVs
produced without DMJ.

Transduction of a DC cell line with vectors produced with
DMJ

To test the transduction efficiency of vectors produced
with and without DMJ on a closer model of dendritic
cells, we utilized a DC cell line (MUTZ-3 cells) that had
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been previously shown to closely mirror the behavior of
human dendritic cells and are capable of being differen-
tiated to express human DC-SIGN [41,42]. MUTZ-3
cells were cultured and differentiated for 7 days to
express DC-SIGN (Figure 7A) before they were trans-
duced by concentrated FUGW/SVGmu vectors pro-
duced with or without DM]J. Consistent with the results
from 293T.DCSIGN transduction, the targeting vector
produced with DM]J transduced the MUTZ-3 cells more
efficiently (87.4%) than the vector produced without
DM]J (62.8%) (Figure 7B). Thus, the targeting vector pro-
duced with DM]J, which contained more high-mannose
structures, was able to transduce both the 293T.
DCSIGN cell line and a human DC cell line more effi-
ciently than the vector produced without DM].

Conclusions

DC-based vaccines have great potential as a new means
to fight challenging diseases, such as cancers, HIV, and
autoimmune diseases. Optimization of the efficiency of
the viral vectors used to modify DCs could greatly
strengthen this approach and make it an even more
powerful tool for developing novel treatment modalities
against various diseases. Our study aimed to examine
the effects of DM]J, which indirectly increases the
amount of high-mannose structures present on glyco-
proteins through the inhibition of class I o.1,2-mannosi-
dase activity in vector-producing cells, on the efficiency
of SVGmu-bearing LV transduction of DC-SIGN-
expressing cells.

We were able to conclude that the FUGW/SVGmu
vector made in the presence of DM] did in fact have
increased high-mannose structures over those made
without DM] present. Our results also suggested that
binding of SVGmu to DC-SIGN is directly related to
amount of high-mannose structures on SVGmu, and
that these interactions can be blocked by competitive
inhibition. Furthermore, we found that production of
the targeting vector in DM] resulted in a three-fold
increase in transduction efficiency in target cells com-
pared to vectored produced without DM]. Lastly, the
targeting vector produced in the presence of DM] was
able to transduce MUTZ-3 cells, a cell line that has
been shown to closely mimic the behavior of human
peripheral blood mononuclear cells (PBMCs) and can be
differentiated to cells displaying DC-SIGN, more effi-
ciently than the vector produced without DMJ, which
strengthens our belief that an increase in high-mannose
structures on the targeting virus surface would result in
higher transduction efficiency of human DCs.

Further investigation into the vector entry mechanism
of SVGmu-pseudotyped LVs is currently being con-
ducted using confocal microscopy with the aid of drug
treatments. Greater understanding of the pathway of
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Figure 7 LVs produced with DMJ can transduce a DC cell line more efficiently than LVs produced without DMJ. A human DC cell line
(MUTZ-3) was employed to more accurately model human DCs, as a target for LVs produced with and without DMJ. (A) MUTZ-3 cells were
differentiated for 7 days and stained for DC-SIGN expression. (B) The MUTZ-3 cells were transduced by LVs produced with or without DMJ.
FUGW/SVGmu(DMJ4) transduced the MUTZ-3 cells about 25% more efficiently than FUGW/SVGmu(DMJ-). FUGW/VSVG was included as a positive
control.

viral uptake and core release into the cytosol will facili-
tate the design of more effective and efficient engineered
gene delivery vehicles. Additionally, siRNA can be
applied to silence mannosidase in vector-producing cells
to eliminate the need for DM]J in large-scale productions
of optimized high-mannose-containing engineered LVs.

Methods

Production of lentiviral vectors

293T cells were transiently transfected with a standard
calcium phosphate precipitation protocol. 293T cells
were seeded onto 6-cm tissue culture dishes and trans-
fected with 5 pg of the lentiviral transfer vector plasmid
(FUGW or FUW), 2.5 pg of the envelope plasmid
(SVGmu or VSVG@G), and packaging plasmids (pMDLg/
pRRE and pRSV-Rev). D10 media (Dulbecco’s modified
Eagle’s medium (Mediatech Inc., Manassas, VA) with

10% fetal bovine serum (Sigma, St. Louis, MO), 2 mM
L-glutamine (Hyclone, Logan, UT), 100 U/ml penicillin,
and 100 pg/ml streptomycin) with and without DM]J
was replaced 4 h later. After 48 h post-transfection, the
vector supernatants were harvested and filtered through
a 0.45-um filter (Corning, Acton, MA). To concentrate
the vector, the supernatants were ultracentrifugated
(Optima L-80 K preparative ultracentrifuge, Beckman
Coulter, Brea, CA) after filtration at 50,000 x g for 90
min. The viral pellets were resuspended in 100 pl of
cold PBS.

Confocal imaging of lentiviral vectors

LVs were produced with the addition of 2.5 ug of a plas-
mid encoding GFP-Vpr. Vector supernatant was placed
on polylysine-coated coverslips in 6-well culture dishes
and centrifuged at 3,700 x g at 4°C for 2 h with a Sorvall
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Legend RT centrifuge (DJB Labcare, Buckinghamshire,
England). The coverslips were then washed twice with
cold PBS and immunostained with anti-HA-biotin anti-
body (Miltenyi Biotec, Bergisch Gladbach, Germany) and
Cyb5-streptavidin (Invitrogen, Carlsbad, CA). The samples
were fluorescently imaged by a Zeiss LSM 510 laser scan-
ning confocal microscope with filter sets for fluorescein
and Cy5 and a plan-apochromat oil immersion objective
(63x/1.4).

Vector digestion by EndoH and western blot

7 ul of concentrated virus was combined with 2 pl of
lysis buffer and incubated at 37°C for 30 min. Next, the
glycoprotein was denatured by adding 1 pl of 10x Gly-
coprotein Denaturing Buffer to the mixture and heating
the reaction to 100°C for 10 min. The protein was then
digested by EndoH by adding 2 pl of 10 x G5 Reaction
Buffer, 5 pl of EndoH (NEB, Ipswich, MA), and 3 pl of
H,O. This reaction was incubated at 37°C for 1 h. Pro-
tein gels were run and then western blots were per-
formed to transfer the proteins onto membranes. The
membranes were then blocked by 5% milk with TBST
at 4°C for 1 h. The membranes were washed with TBST
and then stained for anti-HA-biotin antibody for 1 h.
They were then washed again, stained for streptavidin-
HRP (R&D Systems, Minneapolis, MN) for 1 hr, and
washed. To develop the western blot, TMB solution was
spread onto the surface of the membrane and left for
10 min at room temperature. The membrane was then
imaged.

Radioactive labeling and mannose inhibition of lentiviral
vectors

293T cells were transfected by vector plasmids as
described earlier, without the addition of DMJ. 20 h
post-transfection, the media was replaced with methio-
nine-free D10 with or without DM]J. After 4 h, 50 pl of
[35S]-Trans (MP Biochemicals, Solon, OH) was added
to 15-cm tissue culture dishes and incubated at 37°C.
48 h post-tranfection, viral supernatants were harvested,
filtered, and concentrated. For the mannose inhibition
assay, 10 mM of D-mannose was added to the 293T.
hDCSIGN cells prior to the cell-virus binding tests.

Vector transduction of cells

293T or 293T.DCSIGN cells were seeded into a 24-well
culture dish at 0.2 x 10° cells per well and spin-infected
with 1 ml of viral supernatant per well at 2,500 rpm and
25°C for 90 min using a Sorvell Legend centrifuge. The
cell supernatants were then replaced with fresh D10
media and incubated at 37°C for 3 days with 5% CO,.
FACS analysis was used to determine the percentage of
GFP+ cells present. To determine transduction titers,
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the dilution ranges that showed a linear response were
used.

Transduction of a human DC cell line

MUTZ-3 cells (Deutsche Sammlung von Mikroorganis-
men und Zellkulturen, Braunschweig, Germany) were
cultured in 24-well tissue culture plates in a MEM
media (BioWhittaker, Walkersville, MD) with 20% FBS
(Sigma-Aldrich, St. Louis, MO) and 40 ng/mL GM-CSF
(PeproTech, Rocky Hill, NJ). To differentiate the cells to
express human DC-SIGN, MUTZ-3 cells were cultured
in the presence of IL-4 and GM-CSF (100 ng/mL of
each; PeproTech) for 7 days. FACS analysis of cells
stained with anti-human DCSIGN-PE (BioLegend, San
Diego, CA) confirmed the presence of the human DC-
SIGN marker. The cells (1 x 10°) were spin-infected
with concentrated virus and the medium was replaced
with fresh medium containing IL-4 and GM-CSF. The
cells were analyzed by flow cytometry for GFP expres-
sion 3 days post-tranduction.
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