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Abstract

Background: Gene delivery approaches serve as a platform to modify gene expression of a cell population with
applications including functional genomics, tissue engineering, and gene therapy. The delivery of exogenous
genetic material via nonviral vectors has proven to be less toxic and to cause less of an immune response in
comparison to viral vectors, but with decreased efficiency of gene transfer. Attempts have been made to improve
nonviral gene transfer efficiency by modifying physicochemical properties of gene delivery vectors as well as
developing new delivery techniques. In order to further improve and understand nonviral gene delivery, our
approach focuses on the cell-material interface, since materials are known to modulate cell behavior, potentially
rendering cells more responsive to nonviral gene transfer. In this study, self-assembled monolayers of alkanethiols
on gold were employed as model biomaterial interfaces with varying surface chemistries. NIH/3T3 mouse
fibroblasts were seeded on the modified surfaces and transfected using either lipid- or polymer- based complexing
agents.

Results: Transfection was increased in cells on charged hydrophilic surfaces presenting carboxylic acid terminal
functional groups, while cells on uncharged hydrophobic surfaces presenting methyl terminations demonstrated
reduced transfection for both complexing agents. Surface—induced cellular characteristics that were hypothesized
to affect nonviral gene transfer were subsequently investigated. Cells on charged hydrophilic surfaces presented
higher cell densities, more cell spreading, more cells with ellipsoid morphologies, and increased quantities of focal
adhesions and cytoskeleton features within cells, in contrast to cell on uncharged hydrophobic surfaces, and these
cell behaviors were subsequently correlated to transfection characteristics.

Conclusions: Extracellular influences on nonviral gene delivery were investigated by evaluating the upregulation
and downregulation of transgene expression as a function of the cell behaviors induced by changes in the cells’
microenvronments. This study demonstrates that simple surface modifications can lead to changes in the efficiency
of nonviral gene delivery. In addition, statistically significant differences in various surface-induced cell characteristics
were statistically correlated to transfection trends in fibroblasts using both lipid and polymer mediated DNA
delivery approaches. The correlations between the evaluated complexing agents and cell behaviors (cell density,
spreading, shape, cytoskeleton, focal adhesions, and viability) suggest that polymer-mediated transfection is
correlated to cell morphological traits while lipid-mediated transfection correlates to proliferative characteristics.
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Background

Gene delivery approaches provide a mechanism to dir-
ectly alter gene expression within a cell population.
However, challenges with current delivery systems have
limited the use of gene delivery for therapeutic, diagnos-
tic, regenerative medicine, and tissue engineering appli-
cations. Nonviral vectors typically include cationic lipid
or polymer-based systems capable of electrostatically
complexing with negatively charged nucleic acids [1-3].
In contrast to viral-based gene delivery systems, nonviral
vectors are more suitable for therapy given their lower
toxicity and immune response, but are currently too in-
efficient to be considered relevant therapeutics [3-7].
This inefficiency is attributed to a number of extracellu-
lar and intracellular barriers that limit nonviral gene
delivery. Extracellularly, mass transport limitations, vec-
tor cytotoxicity, complex degradation, and aggregation
limit the ability of nonviral gene complexes to reach
cells and be internalized [8]. Within the cell, intracellu-
lar processes such as endosomal escape, dissociation of
the plasmid DNA from the chemical complexation
vector, and nuclear entry of plasmid DNA limit transfec-
tion [8-10].

In order to overcome one or several of the barriers to
nonviral transfection to improve gene transfer efficiency,
most previous work has focused on physicochemical
modifications of the complexing agent [11-14]. Other
work has moved beyond the scope of physicochemical
vector modifications and placed a focus on the extracel-
lular microenvironment and its role in nonviral gene
transfer [15-17], demonstrating that extracellular charac-
teristics such as substrate stiffness, the presence of extra-
cellular matrix (ECM) proteins, and RGD cell adhesion
ligand density modulate nonviral gene transfer [18,19].
Furthermore, recent work has shown that ECM proteins
immobilized to surfaces are capable of influencing the
efficiency of nonviral gene delivery by modulating the
cell cytoskeleton, endocytotic processes, and intracellular
transport mechanisms [15,20].

However, most transfection studies have not addressed
the role of cell-biomaterial interactions, in particular the
effect of biomaterial surface properties that dictate cell
behaviors that, in turn, could affect DNA transfer. Previ-
ous work has demonstrated that biomaterial surface
characteristics such as surface chemistry (hydrophobi-
city, energy, end-functionalization), topography, and
adsorbed protein density and conformation influence cell
behaviors such as attachment, morphology, migration,
proliferation, signaling, and differentiation [16,21-26].
Furthermore, while some previous studies have reported
on the influence of cell-surface interactions on such cell
behaviors, they have not determined statistical correlations
between material properties and various cellular behaviors.
Therefore, the objective of the present study was to
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examine the influence of cell-biomaterial interactions
on nonviral transfection and, in particular, to link
surface chemistry-induced cell morphological charac-
teristics to gene transfer. In this study, statistical
correlations were employed to determine significant
correlations between cell-surface interactions and non-
viral transfection characteristics. Self-assembled mono-
layers (SAMs) of alkanethiols on gold were used to
provide surfaces with highly defined chemistries. SAMs
provide smooth, well-defined surfaces with a high-
degree of molecular order and packing [27,28]. SAMs
have been shown to modulate cell-ECM interactions,
which resulted in changes in cell density and spreading
[29] and have been used to modulate cell-biomaterial
interactions as well as to optimize the delivery of bio-
macromolecules [17,30-32].

Understanding the relationship between material sur-
face properties and cellular response to gene delivery is
essential in designing optimal material surfaces that can
promote transfection through priming cells for transfec-
tion, without any alterations to delivery systems. The de-
sign of biomaterials with the ability to elicit specific cell
transfection profiles is essential to improving both
in vitro and in vivo applications, ranging from the devel-
opment of substrates for in vitro culture studies, bior-
eactors, biotechnological assays, or functional genomics
arrays, to the development of biomaterials for tissue en-
gineering scaffolds that promote gene transfer.

Results

Surface modification

Substrate modification with SAMs was confirmed by
measuring contact angles of water droplets in air on the
SAM surfaces. The measured surface energy of -CHj
modified SAMs indicates the formation of hydrophobic
surfaces (average contact angle of 95.3° +/- 1.4), while
-COO™ SAM surfaces were hydrophilic (average contact
angle of 7.7° +/- 1.0), as expected. Tissue culture poly-
styrene (PS), which contains high densities of carboxyl
and hydroxyl functional groups exhibits a contact angle
of 49° +/- 5.3 and served as the control for all studies.

Transfection

To examine the influence of surface chemistries described
above on nonviral gene delivery, NIH/3T3 cells were
seeded on SAM modified surfaces, nonviral DNA com-
plexes were delivered 18 h later, and transfection pro-
files were acquired 48 h following complex delivery.
Transfection was assayed through a combination of
luciferase and Pierce bicinchoninic acid (BCA) assays,
and transfection profiles were acquired by dividing the
relative light units (RLU) of luciferase luminescence by
the total mass of protein for each sample, which nor-
malizes the degree of luciferase expression across the
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entire cell population for a sample. For transfection
with Lipofectamine 2000, cells that adhered to charged,
hydrophilic -COO™-terminated SAMs, were found to
have a 2.7-fold increase of transgene expression in
comparison to cells on uncharged, hydrophobic -CHj3-
terminated SAMs (Figure 1A, p <0.01). Cells on -COO"-
terminated surfaces also exhibited a 2.0-fold statistically
significant (p <0.05) enhancement of transgene expres-
sion relative to the PS control, whereas transgene ex-
pression of cells on -CHj;-terminated SAMs was not
significantly different from the PS control. Therefore, sta-
tistically significant increases in transfection efficiency
were observed for cells seeded on —COO™ surfaces com-
pared to polystyrene control surfaces. When PEI com-
plexes were used to facilitate nonviral gene delivery, cells
seeded on -COO-terminated SAMs exhibited a 1.7-fold
increase of transgene expression relative to -CHjz-
terminated SAMs (Figure 1B). Cells seeded on PS sur-
faces demonstrated the highest transfection levels in
terms of the mean values of RLU/mg of protein for PEI
transfection (Figure 1B). Although no statistically signifi-
cant differences in transfection exist between the three
surfaces evaluated using PEI, comparison of mean trans-
fection profiles indicated differences in surface-induced
transfection trends that were employed in subsequent
statistical correlation analyses.

Cell viability and proliferation

An MTT assay was conducted to determine if the effect
of surface chemistries on transfection could be attribu-
ted solely to cell viability and proliferation throughout
the course of the transfection study. MTT production is
considered to be a direct measure of a cell’s mitochon-
drial activity, although most researchers have attributed
this measure of mitochondrial activity to an indirect
measure of cell viability [33-36]. Cell viability was quan-
tified for cells on the two different SAMs and the PS
control at specific timepoints and proliferation rates
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were calculated between the evaluated timepoints similar
to previous studies using MTT assay [37-39]. As seen in
Figure 2, samples were collected at 10 h and 18 h follow-
ing cell seeding. At the 18 h timepoint, nonviral com-
plexes were introduced and these cells were analyzed
12 h and 24 h after nonviral complex delivery for viabil-
ity and proliferation (30 h and 42 h after cell seeding). In
addition, cells that were not treated with complexes on
PS surfaces (PS control) served as the control for these
studies. Prior to complex delivery, cell viabilities on the
various surfaces were not statistically different (Figure 2
A and B) nor were the rates of cell proliferation ((A ab-
sorbance/surface area)/A time), depicted as the slope of
a line connecting two consecutive timepoints.

Upon delivery of Lipofectamine 2000/DNA complexes,
cells on SAM surfaces experienced slight decreases in
cell proliferation rates, while cell proliferation rates on
PS surfaces were unaffected, resulting in statistically sig-
nificant increases in cell viability on PS surfaces relative
to cells on SAM modified surfaces 12 h following the
addition of Lipofectamine 2000 complexes (Figure 2A).
At the final timepoint, 24 h following the introduction
of Lipofectamine 2000 DNA complexes, there was an in-
crease in the proliferation rate for cells on all surfaces
when compared to their respective rates following the
addition of complexes, with cells seeded on -COO"
SAMs demonstrating the highest proliferation rate, fol-
lowed by cells on PS and -CHz SAMs.

Cell viabilities in the presence of PEI complexes
were  statistically similar for all surfaces following
complex delivery, with the exception of cells seeded
on —CHj surfaces immediately following complex deli-
very (Figure 2B). For studies conducted using PEI com-
plexes, cells seeded on -CHj surfaces experienced a
decrease in cell proliferation rate upon being exposed to
the PEI complexes while cells seeded on -COO™ and PS
proliferated at similar rates as evidenced by MTT
readouts 12 h following PEI-DNA complex delivery.

7.5x10%°

5.0x10%¢

RLU/mg ptn.

2.5x10%

0.0

CH; PS

(*p<0.05, **p <0.01).

Figure 1 Normalized transfection profile for cells plated on surfaces with defined surface chemistries transfected with (a)
Lipofectamine 2000 and (b) PEI. NIH/3T3 cells were seeded on SAM modified gold and tissue culture polystyrene control surfaces, nonviral
DNA complexes with DNA encoding for EGFP and LUC were delivered 18 h later, and transfection profiles were acquired 48 h following complex
delivery by quantifying the luciferase expression and normalizing these values per total protein amount present on the evaluated surfaces. Data is
reported as mean +/— standard error of the mean of transfection profile values reported in relative light units (RLU) per mg protein.
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Figure 2 Cell viability and proliferation measured with a MTT assay on surfaces with defined surface chemistries transfected with (a)
Lipofectamine 2000 and (b) PEI. The resulting absorbance was read at A=570 nm and results are reported as mean +/— standard error of the
mean. The slope of the lines connecting each set of consecutive timepoints is indicative of the rates of cell proliferation as evidenced by the rate
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Increased proliferation rates were demonstrated by cells
seeded on all surfaces 24 h following PEI complex deliv-
ery, with the highest proliferation rate observed on PS
surfaces.

Cell morphology analysis

To further establish correlations between surface-induced
cell behaviors and the extent of successful transgene
expression, cell morphological characteristics — density,
spreading, shape, cytoskeletal organization, and focal
complex abundance — were analyzed on the three sur-
faces. Cell staining with Calcein AM and Hoechst dye
was conducted 18 h following cell seeding on SAMs to
determine the influence of different surface chemistries
on cell density, spreading, and shape at the timepoint of
transfection (data not shown). The number of adhered
cells, referred to as cell density, was determined by count-
ing the amount of nuclei of adhered cells per image using
NIH Image] (Figure 3A). The average amount of adhered
cells per image area was not statistically different between
-COO™ SAMs and PS, whereas -COO™ SAMs and PS
surfaces both exhibited 3.0-fold greater cell densities
relative to -CHz; SAMs (Figure 3A, p<0.01 and
p<0.001, respectively). Similarly, cell spreading was
determined by measuring the total surface area of
adhered cells normalized to the total cell count
(Figure 3B). The degree of cell spreading was found to

be greatest on polystyrene surfaces. In agreement with
cell density trends, cells plated on -COO™ and PS sur-
faces had respective 2.1-fold (p<0.05) and 2.7-fold
(p<0.001) increases in average cell surface area relative
to cells plated on -CH; SAMs. In order to further
examine cell morphologies, individual cell shapes were
analyzed on each SAM and PS (n=150 for each sur-
face). Cell shape indices (Figure 3C) were calculated
using the cell shape factor, S, a dimensionless number
ranging from zero to one, where a value of one indi-
cates complete cell roundness and values closer to
zero indicate less round cells [40]. Cell area and per-
imeter were measured for each cell using NIH Image
J. Cells plated on -CH; SAMs demonstrate signifi-
cantly more rounded cell morphologies relative to cells
on -COO” SAMs and PS (p<0.001), while no statisti-
cally significant differences in roundness were shown
between cells on -COO™ SAMs and PS.

Qualitative and quantitative image analysis was per-
formed on cells stained for f-actin filaments 18 h follow-
ing cell seeding (Figure 4). Actin stress bundles were
quantified by counting bundled actin fibers identified as
bright regions of the TRITC stain [41], while focal adhe-
sions were quantified by counting the amount of lamelli-
podial protrusions, which have previously been shown to
directly correlate to focal adhesion abundance [42].
Quantitatively, the number of stress bundles (Figure 4D)
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Figure 3 (a) Cell density (b) cell spreading, and (c) cell shape index for cells plated on surfaces with defined surface chemistries. Cell
density was determined by counting the number of cells per image area, cell spreading was determined by measuring the total cell area per the
amount of total cells per image area, and the cell shape index was determined by the equation S=4mA/P?, where A is cell area, P is cell
perimeter, and S is the cell shape factor. Data is reported as mean +/— standard error of the mean (*p <0.05, **p < 0.01).

PS Ps




Kasputis and Pannier Journal of Biological Engineering 2012, 6:17
http://www.jbioleng.org/content/6/1/17

Page 5 of 11

15.0

12.5
10.0
7.5
5.0
25

Avg. number of stress bundles/cell

0.0

-CO0

Figure 4 Confocal microscopy images of NIH/3T3 fibroblasts stained with TRITC phalloidin for actin filaments (red) and nuclei
counterstained with DAPI (blue) on (a) -COO™ terminated, (b) -CH; terminated, and (c) PS surfaces. Scale bar=50 um. Quantitative image
analysis of (d) cytoskeletal stress bundles and (e) focal adhesions of NIH/3T3 fibroblasts on different biomaterial surfaces. Actin stress bundles
were quantified by counting bundled actin fibers identified as bright regions of the TRITC stain, while focal adhesions were quantified by
counting the amount of lamellipodial protrusions, which have previously been shown to directly correlate to focal adhesion abundance. Data is
reported as mean +/— standard error of the mean (*p < 0.05, ***p < 0.001).
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and focal adhesion abundance (Figure 4E) were found to
exhibit statistically significant differences for cells plated
on all surfaces evaluated. Cells seeded on PS possessed
the greatest amount of stress bundles and focal adhe-
sions relative to cells on SAM surfaces, and cells on
-CH; SAMs demonstrated the lowest amount of these
structures. Qualitatively, while cells seeded on -CHj
SAMs possessed the least amount of f-actin stress bun-
dles, these cells still contained a considerable amount of
individual f-actin fibers that were not as organized in
contrast to the other two surfaces (Figure 4 A-C). Cells
plated on both -COO™ SAMs and PS exhibited similar
qualitative characteristics with a higher degree of f-actin
filament organization (Figure 4 A and C) in contrast to
cells on -CHj3 surfaces (Figure 4B), as evidenced by the
linear f-actin filaments traversing the entire lengths of
these cells.

Correlations of examined parameters

Correlations of cell parameters with surface functionali-
zation procedures were determined by employing the
Pearson’s product moment correlation equation [43]. A

correlation matrix is presented in Table 1 containing the
correlation coefficients for each comparison between cell
behavior data sets; for example, a comparison between
transfection trends among the surface variables and cell
viability trends among the surface variables was investi-
gated. Values approaching +1 signify a positive linear
correlation, while values approaching -1 signify an in-
verse linear correlation, and where values approaching
zero signify no correlation. As evidenced in Table 1, the
correlations between transfection with Lipofectamine
2000 and cell morphological parameters (i.e. cell density,
cell spreading, cell shape factor, cytoskeletal stress
bundles, cellular focal adhesions) are not strong, while
transfection with PEI is strongly correlated with the
aforementioned cell morphological parameters since all
correlation coefficients for these comparisons approach
either -1 or +1, except for the correlation with cellular
viability. Conversely, cellular viability is strongly corre-
lated with transfection using Lipofectamine 2000 as
evidenced by a correlation coefficient of 0.992 while
the correlation between transfection with PEI and cel-
lular viability is weak (0.443). As expected, all cell
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Table 1 Pearson’s product moment correlation coefficient matrix calculated for comparisons between all measured

parameters
Lipofectamine PEI Cell Spreading Shape Cytoskeleton Focal Viability
2000 Density Factor Adhesions

Lipofectamine 2000 1.000

PEI 0325 1.000

Cell Density 0.628 0.940 1.000

Spreading 0.303 0.999 0932 1.000

Shape Factor —-0.522 -0.976 —-0.992 -0.971 1.000

Cytoskeleton 0.300 0.999 0.931 0.999 -0.970 1.000

Focal Adhesions 0302 0.999 0932 0.999 —-0.971 0.999 1.000

Viability 0.992 0443 0.722 0422 —-0.626 0419 0421 1.000

morphological parameters correlated strongly to each
other, as evidenced by all correlation coefficients for
these comparisons. The correlations between cell via-
bility and the individual cell morphological character-
istics varied, where both cell density and cell shape
factor demonstrated modest correlations to cell viabil-
ity and cell spreading, while cytoskeletal and focal ad-
hesion characteristics correlate weakly to cell viability.
The calculated correlation coefficients demonstrate that
cell behaviors possess differing degrees of correlation
with transfection characteristics based on the type of
nonviral complexing agent.

Discussion

Nonviral gene delivery as a function of underlying sur-
face chemistry was investigated to elucidate cell-surface
interactions that could contribute to improving gene
transfer, allowing for the design of cell microenviron-
ments capable of enhancing nonviral gene delivery. Fur-
thermore, understanding cell-surface interactions and
their relation to nonviral gene delivery provides valuable
information regarding the extracellular influences on
nonviral transfection processes.

Nonviral gene delivery was evaluated in cells seeded on
surfaces with defined surface chemistries. SAMs of alka-
nethiols on gold were used as model biomaterial interfaces
since they provide smooth surfaces with defined surface
chemistries that have been widely utilized to investigate
cell-surface interactions [26,29,44-46]. Two different sur-
face chemistries, negatively charged hydrophilic surfaces
consisting of terminal carboxyl groups and uncharged
hydrophobic surfaces consisting of methyl terminations,
were investigated and transfection studies were conducted
using two commercially available complexing agents. The
reported transfection trends suggest that the two com-
plexing agents interact differently with the cells attached
to these surfaces, which could be influencing subse-
quent complex internalization, intracellular trafficking
mechanisms, and nuclear localization. Alternatively, the

differences in transfection may also be explained by inter-
actions with the complexes with the surfaces themselves,
which was not investigated here, but previous work
regarding nonviral complex interactions with surfaces and
cells indicates that complexes interact electrostatically
with charged surfaces [17] and non-specifically with
adsorbed ECM and serum proteins, as well as binding to
cell surface proteoglycans prior to endocytosis [47]. There-
fore complex-surface interactions, in particular for DNA
complex delivery to cells on negatively charged surfaces,
could potentially be enhancing transfection. However, dra-
matic changes in cellular characteristics were observed on
the different surfaces; therefore these characteristics were
further investigated for their influence on nonviral gene
transfer and statistically correlated to the transfection
profiles obtained using polymer-based and lipid-based
complexing agents.

Cell viability and the rate of cell proliferation were
investigated because proliferation is commonly asso-
ciated with successful DNA complex uptake and nuclear
localization due to the compromised integrity of nuclear
membranes of dividing cells [6,48]. During the course of
transfection studies, cell viability was quantified for cells
on the two different SAMs and the PS control at specific
time points. Throughout the course of the viability stud-
ies, cell viabilities were not statistically different for the
different surfaces for most of the assayed time points,
which has been shown in certain cells seeded on SAMs
[24,49]. Interestingly, cell viability trends demonstrated a
modest correlation with cell density trends (Table 1),
which suggests that surfaces not only induce differences
in cell density, but that different surface chemistries in-
duce differences in cell metabolisms, which in turn
could be affecting transgene expression. Analysis of cell
viability 12 h after delivery of Lipofectamine 2000 or PEI
complexes did reveal a slight cytotoxic effect in the pres-
ence of these transfection reagents, in agreement with
other studies that have demonstrated vector cytotoxicity
[3,8,50]. Cells on SAM surfaces experienced a greater
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degree of cytotoxicity in the presence of nonviral com-
plexes in contrast to the PS control, which may be due
to a higher local concentration of complexes on SAM
surfaces around cells. Evaluation of cell viability follow-
ing the addition of nonviral complexes revealed a correl-
ation between transfection levels and cell viability in the
presence of Lipofectamine 2000 complexes (Table 1).
However, for PEI complexes, transfection trends could
not be attributed to cell viability (Table 1). Since distinct
morphological differences were observed on the investi-
gated surfaces, surface-induced cell morphologies and
corresponding intracellular cytoskeletal and adhesive
proteins, which are commonly linked to biomolecular
import and subsequent intracellular trafficking, were
investigated.

Cell density, spreading, and shape have been previ-
ously shown to be influenced by cell-surface interactions
[21,29,44,51]. In the context of this study, we demon-
strated a similar influence, but also demonstrated a stat-
istical correlation between these characteristics and the
success of gene delivery using PEL First, the cell density
was found to be most prominent on -COO™ SAMs and
PS surfaces, while the cell density on -CHz SAMs was
significantly less, which strongly correlated with trans-
fection trends (Table 1). Although a strong correlation
was observed between cell density and transfection char-
acteristics, the increase in transfection levels could not
be simply correlated to cell number, as normalized
transfection results were reported. Instead, this increase
in cell density is indicative of surfaces that are conducive
to cell adhesion, which is attributed to the subsequent
morphological attributes that were evaluated. Increased
cell adhesion and spreading is likely due to an increased
abundance of cell adhesion domains of ECM proteins on
the surface resulting in increased cell integrin binding to
natively deposited ECM proteins as suggested by previ-
ous literature [25]. In addition to these phenotypic
observations, our group has previously shown that trans-
fected cells express upregulated levels of an endogenous
gene, Rapla, that has been implicated in integrin-
mediated cell adhesion [52]. Second, for cell spreading,
cells seeded on PS and -COO" surfaces possessed an
increased spreading area in comparison to cells seeded
on -CHz SAMs, which suggests increased exposure to
nonviral complexes on PS and -COO" surfaces. Third,
congruent to cell spreading results, cell shape was found
to be significantly different for cells seeded on -CHj sur-
faces in comparison to cells on the other two surfaces.
Cells on -CHj surfaces were statistically more round,
while cells on the other two surfaces demonstrated more
spread and ellipsoid morphologies, analogous to cells
that were adhered well to surfaces. Also, it is important
to note that while cells on -CHj surfaces were more
round, they still remained viable as evidenced by the cell
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viability data (Figure 2) and live cell staining with
Calcein AM (data not shown). Similar to correlations
between transfection and cell adhesion, cell spreading
demonstrated a strong correlation with PEI transfection
and cell shape factor exhibited a strong inverse correlation
with PEI transfection, which suggests that gross morpho-
logical characteristics significantly influence transfection
with PEL Since cell shape is manifested by various intracel-
lular mechanisms such as cytoskeletal f-actin filament
polymerization and organization, as well as the formation
of focal adhesions, intracellular morphological character-
istics were subsequently evaluated to examine possible
influences of intracellular mechanisms on nonviral gene
delivery.

F-actin stress bundles and focal adhesions were evalu-
ated to examine intracellular phenomena that have been
previously shown to be influenced by cell-surface inter-
actions [53-55]. Focal adhesions and cytoskeletal charac-
teristics are the result of cellular processes that are
influenced by micro environmental stimuli and are
involved with cellular interactions at surfaces [21,54-56].
Cytoskeletal and focal adhesion characteristics were
evaluated in the context of nonviral gene delivery be-
cause these features have previously been shown to in-
fluence internalization mechanisms responsible for the
internalization of nonviral complexes [10,20]. Cytoskeletal
stress bundle (polymerized f-actin filaments) abundance
and organization, as well as focal adhesion abundance,
were found to be greatest in cells seeded on —COO™ and
PS surfaces, and these results correlate strongly with PEI
transfection results. The abundance of f-actin stress
bundles has previously been shown to be directly cor-
related to the cytoskeletal tension in cells, which is im-
portant in the context of nonviral gene delivery because
cytoskeletal tension influences cell shape and various
endocytic processes [41], which have previously been
shown to enhance biomolecule internalization [47,57]. In
addition to stress bundle analysis, qualitative observa-
tions of individual f-actin cytoskeletal fiber quantity and
organization reveal the greatest amount of polymerized
f-actin cytoskeletal fibers and highest degree of fiber
organization in cells seeded on PS and -COO™ SAMs.
The abundance of focal adhesions also indicates that
cells are more firmly anchored to surfaces, which has
been shown to directly correlate to cell adhesive forces
[21,56,58]. These observations and conclusions are sup-
ported by previous studies that have shown changes in
cell cytoskeletal structure along with focal adhesions
affecting macromolecule internalization pathways [47],
therefore affecting the internalization of nonviral com-
plexes [57].

The combination of the gross and fine cell morpho-
logical characteristics examined in this study directly
correlate to transfection trends for cells seeded on
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surfaces with defined surface chemistries and transfected
with PEI, and thus indicate that cell morphologies influ-
ence gene transfer. The correlations between cell charac-
teristics and PEI transfection may be indicative of
complex trafficking within vesicles that transport along
cytoskeletal components that constitute these morpholo-
gies. However, the lack of correlation for Lipofectamine
2000 transfection with cell morphological factors sug-
gests there may be other factors dictating its gene deliv-
ery success. Correlations between Lipofectamine 2000
transfection characteristics, proliferation rates, and cer-
tain cell morphologies to a minor degree, regulated
through surface chemistries, suggest alternative traffick-
ing mechanisms or enhanced nuclear transport in con-
trast to PEI-DNA delivery.

Conclusions

Cell characteristics on model biomaterial surfaces were
investigated in the context of nonviral gene delivery to
elucidate the association between surface chemistry, cell
morphological characteristics, and resultant transfection
profiles. Cells adhered to negatively charged hydrophilic
SAMs exhibited statistically significant enhanced trans-
fection profiles for Lipofectamine 2000, while cells
seeded on uncharged hydrophobic SAMs demonstrated
statistically significant lower transfection with both
polymer- and lipid-based DNA complexes. For PEI-
mediated DNA delivery, transfection levels were high in
cells on both negatively charged hydrophilic SAMs and
PS, when compared to hydrophobic SAMs. In general,
surfaces with high cell densities, more cell spreading,
more cells with ellipsoid morphologies, and increased
quantities of focal adhesions and cytoskeleton features
within cells, statistically correlate with higher transfec-
tion profiles than surfaces that do not promote such cel-
lular characteristics for polymer-mediated transfection.
Conversely, cell viabilities at the time point of nonviral
complex introduction correlate with the transfection
profiles for lipoplexes. In future studies, additional
surface characteristics including nanotopography, as well
as the role of cell-surface interactions on complex
internalization and endogenous gene expression profiles
that may influence gene delivery will be investigated
employing different cell types. Understanding the
cell-biomaterial interface as it pertains to enhancing
transfection efficiency heralds the development of
precisely tunable substrates for biotechnological and
tissue engineering applications.

Materials and methods

Surface preparation

Gold-coated slides were prepared by electron beam
evaporation of gold (50 nm thickness) over a titanium
adhesion layer (5 nm thickness) onto standard glass
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microscope slides (VWR International, Radnor, PA) and
stored under argon gas. Prior to beginning experiments,
the gold slides were cut into small square pieces using a
diamond-tipped cutting instrument to allow the pieces
to fit into wells of a 48-well cell culture plate. For SAM
preparation the gold surfaces were cleaned with a copi-
ous rinse of acetone immediately followed by rinsing with
an excess of degassed, sterile-filtered 200 proof ethanol
and dried with nitrogen gas. The gold-coated surfaces
were then immersed in 2.00 mM solutions of alkanethiol
dissolved in degassed, sterile-filtered 200-proof ethanol.
Carboxyl-terminated surfaces (-COO") were formed by
immersing gold surfaces in 11-mercapto-undecanoic acid
(Sigma-Aldrich, St. Louis, MO, USA) for 45 min and
methyl-terminated surfaces (-CHjz) were formed by immer-
sing gold surfaces in 1-decanethiol (Sigma-Aldrich) over-
night (18-24 h). The samples were removed from their
respective alkanethiol solutions and rinsed with copious
amounts of ethanol to remove excess alkanethiol solution
and dried with nitrogen gas. Unmodified tissue culture
polystyrene (PS) well plate surfaces served as the control
for all studies.

Contact angle

Successful SAM surface modification was confirmed by
contact angle measurements. Immediately following
SAM formation, SAM surfaces along with unmodified
PS controls were allowed to equilibrate in phosphate
buffered saline (PBS) for 15 min and then angles of
nanopure water (18.3 MQ) were measured by the sessile
drop technique using a goniometer (Ramé-Hart Instru-
ment Co., Netcong, NJ).

Cell culture

NIH/3T3 mouse fibroblasts (ATCC, Manassas, VA,
USA) were used for all studies. Cells were cultured in
Dulbecco’s Modified Eagle’s Media (DMEM, ATCC)
containing 10% calf serum (Colorado Serum Co., Denver,
CO, USA) and 1% penicillin/streptomycin (Invitrogen,
Carlsbad, CA) and incubated at 37°C, 5% CQO,. Prior to
seeding cells, 200 pL of sterile-filtered 1X PBS (pH 7.4)
was added to each well to equilibrate the SAMs at physio-
logical pH. After 15 min, PBS was aspirated and 300 pL of
NIH/3T3 cell suspension was added to each well at a
seeding density of 50,000 cells/mL (15,000 cells/well) for
all surfaces under investigation.

Transfection

Plasmid pEGFP-LUC, which encodes for both the
enhanced green fluorescent protein (EGFP) and firefly
luciferase protein (LUC) under the direction of a cyto-
megalovirus (CMV) promoter (Clontech, Mountain
View, CA), was used for all transfection experiments.
Plasmids were purified from bacterial culture using
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Qiagen reagents (Valencia, CA) and stored in Tris—
EDTA buffer solution (10 mM Tris, 1 mM EDTA, pH
7.4) at -20°C. After allowing seeded cells to adhere for
18 h, either polymer or lipid complexes containing a
concentration of 0.3 pug of plasmid DNA per cell culture
well were added to the well plates. Lipoplexes were pre-
pared with Lipofectamine 2000 (Invitrogen) using a
Lipofectamine 2000/plasmid DNA ratio of 1.75:1 in
serum-free OptiMEM media (Invitrogen) according to
manufacturer’s protocols. Complexes were allowed to
form for 20 min at room temperature and then 75 pL of
lipoplex solution was added drop-wise to each well
undergoing lipofection. Polyplexes were prepared with
25 kDa branched polyethylenimine (PEI, Sigma-Aldrich)
at a nitrogen/phosphorus (N/P) ratio of 15 in Tris-
buffered saline (TBS) [59]. Upon combining the con-
stituent materials, the polyplex solution was vortexed for
10 sec and polyplexes were allowed to self assemble for
15 min at room temperature. Then, 50 puL of polyplex
solution was added drop-wise to each well undergoing
PEI transfection. Following the addition of complexes,
cell culture plates were placed in an incubator at 37°C,
5% CO, for 48 h. Complexation conditions were opti-
mized for both vectors on tissue culture PS prior to be-
ginning transfection studies.

Assessment of transfection

Fluorescence microscopy was conducted at 48 h follow-
ing delivery of complexes to confirm the successful ex-
pression of the EGFP protein using a Leica DMI 3000B
fluorescence microscope (Leica Microsystems GmbH,
Wetzlar, Germany).

Following microscopic confirmation of transfection,
gold chips were transferred into new wells and cells were
lysed with 200 puL 1X reporter lysis buffer (Promega,
Madison, WI). Transfection levels were quantified by
measuring the luciferase activity using the Luciferase
Assay System (Promega) and a luminometer (Turner
Designs, Sunnyvale, CA). Luciferase activity (measured
as relative light units, or RLUs) was normalized to the
total protein amount determined with a Pierce BCA pro-
tein assay (Pierce, Rockford, IL). Each transfection ex-
periment was performed in triplicate wells on duplicate
days.

Cell viability and proliferation

The influence of SAM surface chemistry on cell viability
and proliferation was examined using a Vybrant® MTT
Cell Proliferation Assay Kit (Invitrogen) according to the
manufacturer’s protocols, modified by adjusting reagent
volumes to accommodate assaying in 48-well plates. Cell
viability was evaluated both prior to the addition of
DNA complexes (10 h and 18 h following cell seeding)
as well as 12 h and 24 h following the addition of DNA
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complexes (30 h and 42 h after cell seeding, respect-
ively). The assay was quantified using a DU730 Life
Science UV/VIS Spectrophotometer (Beckman Coulter,
Brea, CA, USA) at A =570 nm and all readings were nor-
malized against the surface area of each SAM or PS sur-
face. Sample surface areas were obtained by taking
photographs of the gold chips prior to SAM surface
modification and subsequently measuring the surface
areas with Image] (NIH).

Cell morphology analysis

In order to analyze the influence of SAM surface chem-
istry on cell density, spreading, and shape, the cytoplasm
of cells seeded on these surfaces were stained at the time
point immediately prior to the introduction of DNA
complexes. In accordance with manufacturer’s protocols,
2.00 uM Calcein AM (Invitrogen) diluted in serum-free
cell culture media was added to each well and allowed
to incubate at 37°C, 5% CO, for 10 min. Then, the cell
lawn was rinsed with 1X PBS followed by fixation in 300
uL of 10% neutral buffered formalin (Thermo Fisher Sci-
entific, Waltham, MA) for 20 min at room temperature.
Formalin was removed and cell nuclei were counter-
stained with Hoechst stain (1.0 pg/mL, Invitrogen)
diluted in serum-free cell culture media and incubated
at 37°C, 5 CO, for 8 min. Following counterstaining,
cells were rinsed with 1X PBS and imaged with a Leica
DMI 3000B fluorescence microscope. For cell density
and spreading image analysis, three images per well were
acquired using a fluorescence microscope with a 10x ob-
jective and subsequently analyzed using NIH Image J.
Cell density data were obtained by counting the amount
of nuclei of adhered cells per image. Cell spreading
quantification was accomplished by measuring the total
surface area of adhered cells normalized to total cell
count, thereby obtaining an average cell surface area.
Images for cell shape index analysis were acquired at a
40x magnification and five images per well were ana-
lyzed to obtain statistically relevant n-values of cells
(n>150 cells). To obtain a quantification of cell shape,
perimeters and areas of individual cells were measured
using NIH Image ] and the cell shape index was calcu-
lated using the formula S = 41A/P?, where A is cell area,
P is cell perimeter, and S is the cell shape factor [40].

To examine the effect of SAM surface chemistry on
intracellular filamentous actin and focal adhesion com-
plexes, cell staining and image analysis were conducted
18 h following cell seeding, the time point immediately
prior to introduction of DNA complexes. Upon prepar-
ing SAMs, samples were seeded with cells as described
above and allowed to adhere for 18 h. Then, cell culture
media was removed and the samples were fixed with
4% paraformaldehyde (Electron Microscopy Sciences,
Hatfield, PA, USA) in 1X PBS for 20 min. An Actin
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Cytoskeleton/Focal Adhesion Staining Kit (Millipore,
Billerica, MA, USA) was used according to manufac-
turer’s protocol. Briefly, cytoskeletal filamentous actin
(f-actin) fibers were stained with TRITC-conjugated
phalloidin, and DAPI was used to counterstain cell nu-
clei. Following the actin staining procedure, the sur-
faces were mounted facedown onto glass cover slips
using antifade mounting solution (Millipore). Samples
were imaged using an Olympus FV500 Laser Scanning
Confocal Microscope (Olympus, Shinjuku, Tokyo, Japan).
F-actin fiber length and abundance of f-actin stress fibers
and focal adhesions were quantified using Image] (NIH).
Fifteen images per condition were evaluated (Five images
per triplicate well).

Statistics

All experiments were performed in triplicate wells on
duplicate days. Statistical analysis was performed using
Prism software (GraphPad Prism 5, LaJolla, CA). Mean
values with standard error of the mean are reported for
all numerical analysis. Comparative analyses were com-
pleted using one-way ANOVA with Tukey post-tests at a
95% confidence level (a=0.05). Pearson’s product mo-
ment correlation coefficients were calculated [43] for
comparisons between all measured parameters: transfec-
tion with Lipofectamine 2000, transfection with PEIL, cell
density, cell spreading, cell shape factor, cytoskeletal
stress bundles, focal adhesion abundance, and cell viabil-
ity at 18 h — the timepoint of nonviral complex intro-
duction to cells.
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