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Employing aromatic tuning to modulate output
from two-component signaling circuits
Rahmi Yusuf1 and Roger R Draheim2*
Abstract

Two-component signaling circuits (TCSs) govern the majority of environmental, pathogenic and industrial processes
undertaken by bacteria. Therefore, controlling signal output from these circuits in a stimulus-independent manner is
of central importance to synthetic microbiologists. Aromatic tuning, or repositioning the aromatic residues commonly
found at the cytoplasmic end of the final TM helix has been shown to modulate signal output from the aspartate
chemoreceptor (Tar) and the major osmosensor (EnvZ) of Escherichia coli. Aromatic residues are found in a similar
location within other bacterial membrane-spanning receptors, suggesting that aromatic tuning could be harnessed for
a wide-range of applications. Here, a brief synopsis of the data underpinning aromatic tuning, the initial successes
with the method and the inherent advantages over those previously employed for modulating TCS signal output
are presented.

Keywords: Synthetic microbiology, Aromatic tuning, Receptor engineering, Signal modulation, Synthetic circuits
Introduction
Two-component signaling circuits (TCSs) are a ubiqui-
tous mechanism by which bacteria sense, respond and
adapt to external stimuli. TCSs facilitate responses to a
wide range of environmental parameters, such as ambi-
ent temperature, availability of nutrients or external
osmolarity [1]. Medically relevant multiorganism phenom-
ena including quorum-sensing [2] and host-pathogen
interaction are also governed by TCSs [3]. Furthermore,
these systems control essential agricultural and envir-
onmental processes such as chloroplast synthesis [4]
and nitrogen fixation [5], which is involved in root nod-
ule formation. More than 400,000 open reading frames
(ORFs) believed to encode TCSs have been sequenced
and annotated suggesting that these systems control an
almost unlimited number of processes that could be
harnessed by synthetic microbiologists [6, 7]. Based on
this premise, engineering TCSs with novel functionality
is a very active field [8], especially because it has been
recently shown that these modified systems can be
systematically transferred to mammalian cells [9]. How-
ever, rationally designing TCSs, either by moving intact
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components from one microorganism to another or by
forming chimeric components from the domains of two
different proteins, can result in aberrant signal output
or loss of stimulus-perception, or both [10]. Here, an
aromatic tuning methodology that has been established to
circumvent these issues and is generally applicable to
both native and rationally designed TCSs is described.
Two-component signaling circuits
Traditionally, a TCS consists of a membrane-spanning
sensor histidine kinase (SHK) and a cytoplasmic response
regulator (RR) [1], however, various higher-order protein
architectures have been identified [11]. The largest group
of membrane-spanning SHKs possesses a periplasmic or
extracellular domain responsible for stimulus perception
with signal transduction to the cell interior occurring via
the adjacent transmembrane (TM) domain [12]. The extent
of input stimulus usually controls the ratio of phos-
phorylation (kinase activity) to dephosphorylation (phos-
phatase activity) of the cognate RR, thereby regulating the
intracellular level of phosphorylated RR [13]. Phosphoryl-
ation modulates the activity of the output domain, which
normally interacts with DNA to control transcription of
genes appropriate for mediating a response to the per-
ceived stimulus (Fig. 1) [1]. Aromatic tuning, depicted as a
red box at the cytoplasmic end of the TM domain in Fig. 1,
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Fig. 1 Modularity of two-component signaling circuits (TCSs). When the
sensor domain of a canonical SHK perceives stimulus, communication
occurs across the membrane (black line) resulting in increased
kinase activity of the catalytic ATPase (CA) domain. This enhances
phosphorylation of the conserved histidyl residue within the domain
responsible for dimerization and histidylphosphotransfer (DHp). These
nascent phosphoryl groups are subsequently transferred to an aspartyl
residue within the receiver domain of the RR, which usually increases
the DNA-binding activity of the output domain leading to transcription
of a group of genes, known as a regulon, related to the cognate
stimulus [1]. Aromatic tuning, or moving aromatic residues (red box) at
the cytoplasmic end of the transmembrane (TM) domain, facilitates
stimulus-independent modulation of signaling circuits by mimicking
the presence of cognate stimulus and thus altering SHK output, and in
turn, transcription of the associated regulon
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facilitates stimulus-independent modulation of signaling
circuits by mimicking the presence of cognate stimulus
and thus altering SHK output.

Biophysical and biochemical underpinnings of aromatic
tuning
Aromatic tuning was conceived based on studies with
peptides that possess an aliphatic core of Ala-Leu re-
peats flanked by Trp (WALP) or Tyr (YALP) residues
(Fig. 2a). When these WALP [14] and YALP [15] pep-
tides were mixed with various synthetic bilayers of an
appropriate thickness they were shown to adopt a trans-
membrane α-helical confirmation based on circular dichro-
ism (CD), 2H NMR and 31P NMR spectroscopy. Initially,
hydrophobic mismatch, or differences between the length
of the aliphatic core of these peptides and the thickness of
the hydrophobic bilayer core was considered to be the
crucial determinant in how α-helical peptides interact with
the surrounding lipidic environment [14]. Subsequently, it
was shown that the contribution of interfacial anchoring,
i.e., interactions between Trp residues flanking the aliphatic
core and the polar/hydrophobic interfaces near the bound-
aries of a lipid bilayer, can dominate over the effects intro-
duced by hydrophobic mismatch alone [16]. Although this
was only explicitly demonstrated for Trp residues, it was
proposed that Tyr residues would also facilitate interfacial
anchoring due to possessing similar physiochemical prop-
erties [16]. This elegant series of biophysical experiments is
summarized in Fig. 2a. Addition of WALP or YALP pep-
tides possessing a shorter distance between their flanking
aromatic residues than the thickness of the hydrophobic
core between the interfacial regions of a synthetic bilayer
to which they are added results in induction of inverted
hexagonal (HII) phases that can be detected by 31P NMR
and sucrose density centrifugation [14, 16]. Conversely,
when the distance between the aromatic residues was lar-
ger than the thickness of the hydrophobic core, the acyl
chains within the bilayer became more ordered as de-
termined by 2H NMR, demonstrating that the membrane
is slightly expanding to accommodate these “longer” pep-
tides [15, 17]. In essence, these experiments demonstrate
that amphipathic aromatic residues, namely Trp and
Tyr, possess affinity for the interfacial regions where
the polar phospholipid headgroups attach to the hydro-
phobic acyl chains.
From a biochemical perspective, another methodology,

known as glycosylation mapping, also demonstrated the
contribution of aromatic residues to positioning α-helices
within a lipid bilayer [18]. Glycosylation mapping utilizes
the lumenally positioned endoplasmic reticulum enzyme
oligosaccharyltransferase (OST) to add a glycan to the
Asn residue in Asn-Xaa-(Ser/Thr) glycosylation acceptor
sites. In this manner, OST acts as a molecular ruler be-
cause each acceptor site will be glycosylated to an extent
that correlates with the distance between the active site of
OST and the acceptor site. In Fig. 2b, the red acceptor
sites are not far enough from the lumenal membrane to
become glycosylated, whereas the green sites are distal
enough to become glycosylated. From this information,
minimum glycosylation distance (MGD), or the dis-
tance required to attain half-maximal glycosylation, can
be determined as schematically shown in Fig. 2c. These
MGDs can then be compared between segments to deter-
mine whether any helix repositioning occurred. Upon
comparison, a decrease in MGD suggests that lumenal
boundary of TM2 has been displaced into the lumen,
while an increase in MGD demonstrates that the TM2
boundary has been repositioned into the membrane
(Fig. 2c). A series of TM segments that are identical
except for the position of the flanking aromatic residues
at one end can be assessed for changes in MGD that
can be assigned to the repositioning ability of those
aromatic residues.
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Fig. 2 Schematic summary of the evidence supporting the affinity of amphipathic aromatic residues for polar/hydrophobic interfaces. a Mixing
peptides consisting of a poly-Ala-Leu core of different lengths flanked by Trp residues (WALP peptides) with synthetic bilayers of different thicknesses
demonstrates the affinity of the Trp residues for the polar/hydrophobic interfaces [14, 15]. When the distance between the Trp residues was sufficiently
shorter than the distance between the polar/hydrophobic interfaces, the lipids adopted an inverted hexagonal (HII) phase to accommodate interactions
between the Trp residues and the interfacial regions (left panel). When the distance between the flanking aromatic residues was increased so
that it matched the distance between the interfacial regions, lamellar phases were observed (center panel). As the distance between Trp residues was
increased, the acyl chains became more ordered suggesting a slight expansion of the bilayer to accommodate these “larger” peptides (right panel).
b Glycosylation-mapping analysis employs a Lep model protein with two TM helices [18]. Segments to be analyzed are inserted at TM2 and a
glycosylation-accepting site is positioned between 6 and 11 residues away from the lumenal boundary of TM2. Glycosylation-accepting sites
shown in green are distal enough to become glycosylated while those in red are not. Proximity of an accepting site to the active site of
oligosaccharyltransferase (OST) correlated with the extent of glycosylation. Therefore, repositioning of TM2 will change these relative positions and
hence the extent of glycosylation. c Calculation of minimum glycosylation distance (MGD). MGD simply indicates the number of residues required for
half-maximal glycosylation. Repositioning of TM2 into the membrane will increase MGD, while outward displacements of TM2 result in a reduction of
MGD. Previous changes in MGD have demonstrated that moving Trp residues about the lumenal end of TM2 resulted in bidirectional, i.e., into and out
of the membrane, displacement of the TM helix [19]
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Changes in MGD have been reported when Trp
residues are moved throughout the C-terminal half of a
poly-Leu TM segment [19], thereby demonstrating that
bidirectional repositioning of the TM segment is due to
the affinity of Trp residues for the polar/hydrophobic
interfaces (Fig. 2b). In a slightly modified version of this
assay that considers all possible positions within the TM
helix, Tyr residues where shown to possess character
similar to Trp residues [20]. Thus, before aromatic tun-
ing was conceived, previously existing biophysical and
biochemical evidence suggested that Trp and Tyr resi-
dues possess affinity for the polar/hydrophobic regions
located within membranes and suggested that moving
them within an intact membrane-spanning protein could
reposition individual TM helices.
Aromatic residues at the ends of Tar TM2 govern its
position in the membrane
With the aforementioned biophysical and biochemical
evidence suggesting that moving flanking aromatic resi-
dues could reposition a TM helix within an intact protein,
it was necessary to select an initial bacterial membrane-
spanning receptor in which to examine the role of these
residues in governing signal output. The aspartate chemo-
receptor of E. coli (Tar) was chosen because it governs a
well-characterized downstream signaling pathway. It is im-
portant to note that Tar is not a canonical sensor histidine
kinase (SHK), requires CheW and CheA to form func-
tional intracellular signaling complexes, and controls fla-
gellar rotation rather than gene transcription (Fig. 3a)
[21–25]. When aromatic tuning of Tar was originally
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Fig. 3 The chemotactic circuit underlying control of flagellar rotation. a In the absence of chemoeffectors, baseline CheA activity maintains
phsopho-CheY levels that produce the three-dimensional random walk underlying canonical bacterial chemotaxis. b Binding of attractant (red oval in
the periplasm; peri) to the chemoreceptor, i.e., aspartate to Tar, abolishes CheA activity, thereby decreasing intracellular phospho-CheY levels. This also
results in reduced methylesterase activity due to reduced CheB-P levels. Transmembrane communication (across the black line) is believed to occur via
a piston-type displacement of TM2 toward the cytoplasm (cyto; center panel). c Adaptive methylation (blue dots in the cytoplasm) due to reduced
CheB-P levels, restores the ability of the chemoreceptor to stimulate CheA activity when it is occupied by an attractant ligand [23]. In summary, this
circuit was an excellent initial target for aromatic tuning because binding of attractant leads to displacement of TM2 toward the cytoplasm, reduced
CheA kinase activity and increased levels of covalent modification. Conversely, displacements of TM2 toward the periplasm are consistent with
increased CheA activity and reduced levels of covalent modification. In addition, signal output from Tar that is biased beyond the compensatory extent
of methylation can be detected by monitoring rotation of individual flagella
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undertaken, the mechanistic models for TM signaling
were based upon piston-type displacements of the second
transmembrane helix (TM2) [26–31]. This model pro-
poses that displacement of TM2 toward the cytoplasm oc-
curs upon binding of cognate ligand, i.e., aspartate, to the
periplasmic domain (Fig. 3b). Binding of aspartate results
in squelched CheA kinase activity, which, in turn, reduces
the intracellular level of phospho-CheY that promotes
clockwise (CW) flagellar rotation (Fig. 3b). Phospho-
CheB, also phosphorylated by CheA, is the active form
of the methylesterase and is also found in reduced
intracellular levels upon binding of aspartate to Tar.
This results in an increase in the extent of methylation
within the cytoplasmic domain of Tar, which allosteri-
cally counteracts the effect of aspartate binding and
leads to restoration a normal flagellar rotational bias
(Fig. 3c). One advantage to initially employing this sig-
naling circuit was that each of these activities could be
independently assessed to determine whether changes
in Tar signal output have occurred. For example, it is
possible to monitor CheA kinase activity in vitro with-
out the complicating effects of covalent methylation
[22, 26, 27]. Likewise, the extent of methylation can be
examined in vitro in the absence of CheA kinase activity
[30]. Finally, flagellar rotation can be examined in vivo,
which will allow for determination of when signal output
from Tar is biased beyond the compensatory range of
methylation [26, 27].
Armed with these outputs to monitor changes in Tar

signaling, initial arginyl- and cysteinyl-scanning muta-
genesis of Tar TM2 from Salmonella enteritica serovar
Typhimurium was performed and resulted in several
mutations that highlighted the importance of aromatic
residues in governing helix position within the cytoplas-
mic membrane [30]. Large changes in signal output con-
sistent with a displacement of TM2 toward the periplasm,
similar to those observed in the apo conformation of Tar,
namely increased CheA kinase activity and decreased
methylation, were observed when either Phe-189 or Trp-
192 was replaced with an Arg residue at the periplasmic
end of TM2. This was also seen when Phe-189 was
replaced with a Cys residue. Conversely, reduced kinase
activity and increased levels of covalent methylation, both
consistent with the aspartate-bound confirmation of Tar,
were observed when Trp-209 was replaced with Arg [30].
Independently, the importance of Trp-192 and Trp-209 in
maintaining baseline signal output from E. coli Tar was
demonstrated when they were substituted for alanyl
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residues [27]. In the case of the Tar W192A variant, the
receptor was undermethylated and exhibited higher sig-
nal output, consistent with apo state and displacement
of TM2 toward the periplasm. In contrast, the W209A
mutant was overmethylated and possessed reduced signal
output, suggesting a displacement of TM2 toward the
cytoplasm as proposed to occur within the aspartate-
bound confirmation. In summary, these results demon-
strate that aromatic residues within TM2 of Tar are critical
for maintaining normal signal output and suggest that
they govern the baseline position of the helix within the
membrane to an extent that could be employed to ma-
nipulate Tar signal output.

Incremental tuning of Tar signal output
Based on the contributions of the individual aromatic
residues to maintenance of signal output and the bio-
physical and biochemical data described above, it was
originally hypothesized that aromatic tuning would dis-
place TM2 of Tar within the membrane in a step-wise
manner [26]. To examine this hypothesis, a series of Tar
receptors was created in which the Trp-Tyr tandem
found at the cytoplasmic end of TM2 was moved up to
three residue steps in either direction (Fig. 4a).
Tar WY-3: VVLILWYLVAGIRRMLL
Tar WY-2: VVLILLWYVAGIRRMLL
Tar WY-1: VVLILLVWYAGIRRMLL
Tar WY 0: VVLILLVAWYGIRRMLL
Tar WY+1: VVLILLVALWYIRRMLL
Tar WY+2: VVLILLVALVWYRRMLL
Tar WY+3: VVLILLVALVAWYRMLL
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Previous results show that the intracellular concentra-
tion of CheY-P governs the clockwise flagellar (CW) ro-
tational bias (Fig. 4b). Therefore, Tar signal output could
be estimated from the aromatically tuned variants by
monitoring flagellar rotation. To accomplish this, indi-
vidual flagella from single E. coli cells were monitored
for 20 s and classified into one of five categories that
represent increasing levels of intracellular CheY-P: those
rotating exclusively CCW, flagella rotating mostly CCW
with occasional switching to CW rotation, flagella rap-
idly switching between CCW and CW with no inherent
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sively CW [26]. When flagella from cells expressing the
aromatically tuned variants described in Fig. 4a were an-
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was observed as the aromatic residues were moved from
WY-3 toward WY + 3 (Fig. 4c). This indicates that the
signal output from the minus-series of tuned Tar vari-
ants (i.e., WY-3 to WY-1) was so far biased toward re-
duced signal output that the compensatory action of
covalent methylation failed to completely overcome this
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ants were biased toward increased signal output to the
extent that methylation could also not compensate. As
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expected, in the absence of receptor (− ctrl), only CCW
rotation was observed (Fig. 4c). It is also important to
note that, as predicted, overmethylation of Tar was ob-
served for the minus-series (WY-3 to WY-1) of receptors,
while undermethylation was seen for the plus-series (WY
+ 1 to WY+ 3) of aromatically tuned variants [26]. When
taken together, these results demonstrate that signal out-
put from Tar is modulated in an incremental manner
when the aromatic residues were moved at the cytoplas-
mic end of TM2.
While these results served as an interesting foray into

aromatic tuning, they do not empirically demonstrate
that moving the aromatic residues at the cytoplasmic
end of TM2 results in a physical repositioning of the
helix. Therefore, two subsequent studies, one computa-
tional and one biochemical, were performed to assess
repositioning of Tar TM2 upon moving the Trp-Tyr tan-
dem. Coarse-grained molecular dynamics (CG-MD) sim-
ulations that were employed to examine the ability of
aromatic tuning to displace Tar TM2 in the presence of
an explicit membrane and solvent demonstrated that
moving the Trp-Tyr residue was sufficient to induce small
TM2 displacements of up to 1.5 Å [32]. In addition, the
glycosylation-mapping assay described above (Fig. 2b and
c) was performed in order to determine whether moving
the Trp-Tyr pair at the end of TM2 would yield analogous
results in a biological membrane. Assuming that the re-
gion in Lep that contains the glycosylation-accepting site
is in an extended conformation, a shift in MGD of 0.5 resi-
dues as seen for the Tar constructs corresponds to a shift
in the positioning of the TM2 helix of 1.6-1.7 Å [33], in
close agreement with the CG-MD results [32]. Further-
more, within both the CG-MD simulations and MGD
analysis, similar patterns of displacement were observed.
A grouping of the minus-series of receptors with similar
displacements toward the cytoplasm (WY-3 through WY-
1), a baseline position for the wild-type (WY 0), two recep-
tors that are slightly displaced toward the periplasm (WY
+ 1 and WY+ 2) and a larger shift toward the periplasm
for the WY+ 3 variant was observed with both techniques.
Therefore, this combination of in vivo, in vitro and in silico
results demonstrate that repositioning the Trp-Tyr tan-
dem at the cytoplasmic end is sufficient to generate a
physical displacement of TM2 and the resulting modula-
tion of Tar signal output in an incremental manner.

Non-incremental tuning of EnvZ signal output
In order to determine whether aromatic tuning would
work within a canonical SHK, its effectiveness was exam-
ined within the major E. coli osmosensor (EnvZ), where a
rotation of TM2 was initially proposed as the mechan-
ism of transmembrane communication [34–38]. More
recently, a regulated unfolding [39] model has been sug-
gested, in which SHKs are modular proteins composed of
individually folding domains that each contribute a dis-
tinct functionality. Regulated unfolding suggests that the
effector domain within an SHK is maintained in an in-
active conformation by a rigid connection between the
stimulus perception and effector domains. Upon percep-
tion of stimulus, this connection disengages allowing the
effector domain to adopt an active conformation [39]. This
region connecting the TM to the cytoplasmic domain
in bacterial receptors is colloquially referred to as a
“control cable” because its residue composition governs
coupling of signal transduction between adjacent do-
mains [26, 27, 40–47].
EnvZ is a canonical SHK that responds to changes in

the extracellular osmolarity of inner-membrane imper-
meable compounds by modulating the intracellular level
of phosphorylated OmpR (Fig. 5a) [48–51]. In a labora-
tory environment, EnvZ signal output is modulated by
simply adding sucrose to the bacterial growth medium.
Subsequently, phospho-OmpR regulates the transcrip-
tion of a number of genes, including those encoding
two outer membrane porins, OmpF and OmpC. At low
intracellular levels of phospho-OmpR (OmpR-P), tran-
scription of ompF is upregulated, whereas at higher levels
of OmpR-P, transcription of ompF is repressed and tran-
scription of ompC is activated. This results in a predomin-
ance of OmpF at low osmolarity and OmpC at higher
osmolarities (Fig. 5b) [52–54]. The easily controllable na-
ture of the input stimulus, i.e., addition of sucrose, and the
well-characterized transcriptional output made the EnvZ/
OmpR osmosensing circuit an ideal choice for examining
aromatic tuning within an SHK.
To analyze steady-state signal output from EnvZ/OmpR

osmosensing circuits containing aromatically tuned recep-
tors, a two-color fluorescent reporter strain was employed.
This E. coli strain possesses transcriptional fusions of cfp
to ompC and of yfp to ompF within its chromosome
(Fig. 5b) [55]. Quantifying the ratio of CFP to YFP fluores-
cence provides a rapid and sensitive measure of the ratio
of ompC to ompF transcription, which estimates the intra-
cellular level of phosphoylated OmpR. Therefore, the ratio
of CFP to YFP can be employed to estimate signal output
from the aromatically tuned EnvZ variants. To confirm
this, we previously demonstrated that the transcription
of CFP and YFP behaved as expected upon addition of
sucrose to the growth medium (Fig. 5c) [7].
Due to the proposal of non-piston signaling mecha-

nisms, it was difficult to predict what pattern of signal
outputs would be observed upon aromatic tuning of an
SHK. In the case of EnvZ, a Trp-Leu-Phe triplet was
moved from five residues into the membrane (WLF-5)
through two residues out of the membrane (WLF + 2) in
single residue steps (Fig. 5d). In this case, the surface of
TM2 that the aromatic residues reside upon was found to
be the major determinant of EnvZ signal output rather
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position of the aromatic residues, as was the case with Tar, but rather appeared approximately helical in distribution suggesting that the surface of TM2
that the residues were located upon was of greater importance [33]. However, the key outcome is that aromatic tuning was still successful with respect
to modulating EnvZ signal output in a stimulus-independent manner
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than their absolute vertical position as was the case with
Tar (Fig. 5E) [7]. These results clearly demonstrated that
even though a different mechanism of TM communica-
tion has been proposed, aromatic tuning remained suc-
cessful in modulating signal output. Similar results were
obtained with a Trp-Tyr-Ala triplet that is more similar to
the Trp-Tyr tandem employed during tuning of Tar sug-
gesting that in the case of EnvZ, the composition of the
residues that are moved is not a major determinant in the
pattern of signal output [7]. However, additional experi-
mentation is required to support the concept that disturb-
ance of a particular helical surface is the cause of changes
in EnvZ signal output. It should also be noted that these
different patterns of signal output modulation are not
surprising given that the concept of various signaling
mechanisms being employed by different subclasses of
bacterial receptors has been recently put forward [56–
58]. Therefore, regardless of whichever signaling mech-
anism is employed by a receptor, aromatic tuning may
be successful in modulating signal output.
Glycosylation mapping experiments with TM2 of EnvZ

demonstrated that moving the Trp-Leu-Phe triplet re-
sulted in almost no change in MGD. An exception was
observed for WLF-3, which is most likely a specific case
where the positive charge within the side-chain of Arg-
182 would not be able to interact with the headgroups
of the membrane any longer due to it being displaced
very far out of the membrane. Thus, in the case of most
aromatically tuned EnvZ segments, changes in MGD are
very small and not steadily increasing in contrast to what
was observed with the aromatically tuned Tar TM2 seg-
ments [33]. Initial CG-MD analysis with these aromatically
tuned EnvZ segments also does not support incremental
displacement (B. Hall, personal communication).

Employment of aromatic tuning within a wide variety of
membrane-spanning receptors
Aromatic tuning was successful in modulating signal
output from both Tar and EnvZ, however, a difference in
the pattern of signal outputs was observed [7, 26]. This
pattern of signal outputs shows that even though aro-
matic tuning did not displace the TM2 helix of EnvZ
[33], it was still effective in modulating signal output from
the full-length receptor in vivo. Aromatic tuning has also
been successfully employed in two different Tar-EnvZ
chimeric receptors (Lehning and Draheim, unpublished
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observations), when a Trp-Tyr tandem was used, and
within a NarX-Tar chimera (Reinhard and Draheim, un-
published observations), when a single Trp residue was
moved.
Published sequence alignments demonstrate that aro-

matic residues are often found at the cytoplasmic end of
the final transmembrane helix within bacterial membrane-
spanning receptors [27, 59] suggesting that aromatic tun-
ing could be useful for research groups working with other
two-component circuits. It is important to note that the
majority of aromatically tuned Tar, EnvZ and chimeric re-
ceptor variants retain the ability to respond to stimulus
suggesting that their signal output is biased but not locked
in either a stimulus-deprived or a stimulus-saturated con-
formation. In this regard, aromatic tuning is advantageous
compared to deletion of entire SHKs [60] or substitution
of the conserved His residue involved in autophosphoryl-
ation and phosphotransfer because these methods may
result in complete loss of kinase or phosphatase activity,
which has been shown to result in non-physiological
cross-talk between various two-component signaling path-
ways within a cell [61, 62]. Thus, by apparently biasing,
rather than abolishing activity and stimulus-perception,
aromatic tuning represents a significant improvement over
previous attempts at stimulus-independent modulation of
signal output. Even though these initial attempts have
been successful, we have only observed aromatic tuning in
membrane-spanning receptors that possess two TM heli-
ces. However, we feel strongly that in the case of SHKs
containing only two TM helices, that aromatic tuning will
facilitate stimulus-independent modulation in the majority
of cases. Furthermore, we are currently expanding our
range of targets to include SHKs that possess more than
two TMs such as AgrC from Staphylococcus aureus that
has recently been shown to possess seven TMs [63].
In addition to rectifying issues with signal output or

stimulus-perception, we believe that aromatic tuning has
other potential uses. For example, the input stimulus has
been identified for only a small fraction of SHKs, thereby
making it challenging to investigate downstream signaling
pathways without extensive mutagenesis and subsequent
screening for changes in phenotypic output. Aromatic
tuning could be employed to circumvent these limitations
and allow manipulation of signal output from a specifically
targeted SHK. One potential use would be the rapid as-
signment of downstream physiological and developmental
processes to particular SHKs. Each SHK within an organ-
ism could be independently subjected to aromatic tuning
and subsequent monitoring for the phenotype of interest.
If the appearance of the phenotype correlated with aro-
matic tuning of a particular SHK, this would suggest that
the desired phenotype is governed by the aromatically
tuned receptor. In addition to assignment of phenotypes
to specific SHKs, aromatic tuning could be employed to
facilitate induction of medically relevant bacterial pheno-
types in the absence of complex host-pathogen interac-
tions, thus reducing the burden of complex interkingdom
laboratory model systems. Finally, aromatic tuning of
individual SHKs could be coupled with pre-existing tran-
scriptional reporter libraries [64] rather than observable
phenotypes, to rapidly unravel the signaling pathways
governed by each SHK. This would facilitate rapid and
cost-effective organism-level signal pathway mapping.

Conclusion
The aromatic residues described here are found at the
cytoplasmic boundary of the final TM helix within many
bacterial membrane-spanning receptors, suggesting that
aromatic tuning may useful in a wide-range of applica-
tions involving synthetic microbiology. Here, we provide
a brief synopsis of the data supporting aromatic tuning,
its initial successes and the advantages of this method
over those previously employed for modulating TCS sig-
nal output. We have shown that aromatic tuning works
within two well-characterized systems and hope that it is
presented in sufficient detail to provide other research
groups with the opportunity to employ the methodology
within their TCSs of interest.
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