Skip to main content
Fig. 4 | Journal of Biological Engineering

Fig. 4

From: Insights into the mechanism of a novel shockwave-assisted needle-free drug delivery device driven by in situ-generated oxyhydrogen mixture which provides efficient protection against mycobacterial infections

Fig. 4

Efficiency of BCG vaccine delivery using the device. a M.bovis BCG stationary phase cultures were exposed to shockwaves at different pressures to check the viability of bacteria; unexposed cultures served as the control group (b) Primary and a booster dose was delivered using device, orally and through intradermal route to mice. The serum IgG levels of BCG specific IgG were tested using ELISA; PBS delivered using the device was used as control; bar shows the mean value of the experiments. Error bar shows standard deviation (s.d.). (P value - Student’s t-test). (c) BCG was administered to mice using the device and via intranasal route. A booster dose was administered at 1-week post-immunization. 7 days’ post-booster dose, mice were infected via intranasal route with a lethal dose (108 CFU/mouse) of Mycobacterium tuberculosis H37Ra strain. 14 days after challenge, lungs were aseptically isolated and dissected to enumerate the Mycobacterial burden. Statistical significance is specified as **P < 0.005 (Two-way ANOVA test). df Splenic T cells were isolated from unvaccinated and vaccinated mice. Cells were stained with PE-tagged antiCD8 antibody (MiltenyiBiotec) and were analyzed by flow cytometry. Numbers of CD8+ cells were compared between the unvaccinated and the vaccinated cohort. g Mice (n = 5 per group) were infected with lethal dose (108 CFU/mouse) of virulent Mycobacterium tuberculosis,7 days after immunization as described in the previous experiment, and the survival of mice was estimated till day 45 post challenge. [P < 0.0001 (Log rank test)]

Back to article page