Skip to main content
Fig. 7 | Journal of Biological Engineering

Fig. 7

From: Engineering and monitoring cellular barrier models

Fig. 7

Engineered biological barrier models involving gel-liquid interface or tubules and vessels embedded within an ECM. a Intestinal epithelium tubule in a microfluidic channel created with a gel interface [118]. As revealed by immunofluorescence, cells form a confluent layer lining the whole channel which results in a perfusable lumen. b Glomerulus-on-a-chip microdevice. Glomerular microtissues are adhered to a gel surface and self-assembled into a continuous barrier of endothelial cells (CD31; red) and podocytes (synaptopodin; green) under flow perfusion. Adapted from [120] with permission from The Royal Society of Chemistry. c Three-dimensional neurovascular microfluidic model that enables heterotypic cell-cell interactions; it comprises human microvascular endothelial cells mimicking cerebral blood vessels, primary rat neurons, and astrocytes. Adapted from [121] with permission from The Royal Society of Chemistry. d Bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an ECM, including printing of a sacrificial ink, casting of an ECM, evacuation of the ink, and cell seeding [9]. e Three-dimensional bioprinting of thick vascularized tissue consisted of a perfusable vascular network using hUVECs surrounded by hMSCs and fibroblasts [129]. Immunofluorescence image shows osteogenic differentiation (Osteocalcin; violet) of hMSCs in situ after administration of specific growth factors via the vascular network. f A perfusable microvascular network grown in a hydrogel channel. The obtained network exhibits relevant morphological characteristics of in vivo blood vessels. Adapted from [134] with permission from The Royal Society of Chemistry

Back to article page