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proteins to multiple subcellular compartments.

chloroplasts and peroxisomes.

Organelle, Nicotiana benthamiana

Background: Plant bioengineers require simple genetic devices for predictable localization of heterologous

Results: We designed novel hybrid signal sequences for multiple-compartment localization and characterize their
function when fused to GFP in Nicotiana benthamiana leaf tissue. TriTag-1 and TriTag-2 use alternative splicing to
generate differentially localized GFP isoforms, localizing it to the chloroplasts, peroxisomes and cytosol. TriTag-1
shows a bias for targeting the chloroplast envelope while TriTag-2 preferentially targets the peroxisomes. TriTag-3
embeds a conserved peroxisomal targeting signal within a chloroplast transit peptide, directing GFP to the

Conclusions: Our novel signal sequences can reduce the number of cloning steps and the amount of genetic material
required to target a heterologous protein to multiple locations in plant cells. This work harnesses alternative splicing and
signal embedding for engineering plants to express multi-functional proteins from single genetic constructs.
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Background

Plant cells harbor many distinct compartments that
share some overlapping function, or are functionally as-
sociated in metabolic pathways and development. To en-
able complex metabolic engineering, plant engineers will
require tools to direct single transgenes to multiple com-
partments. For example, re-engineering photorespiration
[1,2] and isoprenoid synthesis [3,4] will involve both the
chloroplasts and peroxisomes.

A number of synthetic N-terminal and C-terminal ex-
tensions are readily available to target heterologous pro-
teins to desired subcellular compartments, such as the
chloroplast, peroxisome, mitochondrion, endoplasmic re-
ticulum or the nucleus. Issues around protein targeting
have arisen in (1) studying protein function in a coordi-
nated fashion [5,6], (2) improving holistic plant metabolic
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engineering efforts [7-9] and (3) increasing yields attained
by molecular farming and other protein factory applica-
tions [10]. One approach to target proteins to more than
one location involves cloning multiple genetic copies, each
containing a different localization peptide. Each copy must
be introduced by successive retransformation, or alterna-
tively, by backcrossing single transforms [11]. These pro-
cedures are time-intensive and yield transformants with
multiple spatially distinct copies of a protein expression
cassette. Coordinate expression may not be ensured due
to context-dependent regulatory effects and/or homology-
based silencing [12]. Although dual targeting to certain or-
ganelles may instead be achieved by adding a second
localization peptide [10], this approach is limited to the
possible combinations that can be made from available N-
and C-terminal extensions.

Here we describe a simple technique for targeting of
transgenic proteins to multiple organelles, specifically
the chloroplast, peroxisome, and cytosol. This combin-
ation of organelles is particularly interesting due to
their close functional association in photorespiration,
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isoprenoid biosynthesis, B-oxidation and other meta-
bolic processes [3,13,14].

Results

Design for multiple-compartment localization by
alternative splicing: TriTag-1 and TriTag-2

To construct TriTag-1 and TriTag-2, a chloroplast-
targeting region (CTPa) was taken from protein-L-
isoaspartate methyltransferase (PIMT2, At5g50240). PIMT2
is a ubiquitous repair protein, converting exposed iso-
aspartate residues to aspartate or asparagine residues in
aging polypeptides [15,16]. Various mRNAs produced from
PIMT?2 are produced by alternative transcription initiation
sites and alternative splicing events [16]. In nature, different
isoforms are often produced from an individual gene, via
the exclusion or inclusion of coding sequences from its
mRNA by alternative splicing [17-19]. The spliceforms pro-
duced from the 3’ transcription initiation site target the
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protein to the chloroplast when the targeting sequence is
retained, and to the cytosol when it is not.

A peroxisome targeting sequence, PTS2, containing
the RLxsHL nonapeptide [20], was taken from the
transthyretin-like S-allantoin synthase gene (TTL;
At5g58220). This synthase catalyzes two steps in the
allantoin biosynthesis pathway [21]. At least two
spliceforms are produced from T7L from internal alterna-
tive acceptor junctions. The translated proteins are
targeted to the peroxisome if they retain the internal
PTS2 site and to the cytosol if the site is removed [21].

Harnessing the sequences attained from the above
genes, we designed two novel 5" mRNA tags (TriTag-1
and TriTag-2) that targeted the translated GFP to
chloroplast, peroxisome and/or cytosol using alternative
splicing (Figure 1). An initial pre-mRNA comprising of
the entire gene is initially transcribed. This pre-mRNA is
then alternatively spliced. The terms “donor” and “ac-
ceptor” sites refer to the 5° (GT) and 3" (AG) splicing
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Figure 1 Design of TriTag-1 and TriTag-2, with alternatively spliced chloroplast-targeting PIMT2 and peroxisome-targeting TTL tags.
(a, b) Splice diagrams of TriTag-1 (a) and TriTag-2 (b), showing non-targeting sequences (gray), chloroplast targeting sequences (light green),
peroxisome targeting sequences (tan), and the enhanced GFP coding sequence used in transient expression experiments. (¢, d) Design of
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TriTag-1 (c) and TriTag-2 (d) sequences. The ATG codon at the end corresponds to the first residue of the GFP open reading frame. Alternatively
spliced targeting regions are highlighted. Donor and acceptor dimers are underlined. The light green DNA sequences derive from the PIMT2 5’
coding region [16] and include sequences required for chloroplast targeting (green). The light tan DNA sequences derive from the TTL 5’ coding
region [21] and include sequences encoding the peroxisome targeting sequence (tan). (e, f) Final mRNAs species resulting from alternative
splicing of TriTag-1 (e) and TriTag-2 (f).
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junctions, respectively. For example, in Figure 1a, two 5’
donor junctions flank an mRNA sequence that encodes
a chloroplast-targeting tag. The resultant protein may or
may not exhibit a chloroplast-targeting tag, depending
on whether the encoding pre-mRNA was excised as an
intron.

TriTag-1 contains the elements in this order: a short
sequence of PIMT2 containing the start codon, two al-
ternative donor sites flanking chloroplast transit peptide
CTPa, a single acceptor site, a short exon that encodes
glycine and serine residues, a single donor site, and two
alternative acceptor sites flanking the peroxisome
targeting sequence PTS2 of the TTL gene (Figure 1a,c).
In TriTag-2 the positions of the sequences taken from
genes PIMT2 and TTL are reversed (Figure 1b,d). Both
tags are designed so that the two alternative splicing
events occur independently of each other. As a result,
mRNAs encoding chloroplast, peroxisomal, and cyto-
plasmically localized proteins are expected (Figure 1e,f).

Design for dual-targeting by signal embedding: TriTag-3

For targeting to two intracellular locations with a single
N-terminal extension, we embedded a peroxisome
targeting sequence within a chloroplast targeting sequence
(TriTag-3, Figure 2b,d). The 9-aa TTL peroxisome-
targeting peptide PTS2 [15,16] was placed within the
chloroplast targeting region from the ribulose-1,5-
biphosphate carboxylase (RuBisCO) small-subunit rbcS1
(CTPb, Figure 2a,c, GenBank: X69759.1) [22], substituting
for a poorly conserved segment in the CTP that is pre-
dicted to form an unfolded segment (determined by the
PROFbval tool on the ROSTLAB server [23]). Specifically,
the amino acids closest to the N-terminus of the protein
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are the most effective at differentiating between targeting
to the chloroplast and the mitochondria. Inspection of the
A. thaliana chloroplast-targeted proteins revealed a de-
crease in conservation of CTPs toward the C-terminus
[24,25]. Based on these findings, we placed PTS2 at the
40th amino acid. The resulting targeting peptide, TriTag-3,
retains a predicted structure similar to the native CTPb in
terms of flexibility. We determined that proteins containing
the N-terminal TriTag-3 extension would be targeted to
the peroxisomes and chloroplasts using TargetP [26] and
PeroxisomeDB 2.0 [27].

Subcellular localization of GFP controls in transient assays
We tested the targeting properties of the TriTag-GFP fu-
sions in Nicotiana benthamiana leaf epidermal cells using
biolistic particle delivery (Bio-Rad Helios Gene Gun) for
transient expression. This method allows for rapid transi-
ent expression of GFP in a few scattered cells per leaf. This
is ideal for observing GFP expression in vivo via fluores-
cence in a single cell in isolation [17,28]. Expression was
controlled by the Penrcups constitutive promoter and the
nopaline synthetase (NOS) termination signal [29]. Images
were taken by confocal microscopy (Leica SP5 X MP, Buf-
falo Grove, IL 60089 United States) 48—96 hours after par-
ticle delivery. The subcellular fluorescent localization
patterns in transfected leaf tissue were compared to
chlorophyll autofluorescence; untagged GFP, and con-
structs designed for expression in the chloroplasts and
peroxisomes as controls. A diagram summarizing a typical
tobacco leaf epidermal cell and observed expression pat-
terns is provided (Figure 3).

Untagged GFP expressed in the cell periphery and a
single large organelle we presumed to be the nucleus.
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Figure 2 Design of TriTag-3, containing peroxisome-targeting TTL tag embedded within the chloroplast-targeting rbcS1 tag.

(a, b) Diagrams of potato Rubisco rbcST chloroplast targeting tag CTPb (a) and TriTag-3 (b), showing chloroplast targeting sequences (light
green), peroxisome targeting sequences (tan), flexible regions (diagonals), and the enhanced GFP coding sequence used in transient expression
experiments. (¢, d) CTPb (c) and TriTag-3 (d) sequences. The ATG codon at the end corresponds to the first residue of the GFP open reading
frame. The light green DNA sequences derive from the rbcS1 5’ coding region [1] and encode a chloroplast targeting sequence (green).

The light tan DNA sequences (d) code for a consensus PTS2 signal (tan). The PTS2 sequence is embedded within a flexible region of CTPb
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Figure 3 Compartments of a typical tobacco leaf epidermal cell. Here we illustrate their relative sizes and locations within the cell, and the
relative expression levels observed via confocal microscopy.

GEFP expression in a single organelle per cell that was lar-
ger than a chloroplast and not co-localized to a chloro-
plast was presumed to be in the nucleus. As the vacuole
takes up 90% of the cell volume (Figure 3), expression in
the cell periphery is likely cytosolic (Figure 4a,b,c; see also
[30]). GFP fused to the chloroplast targeting peptide
of PIMT2 [15,16] showed expression in chloroplasts
(Figure 4d,ef). GFP fused to the peroxisome targeting
peptide of TTL [20,21] (slightly modified from [21] by the
addition of a start codon) showed expression in organelles
that resemble peroxisomes (Figure 4gh,i). The TTL-
tagged GFP was sometimes localized to a subset of the
chloroplasts in the transfected cells, but much weaker
than was observed using the TriTag constructs (below).

Subcellular localization of TriTag-1 and TriTag-2 fused GFP

TriTag-1 and TriTag-2 were designed to target the re-
sultant protein to either the chloroplast or peroxisome
via alternative splicing of the encoding mRNA. The two
tags contain the same elements but in complimentary
orders (Figure 1). Both tags showed localization to the
cytoplasm, chloroplast, and peroxisome (Figures 5 and
6). GFP expression (Figures 5a,d,g and 6a,d,g) was
compared to the autofluorescence of chloroplasts
(Figures 5b,e,h and 6b,e,h) and the size and distribution
pattern of peroxisomes (Figure 4g,h,i). Transient expres-
sion of TriTag-1-GFP resulted in cytosolic and chloro-
plast localization, with the latter inferred by chlorophyll
co-localization in the transfected cell. GFP expression in
a single organelle per cell that was larger than a chloro-
plast and not co-localized to a chloroplast was presumed
to be in the nucleus. Additional punctate staining was
observed that did not correspond to chloroplasts, but
was similar to the expression observed with the TTL
(peroxisomal-targeted) vector (Figure 4gh,i) and was

attributed to peroxisomal targeting. Typical peroxisomes
are labeled with arrows in Figure 4g,i.

Transiently expressed TriTag-2-GFP (Figure 6) display
cytosolic localization, as well as a bright punctate pattern
indicating a higher level of peroxisomal targeting and a
lower signal in the chloroplasts. Overall, TriTag-1 localized
GEFP preferentially to the chloroplasts, while TriTag-2 local-
ized this protein to the peroxisomes, with similar targeting
to the cytoplasm, as evidenced by GFP localization at the
cell periphery and presumably the nucleus.

Subcellular localization of TriTag-3 fused to GFP

TriTag-3 was designed to contain the TTL peroxisomal
targeting sequence within the PIMT2 chloroplast
sequence (Figure 2). N. benthamiana epidermal leaf
cells transiently expressing TriTag-3-GFP display chloro-
plast localization and punctate peroxisomal localization
(Figure 7). Essentially no GFP was observed in the
cytosol. This observation indicates that the hybrid
chloroplast/peroxisome targeting sequence is efficiently
recognized by the corresponding localization systems,
and also that the cytoplasmic plus nuclear localization
observed with TriTags 1 and 2 is likely due to mRNAs
spliced so that they lack both the peroxisomal and
chloroplast targeting sequences.

Discussion

In this study, we describe simple strategies for localizing
a single transgenic protein to multiple cellular compart-
ments in plants. Variation in N-terminal targeting se-
quences was presumably encoded by alternative splicing
of the encoding mRNA or simultaneous function of
multiple-targeting sequences as expressed in a single
protein. This greatly economizes the amount of DNA
transfected. In addition, dual targeting was achieved by
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Figure 4 Typical transient expression pattern controls in N. benthamiana leaf epidermal cells. GFP channel (a, d, g), chlorophyll
autofluorescence (b, e, h) and composite (¢, f, i) images were generated using confocal microscopy. Comparison with a,b and c allow for
identification of non-targeted GFP by a pattern of cytosolic, plasma membrane and nuclear expression. The PIMT2-GFP fusion in d, e and f shows
expression in the chloroplast. The TTL-GFP fusion in g, h, and i shows expression throughout the cell but some preference for small organelles

Chlorophyll

Overlay

an ambiguous N-terminal signal with elements of
chloroplast and peroxisomal targeting sequences. We
designed three different short, N-terminal elements
for coordinate chloroplast, peroxisome and cytosol
targeting, termed ‘TriTags”. TriTag-1 and TriTag-2
(Figure 1) were designed by combining naturally occur-
ring DNAs encoding alternatively spliced mRNAs that
direct the encoded proteins to either the chloroplast plus
cytoplasm [16] or the peroxisome plus cytoplasm [21].
TriTag-3 (Figure 2) does not rely on alternative splicing
and consists of a chloroplast targeting sequence in which
a naturally unstructured portion has been replaced with
a peroxisomal targeting sequence [31].

The TriTags function in vivo to target GFP in Nicoti-
ana benthamiana leaf epidermal cells (summarized in
Figure 3). We compared confocal images of the TriTags
to controls of untagged GFP, and GFP with N-terminal
tags that had previously been shown to target chloro-
plasts and peroxisomes [15,16,20,21]. Plasmid DNA was
delivered into leaf cells by standard biolistic transfection.
Untagged GFP was localized to the cytoplasm and nu-
cleus, with some nuclear localization being expected

because the nuclear pore has a large, aqueous channel
that permits entry of molecules up to about 70 kD.
TriTag-1 and TriTag-2 mediated GFP expression in the
chloroplast, peroxisome, and cytoplasm (plus nucleus),
with TriTag-1 showing a slight preference for the chloro-
plast over peroxisome and TriTag-2 showing the oppos-
ite behavior. TriTag-3 mediated strong localization to
both the peroxisome and chloroplast, but not detectably
to the cytoplasm. These behaviors suggest that alterna-
tively spliced forms of TriTag-1 and TriTag-2 are being
produced (Figures 1 and 3).

The re-engineering of photorespiration pathways [1]
illustrates the potential utility of such multiple-targeting
elements. Normally during photorespiration, glycolate is
generated in the chloroplast and then transported into
the cytoplasm and then into the peroxisome, where it is
oxidized to glyoxylate in an O,-dependent reaction. The
reduction of oxygen, rather than NAD(P)" as an oxidiz-
ing agent represents a waste of reducing equivalents and
energy. Kebeish et al. [1] engineered plants to express in
the chloroplast and NAD"-dependent bacterial glycolate
metabolizing pathway and found this enhanced the
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Figure 5 TriTag-1-GFP distribution in N. benthamiana epidermal leaf cells. Images of GFP expression (a, d, g), chlorophyll autofluorescence
(b, e, h), and composite (c, f, i) of three different cells were generated by confocal microscopy. The arrows in (¢, f, i) indicate an organelle
believed to be a peroxisome. (j-k) Close-up of chloroplasts from (i). (I) Close-up of a chloroplast from (f). Scale bars 25 um.

growth of light-limited Arabidopsis. In this situation, the
added bacterial pathway competes with transport of
glycolate from the chloroplast into the cytoplasm. Expres-
sion of the pathway in the cytoplasm and peroxisome could
further enhance the amount of glycolate that is metabolized
by this more efficient pathway. However, as the pathway in-
volves five polypeptide coding sequences, expression of all
proteins in three compartments could be prohibitive.

Our results also suggest that novel alternative splicing
systems can be engineered in a straightforward manner.
One risk in designing such systems is that it is difficult
to predict the efficiency of a novel alternatively spliced
system. Future designs may use different alternatively-
spliced base genes, whose splice ratios may be better
known for quantitation. Further experiments with a
more stable vector delivery system (e.g. Agrobacterium
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Figure 6 TriTag-2-GFP distribution in N. benthamiana epidermal leaf cells. Images of GFP expression (a, d, g), chlorophyll autofluorescence
(b, e, h), and composite (c, f, i) of three different cells were generated by confocal microscopy. The top arrow in (i) indicates a chloroplast from
which a low GFP signal is observed; the (bottom) arrow in (f, i) indicates a GFP-fluorescing peroxisome. (j-k) Close-up of chloroplasts and

Overlay

transfection) could give us additional material for quan-
titative PCR or changes in expression over time, and
further inform future designs based on engineered alter-
native splicing.

Conclusions

Plant metabolic engineering remains a formidable effort
in terms of time and resources. The field requires simple
and efficient technologies for transforming plants with
multi-functional proteins. Our system with engineered
alternative splicing could be used to target a single
transgene to multiple locations, namely the chloroplast,
cytosol, and peroxisome. In addition, we demonstrated
that a peroxisomal signal embedded within a chloroplast

signal allows dual targeting of the transgene. These de-
vices may reduce time and resources spent on plant
metabolic engineering.

Methods

Strains and plasmids

E. coli K12 strains (NEB Turbo, New England Biolabs)
were used as plasmid hosts for cloning work on binary
vectors for transient expression and/or stable genomic
integration. Plasmids (Table 1), were constructed with
traditional cloning methods [32], BglBricks [33],
BioBricks [34], or Gibson assembly [35]. E. coli K12 cells
were grown in Luria-Bertani medium with appropriate
antibiotics (100 pg/mL kanamycin).
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Figure 7 TriTag-3-GFP distribution in N. benthamiana leaf epidermal cells. Images of GFP expression (a, d, g), chlorophyll autofluorescence
(b, e, h), and composite (c, f, i) of three different cells were generated by confocal microscopy. Arrows indicate fluorescing peroxisomes. While a
clear cellular periphery is not distinguishable in the GFP signal, essentially no fluorescence is observed in the cytosol. Scale bars 25 um.
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TriTag synthesis and cloning

TriTag-1, TriTag-2 and TriTag-3 were synthesized
(GeneBlocks, IDT, Coralville, IA), and cloned in-frame
5" of the soluble modified GFP (smGFP) using Gibson
assembly [35]. This modified GFP contains three site-

Table 1 Plasmids constructed in this study
pORE-GFP

pORE binary vector expressing untagged
soluble modified GFP (smGFP) controlled
by the pENTCUP2 promoter [29].

pORE-PIMT2-GFP pORE vector expressing A. thaliana codon-
optimized GFP, with an N-terminal chloroplast
targeting peptide of protein-L-isoaspartate

methyltransferase (PIMT2) [15,16].

pORE-TTL-GFP pORE vector expressing A. thaliana
codon-optimized GFP, with an N-terminal
start codon and peroxisome-targeting
peptide of transthyretin-like S-allantoin

synthase (TTL) [20,21]

pORE-TriTag-1-GFP pORE vector expressing TriTag-1-fused

GFP controlled by the pENTCUP2 promoter.

pORE-TriTag-2-GFP pORE vector expressing TriTag-2-fused
GFP controlled by the pENTCUP2 promoter.
pORE-TriTag-3-GFP pORE vector expressing TriTag-3-fused

GFP controlled by the pENTCUP2 promoter.

directed mutations that increase the protein’s solubility
and fluorescence intensity [36]. Based on splice site pre-
diction with NetPlantGene [37], we predicted that the
processed spliceforms of TriTag-1 and TriTag 2 encodes
for GFP variants containing regions for chloroplast
targeting, peroxisomal targeting or neither. Spliceforms
other than those found using NetPlantGene would either
incorporate a stop codon or lack organelle-targeting in-
formation, causing premature translation or sole
targeting to the cytosol, respectively.

Plant material

All plants were incubated at 16-20°C in a 16/8 hour light/
dark cycle and watered twice weekly. Peat-based soil-
free media (Metromix, SunGro Horticulture, Vancouver,
Canada) was autoclaved 45 min before use. Leaves from
3-5 month old Nicotiana benthamiana seedlings plants
were collected for bombardment.

Biolistic delivery

DNA-gold particle complexes for biolistic delivery were
prepared according to manufacturer’s instructions for
use with the Helios Gene Gun (Bio-Rad, Hercules, CA)
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as follows: Plasmid DNA (50 pg) containing the tagged
GFP gene was pelleted onto 1 pm gold particles (6—8 mg)
in a spermidine (100 pL, 0.05 M) and CaCl, (100 pL,
1.0 M) mixture and resuspended in a polyvinylpyrroli-
done/EtOH solution (5.7 mg/mL). The resulting suspen-
sion was deposited onto the inside surface area of Tygon
plastic tubing (o.d. =2 mm) and diced into cartridges facil-
itated by the Tubing Prep Station (Bio-Rad, Hercules,
CA). Cartridges were stable up to 6 months dessicated at
4°C. The underside of Nicotiana benthamiana leaves were
transformed biolistically using the Helios Gene Gun (Bio-
Rad, Hercules, CA) at 150-250 psi He [38]. The leaves
were placed on wet filter paper in Petri dishes and stored
on a bench-top under ambient lighting and room
temperature for 48 hours before imaging analysis.

Target control proteins

As expected, control proteins showed untagged smGFP
was distributed extensively in the cytosol and nucleus
(Figure 4a,b,c), but not the vacuole, which makes up the
bulk of the plant cell volume. This localization pattern
matches previous untagged GFP localization studies
[30]. Cytosolic and chloroplast localization controls were
determined by transient expression of GFP fused to the
PIMT?2 chloroplast targeting peptide and the native au-
tofluorescence of chlorophyll (Figure 4d,ef). Peroxi-
somal localizations were determined by comparing
images to transient expression of GFP fused to the TTL
peroxisomal targeting peptide, which matches previous
localization studies [21].

Prediction software

Splice junctions within the TriTag-1 and TriTag-2 se-
quences were predicted using the NetPlantGene server
[37]. Targeting to the chloroplast and peroxisome of the
TriTag-1 and TriTag-2 splice variants and TriTag-3 were
predicted using TargetP [26] and PeroxisomeDB 2.0
[27]. Peptide structures of CTPb and TriTag-3 were de-
termined using PROFbval on the ROSTLAB server [23].

Imaging and processing

Bombarded leaves were diced and placed on glass slides
in 0.1% Triton-X100 and imaged by fluorescence con-
focal microscopy (excitation at 489 nm, detection at
500-569 for GFP and 630-700 for chlorophyll
autoflourescence) using a 40x water-based objective (nu-
merical aperture 1.10).
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