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Abstract

The accumulated evidence points to the microenvironment as the primary mediator of cellular fate determination.
Comprised of parenchymal cells, stromal cells, structural extracellular matrix proteins, and signaling molecules, the
microenvironment is a complex and synergistic edifice that varies tissue to tissue. Furthermore, it has become
increasingly clear that the microenvironment plays crucial roles in the establishment and progression of diseases
such as cardiovascular disease, neurodegeneration, cancer, and ageing. Here we review the historical perspectives
on the microenvironment, and how it has directed current explorations in tissue engineering. By thoroughly
understanding the role of the microenvironment, we can begin to correctly manipulate it to prevent and cure

diseases through regenerative medicine techniques.

Background

“We are drowning in information but starved for
knowledge.” — John Naisbitt. Megatrends.

Perhaps the most fundamental question in all of biology
is how a genetic clone can produce the vast array of
cellular populations needed to sustain life in multicellu-
lar organisms. The elucidation of epigenetic mechanisms
that regulate gene expression provides a molecular
framework for understanding cell fate determination.
However, questions persist as to how cells “know” to
adopt specific epigenetic profiles during development.
While these are questions of developmental biology, the
answers are of vital importance for regenerative medicine
and tissue engineering as well.

We now know cells respond to signals within their
environment to induce differentiation down specific
lineages. Isolation and characterization of embryonic
stem cells allowed for the precise identification of
discrete factors sufficient to induce differentiation down
major cellular lineages of the body [1]. Fundamental to
this discussion, however, is the now accepted principal

* Correspondence: psachs@odu.edu; rbruno@odu.edu
Medical Diagnostic and Translational Sciences, College of Health Science, Old
Dominion University, Norfolk, VA 23529, USA

( BioMed Central

that cellular differentiation is not a one way street, and,
by extension, cell fate is not a terminal state. This is
most notably demonstrated by the Nobel Prize winning
works of John Gurdon and Shinya Yamanaka whose
combined experiments (performed decades apart) dem-
onstrated that cells could be “reprogrammed” to become
pluripotent [2-4]. These findings, combined with our
understanding of the power of extracellular signals, and
epigenetic profiles to induce differentiation, will provide
researchers with essential tools to probe the processes of
tissue and organ development.

Still, as is often the case in biology, the more we know,
the less we understand. Moreover, in the fast moving
technology driven age we are in, important pieces of
data often get overlooked or forgotten. While an exten-
sive review of all of the relevant information concerning
fate determination is not feasible, this review will seek to
highlight historical data that informs our knowledge of
cell fate determination. Specifically, we will review the
evidence demonstrating the microenvironmental control
of cell fate and describe how these advances are, or
could be, exploited for tissue engineering and regenera-
tive medicine.
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Part I: On the fate of cells

“The development of an organism ... may be
considered as the execution of a 'developmental
program’ present in the fertilized egg. ... A central
task of developmental biology is to discover the
underlying algorithm from the course of
development.” — Aristid Lindenmayer, Automata,
Languages, Development (1976)

Cellular differentiation and plasticity:

Developmental biologists have long grappled with two
alternative, although not incongruous perspectives of
cellular differentiation: cellular (intrinsic) and microenvi-
ronmental (extrinsic). Experimental evidence supports a
role for both. From a cellular perspective, it is clear that
epigenetic alterations lead to discrete gene expression
profiles, and in turn, distinct cellular functions of cells.
However, the role of the microenvironment in control-
ling these epigenetic profiles is also well established. A
cell can obviously not accomplish anything that requires
tools not encoded within its genome, but the cell seems
dependent on its environment for feedback on how to
proceed. Modern biology has provided a wealth of infor-
mation regarding the individual pieces of this develop-
mental puzzle. The challenge going forward is to
develop the knowledge necessary to put the puzzle
together, for the interplay between genetics, epigenetics,
and the microenvironment is the “underlying algorithm”
[5] of development.

The famous metaphor for cellular differentiation is a
ball rolling down a bumpy landscape as described by
Conrad Waddington in 1957 [6]. In this model, cells
interact with an epigenetic landscape that guides them
down specific differentiation paths (creodes) to terminal
differentiation. Waddington’s model allows for variability
in the differentiation process, but it does imply that
differentiation is overall unidirectional—i.e. the ball
never rolls back up hill. However, a mere five years after
Waddington published his work, John Gurdon demon-
strated that transplantation of the nucleus of a mature
intestinal frog cell into a enucleated egg could produce a
normal tadpole. Sixty-four years later, Shinya Yamanaka
demonstrated that ectopic expression of 4 genes (Sox 2,
Oct-4, Klf4, and c-Myc) could convert adult differenti-
ated cells into induced pluripotent stem cells (iPSCs) [7].
Importantly, only a transient exogenous expression of
these genes was required to drive the cells back to a
pluripotent state, at which time the iPSC cells were
capable of generating expression profiles sufficient to
maintain their pluripotency. This provides the molecular
tools necessary to drive Waddington’s model in reverse,
sending the ball back to the top of the hill to
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differentiate once again. In fairness to Waddington, he
was discussing what “is” in development, not what
“could be.” However, from the perspective of tissue
engineering and regenerative medicine, “what could be?”

is the key question.

Mesenchymal control of form and function:

Beyond nuclear transfer and ectopic gene expression,
cumulative evidence demonstrates that the cellular
microenvironment can mediate cell fate determination
[8-10]. Classic experiments demonstrated the role of
inductive mesenchyme from various tissues types in
controlling both the form and function of developing
tissues. An exceptional example of this is the ability of
molar mesenchyme of mice to induce tooth develop-
ment in chick epithelium as described by Kollar and
Fisher in 1980 [11]. In these experiments, epithelial cells
from the pharyngeal arches of E5 chic embryos were
combined with mesenchymal cells from mandibular mo-
lars of E16—18 CD-1 mice and grafted into the eyes of
athymic nude mice. The results indicated that the chick
epithelium differentiated to form normal tooth struc-
tures that deposited enamel matrix. Nearly 30 years later,
the use of mesenchymal cells to direct tooth formation
for regenerative medicine purposes was described by
Tsuji and colleagues [12]. Their strategy was remarkably
similar to that employed by Kollar and Fisher. Disap-
pointingly, however, they failed to cite Kollar and Fish-
er's work in any of their related papers. This suggests
that the authors had to rediscover this process on their
own. Perhaps this helps explains the almost 3 decade
gap in developing a translational application for this
finding. Similar results to those described for molar
mesenchyme were found in experiments demonstrating
control of cell fate by mesenchyme to drive feather/scale
and prostatic cellular differentiation [13, 14]. These
results demonstrate the extensive power of the stromal
microenvironment. If chic epithelium could be coerced
into forming teeth, then perhaps the limits of microenvi-
ronmental induced differentiation are only limited by
the genetic information available in the target cells.

In an earlier experiment, Sakakura and colleagues
found that E14 salivary mesenchyme would direct E16
mammary epithelial cells to grow with a characteristic
salivary morphology within the kidney capsule of
syngeneic hosts [15]. Despite the salivary gland morph-
ology, the resulting structures retained mammary epithe-
lial cytodifferentiation, evidenced by their milk protein
production during pregnancy [15]. Therefore, while oral
mesenchyme was sufficient to direct complete cytodiffer-
entiation of epithelial cells to teeth, embryonic salivary
mesenchyme was sufficient to direct morphology but
not cytodifferentiation of embryonic mammary epithelial
cells. The contrast is an important highlight of the
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complexity of microenvironmental control of cell fate.
Both the source of parenchymal cells, and the stromal/
mesenchymal signals they are exposed to matter. The
extent of the response is likely mediated by the epigen-
etic landscape present within the parenchymal cells prior
to the interaction. In other words, specific epigenetic
profiles may make a cell source incapable of responding
to the microenvironment, while others may facilitate it.
A simple analogy is that of a radio receiver and broad-
cast radio waves. The receiver can only process signals
that are transmitted at frequencies to which it can be
tuned. Similarly, the level of cellular response to a
microenvironment is likely limited by both the signals
presented and the cells ability to interpret and respond
to those signals.

The stem cell niche

The stem cell niche was conceptualized by Ray Schofield
to explain the equal propensity of young and old bone
marrow to graft in donor hosts [16]. The idea was that
stem cells resided in protective tissue locales (niches).
These niches protected the stem cells from differenti-
ation, and rendered them effectively “immortal”, thus
allowing them to continue to function when isolated
from aged animals. Since that time, a great deal of ex-
perimental evidence has emerged to support the physical
existent of stem cell niches in diverse experimental
models [17-20]. The nature and function of the stem
cell niche has been reviewed in detail before [8, 20], and
are beyond the scope of this discussion. Rather, we will
focus on the role the niche plays in fate determination
and how this can be exploited in tissue engineering and
regenerative medicine.

There is no strict definition of what actually consti-
tutes a stem cell niche. In fact, the term “niche” is not
even restricted to stem cells, as niches are associated
with the progenitor cell function and maintenance as
well [9, 18]. While the argument is largely semantic,
some clarification is in order. The major functions of the
niche are to prevent differentiation and coordinate asym-
metric divisions to allow for self-renewal of the stem/pro-
genitor cell. Essentially, anything that contributes to the
maintenance and function of stem/progenitor cells could
be identified as a component of the niche. This would
include the broader microenvironment as it helps drive
differentiation of stem/progenitor daughter cells, and
therefore is vital for stem/progenitor cell function. In
other words, the stem cell niche can be defined simply as
the microenvironment in which the stem cell resides.

In mammalian tissues, the niche is likely a complex
mixture of cellular interactions and signaling mediated
through the extracellular matrix. However, a niche does
not need to necessarily be complex. This may be especially
true in developing tissues, where the niche is changing.
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For example, during development of the drosophilia
midgut, evidence suggests progenitor cells expand
symmetrically, and are maintained by a transient niche
formed from a peripheral cell [19]. As the gland develops,
the peripheral cell is lost, one progenitor is recruited to a
permanent stem cell niche, and the others differentiate
into enteroblasts. Another example occurs during T-
lymphocyte division during the initiation of the adaptive
immune response [17, 21]. In this case, the antigen
presenting cell serves as a temporary niche to establish a
division plane with the distal daughter cell becoming the
memory T-cell and the proximal daughter cell undergoing
amplification and terminal differentiation to produce
effector T cells. In a more artificial system, Habbib et al.
[22] demonstrated that a single localized signaling mol-
ecule, WNT3A, could drive asymmetric divisions and
stem cell self-renewal of naive pluripotent embryonic stem
cells (ESCs). The ESCs were cultured in neuronal differen-
tiation medium N2B27 on culture plates containing
randomly distributed WNT3A tethered microbeads. The
ESCs that were in contact with the WNT3A tethered
beads divided asymmetrically with the proximal cell
retaining pluripotency markers and the distal cell differen-
tiating to an epiblast state. Those not in contact with a
WNT3A bead underwent symmetric divisions with both
daughter cells differentiating. Therefore, the localized
WNT3A signal combined with differentiation inductive
medium supplied a functional niche.

Problems of tissue engineering and regenerative medi-
cine are rooted in the same problems of developmental
biology (i.e. tissue/organ development). Therefore,
understanding how a stem/progenitor cell niche is orga-
nized for tissue regeneration is important. However, the
examples above serve to underscore that discrete signals
can serve to coordinate early events in tissue develop-
ment. This holds promise for engineering applications;
however, determining how to harness the power of the
niche is the key.

Lessons on the stem cell niche from chimeric mammary
glands

The stem cell niche brings us back to the dual perspec-
tives of developmental biology: intrinsic vs. extrinsic. In
other words, are the properties ascribed to tissue-specific
stem /progenitor cells intrinsic to the cells themselves or
to the niche in which they reside? Over the past decade,
Dr. Gilbert Smith and colleagues have performed a series
of interesting experiments using the mouse mammary
gland model that probe this question [9, 18, 23-33]. The
mammary gland of mice is regenerative. Any portion of
the epithelial tree can recapitulate a new functional tree
upon transplantation into mammary fat-pads of recipient
animals that have had their endogenous epithelium surgi-
cally removed [8]. This can be achieved by transplanting
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either dispersed epithelial cells or tissue fragments. The
regenerative process is mediated by stem and progenitor
cellular functions [8] and is unaffected by age or repro-
ductive history of the donor. Therefore, if the stem cell
niche theory is correct, when dispersed mammary epithe-
lial cells were transplanted, they must reform a functional
niche to facilitate gland regeneration.

This allows for an interesting opportunity to test the
capacity of the niche to control cell fate. Smith and col-
leagues combined non-mammary stem/progenitor cells
with normal mammary epithelial cells and transplanted
them into the epithelium divested fat pads of recipient
mice. The experimental conditions tested whether non-
mammary stem cells could be incorporated into
mammary niches, and whether they would then adopt a
mammary stem/progenitor cell fate. This was first
demonstrated with testicular cells isolated from a trans-
genic mouse model that allowed them to mark a particu-
lar mammary progenitor population (termed parity
identified mammary epithelial cells-PI-MECs) [34, 35].
Remarkably, the testicular cells contributed to the out-
growths, and adopted all of the properties ascribed to
normal PI-MECs including the persistence through mul-
tiple transplant generations, demonstrating they had not
undergone terminal differentiation. These results were
repeated with neuronal stem cells [24], lineage negative
bone marrow cells [31], embryonic stem cells [32], and
even human and mouse cancer cells [23, 28, 36].

These remarkable results were interpreted to mean
that upon transplantation, the non-mammary cells were
incorporated into mammary stem/progenitor niches
during regeneration. Once inside the niche, they could
function as fully competent mammary stem/progenitor
cells. In addition, these results suggest that the proper-
ties we ascribe to stem cells should not be viewed as cell
intrinsic features. Rather, “stemness” should be viewed
as a cellular function, which is mediated by the niche/
microenvironment in which the cell resides.

The ability of the microenvironment to control the cell
fate of cancer cells is particularly intriguing as it demon-
strates that a functional microenvironment/niche can
rescue cellular function in genetically abnormal cells.
This concept was also demonstrated using PI-MECs
isolated from transgenic mice (WAP-INT3) that had ab-
errant notch signaling [30]. Within the transgenic hosts,
the PI-MECs could not function as lobular progenitors.
However, upon transplantation with wild-type mammary
epithelial cells, their function was restored and they
could produce lobules during pregnancy. From a regen-
erative medicine standpoint, this means that it is
possible to repair dysfunctional tissues by repairing the
microenvironment/niche. This could have important
implications for regenerative medicine applications in
neurological disorders where replacing neurons may not
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be reasonable, but repairing the microenvironment
might be possible. The reverse is also true, as stem cells
isolated from wild-type testicular cells could rescue
alveolar development when combined with progesterone
receptor null mammary epithelial cells [27]. Again, from
a regenerative medicine perspective, this suggests it is
feasible to rescue function of genetically abnormal
tissues with genetically normal stem/progenitor cells.

It is still unclear what components of the mammary
microenvironment are required for the cellular redirec-
tion described above. However, in a recent collaboration,
we demonstrated that mammary ECM was sufficient to
direct the differentiation of testicular and embryonic
stem cells to form functional mammary glands in vivo
[33]. These experiments were analogous to the ones
highlighted above but instead of combining testicular
and ESCs with normal mammary epithelial cells, the
cells were simply mixed with soluble murine mammary
ECM preparations isolated from fully developed adults.
The result was a complete, functional mammary gland
comprised entirely of the progeny of testicular or ESCs.
Importantly, the mammary ECM also prevented tera-
toma formation by the ESCs, which formed large tumors
when injected with vehicle alone in all cases. Again,
these results have major potential implications for regen-
erative medicine, and provide support for the concept of
using tissue specific ECM to provide scaffolding in re-
generative medicine applications (discussed in Part II).

Part ll: Microenvironmental manipulation of cell
fates for regenerative medicine

“Early tissue and organ formation can be analogized
to the formation of a hornet’s nest, which is a well-
known example of a complex morphogenetic system.
There is no genomic information or cell regulatory
code that contains the “blueprints” for the construction
of a “new” hornet’s nest. The nest architecture arises
from the actions of thousands of hornets following sim-
ple instinctive rules. No biologist, and no hornet, can
predict the location and exact shape of a given nest.
Most importantly — the nest building process cannot
be understood by the study of individual hornets or
their sub-unit parts (eyes, legs, cells, proteins, genes).”
Charlie D. Little

A brief history of hydrogels

Extracted ECM has established itself in the last few de-
cades as a mainstay for the biomimetic culturing of cells.
Original work in the field resulted in the establishment
of polymerization and crosslinking methods for various
naturally occurring materials including: collagen, fibrin,
hyaluronic acid, chitosan, alginate etc. [37—42]. These
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biopolymers are capable of forming interactions with
both the water they are dissolved in, and their neighbor-
ing molecules to generate a hydrate lattice structure
termed a “hydrogel”. One ECM, collagen I extracted
from rat-tails, is commonly used to coat plates for the
attachment of many cell types. Since this technique was
first reported in the 1950's [40, 41], evidence has
emerged demonstrating cells have more biologically rele-
vant activities when grown in these contexts. Import-
antly, these initial experiments hinted that certain cell
types required ECM molecules to maintain themselves
in active 2D culture. These deductions subsequently
revealed that indeed the culture of cell types such as em-
bryonal carcinoma cells isolated from teratomas posed
great difficulty in standard culture [43, 44]. Building
from this, new supportive techniques were developed in
order to culture and maintain these cell’s pluripotency,
most notably the use of a fibroblast feeder layer origin-
ally described by Gail Martin in 1975 [45]. Later, these
techniques were used for the successful isolation and
culture of embryonic stem cells from both humans and
mice [46-48]. The fundamental contributions of the
fibroblast feeder layer were later determined to be sev-
eral fold. Primarily, the fibroblasts operate by mechanic-
ally secreting ECM scaffolding enabling the attachment,
survival, and vitality of these cells to a 2D culture vessel
[49, 50]. Furthermore, the fibroblasts secrete key growth
factors that signal cells to maintain their pluripotent
state. While the definition of an ESC niche is still highly
debatable, this culture technique ostensibly creates one,
generating a microenvironment capable of maintaining a
pluripotent state [51].

In an attempt to define the in-vitro embryonic niche,
subsequent studies attempted to replace the feeder layers
with ECM culture vessel coatings and media supplemen-
tation. Initially, Matrigel, an ECM extracted from the
Engelbreth-Holm-Swarm (EHS) tumor grown in mice,
was used to mimic the basement membrane-like
composition of the embryonic environment [52-55].
This allowed for a feeder-layer free method of culturing
pluripotent cells, with the caveat of batch to batch vari-
ability and issues with both viral and mouse protein con-
tamination. In effort to define and simplify pluripotent
cell culture many new techniques have emerged. These
range from dynamic biopolymers and decellularirzed hu-
man fibroblast cultures to a single isoform of laminin or
a truncated version of vitronectin [56—60]. This was fur-
ther reinforced with the supplementation of a minimal
media coupled with a set of growth promoters [57, 61].
These simplified systems of culturing a pluripotent cell
is evidence of the basic components necessary to main-
tain an embryonic-like niche in-vitro. Thus, indicating
that even with complex cell types such as iPSC and ESC,
niche complexity is clearly dynamic with necessary
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signaling sometimes coming from only single sources.
Moreover, without these systems in place, and without
proper culturing technique, cells will continuously differ-
entiate and undergo genomic instability [62, 63]. These
data collectively highlight the vital nature of properly
defining the microenvironment surrounding cells.

Another dimension
While 2D studies have laid much of the ground work for
understanding the biological activity of ECM on cells,
the study of cells in their native 3-dimensions is neces-
sary in order to fully understand their impacts. Evidence
presented in the 1970’s demonstrated that cells cultured
in 3-dimensions would make structures or spheroids
that more closely resembled cells found in vivo [64, 65].
This technique, however, did not come to prominence
until Mina Bissell’s laboratories experiments in the
1980’s. Here they demonstrated that 3D cultured mam-
mary cells were capable of forming complex luminal
structures similar to those found in vivo [66]. Since then,
it has been demonstrated that growing cells in a 3D
structure significantly alters the findings of similar 2D
studies [67-69]. This seems to be especially true when
discussing cancer cell growth and sensitivity to chemo-
therapeutics. When tumorigenic cells are placed into
simple 3D ECM constructs, resistance to chemothera-
peutics increases substantially [70-72]. While this sub-
ject is too broad for this review and has been covered
elsewhere [73, 74], these data clearly indicate that the
simple interactions with a 3D environment is sufficient
to result in significant variations to cellular behavior.
Thus, in this context, one could conclude that struc-
tured complex 3D ECM microenvironments would
exhibit even further differences as compared to 2D
culturing, possibly eliciting truly biomimetic behaviors.
In the quest to develop 3D tissue analogs, the current
state of tissue engineering is dominated by synthetic
alternatives. These approaches have been focused
primarily on creating patentable methods to generate
consistent, dissolvable, or stable structures. Often times
the justification of a synthetic platform is due to the in-
herent variability found in natural materials [75, 76].
While this is certainly a complication, as mentioned
earlier, work on natural materials has consistently been
shown to generate more biomimetic responses. Further-
more, by its nature, the complex components that
tissues are made up of are a requirement for proper
function. Thus, simple synthetic systems are unlikely to
elicit proper biomimetic responses. Evidence vindicating
this perspective was first demonstrated by the introduc-
tion of Matrigel in the 1970s. When used in vitro, it
allows for the 3D growth of epithelial and endothelial
luminal structures, while also enabling the study of the
metastatic potential of cancer cells. Furthermore, due to
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its room temperature gelation characteristics, it is used
extensively in vivo as a cellular “plug”, keeping cells
where they are originally placed and also assisting in
enhancing tumor take rates [77, 78]. A critical element
of Matrigel is its complex and tissue like composition,
which contains a diverse set of structural, functional,
and signaling molecules. These molecules react in con-
cert to define the space they occupy [54]. In contrast to
engineering studies seeking to homogenize constructs,
Matrigel offers the ability to mimic in 3D, the structural
and biological function of a complex tissue. This com-
plexity forms a 3D signature for each tissue, which is
completed when cellular constituents are also included.
It is important to note that tissues have a unique micro-
environmental signature organ-to-organ and species-to-
species that synergistically defines its function [79, 80].
Also, similar to the research examining the reaction of
cells to mammary ECMs highlighted early in this re-
view, cells placed into these complex 3D environ-
ments react in manners associated with the ECMs
origin tissue [24, 25, 27, 31, 32]. Thus, a logical
extension of these studies is the development of a 3D
biomimetic system via the use of isolated ECM de-
rived from model-specific source tissues.

Tissue specific ECM
Controlling cell fate for tissue engineering applications
and for the study of normal cellular behavior is of up-
most importance. Accordingly, many studies have turned
to tissue derived ECMs in an effort to faithfully recreate
the target tissue in vitro. These systems have clear
advantages, as they will contain the signaling cues neces-
sary to properly guide cells, while also offering the
opportunity to recreate the structural elements of the tis-
sue. Several tissue engineering techniques have emerged
to accomplish these goals that broadly fit into three
categories: decellularized whole tissues, deconstructed/
digested tissue ECM extracts, and constructs made of
individual components found in the target tissue.
Decellularized tissues offer a unique opportunity to
use intact scaffolding with all of the antigen presenting
cellular components removed. Thus, one could repopu-
late a complete ECM with patient derived cells creating
an immunologically compatible replacement to treat
damaged or diseased tissues. Decellularization tech-
niques predominantly use a detergent (e.g. SDS, NP-40,
Triton-X etc.) to lyse and separate cellular components
from the ECM. This allows for the preservation of the
structural and tethered signaling molecules within the
tissues microenvironment. This conserved state leaves
behind the necessary signatures to properly instruct cells
when reintroduced. As organ replacements are in
limited supply, and with successful transplants still
requiring constant immunosuppression, major work in
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the field has focused on whole organ engineering of
hearts, lungs, kidneys and livers [81-83]. Early experi-
ments on cardiac tissues demonstrated that cells can be
completely removed and replaced with neonatal cardiac
cells [84]. Of particular note, the cells would localize to
appropriate areas and began to spontaneous contract in
synchronization, indicating the remaining ECM was
directing the cells placement and function. However,
when whole hearts were seeded and tested, it resulted in
an estimated ejection fraction of only 2% as compared to
an adult rat [84]. Subsequent studies on decellularized
human hearts carry technical limitations, due to the sub-
stantial increase in size of the organ from rats. However,
it was reported that human cardiac tissues retain similar
architectural structure once decellularized. Furthermore,
it was also demonstrated that human mesenchymal stem
cells, but oddly not human cardiac progenitors (hCPC)
or human umbilical cord epithelial cells (HUVEC),
would grow and repopulate sections of tissues removed
from the organ [85]. Unfortunately, due to the size of
human organs, proper decellularizing takes a signifi-
cantly longer time, with less reliable outcomes. Further-
more, many of the remnant proteins still could carry
some potential to illicit an immune reaction once trans-
planted [86—88]. Whether this is an issue for whole hu-
man organ decellularization still remains to be tested.
Most importantly, initial transplantations of recellular-
ized organs have demonstrated limited function leading
to ultimate failure [89-91]. Nevertheless, it is promising
to see that less complex decellularized human tissues
such as skin, have been used for decades without any
obvious immune rejection issues [92, 93]. While whole
organ engineering could lead to the ultimate cure for
diseases such as heart and lung failure, the complex
nature of tissue organization presents many challenges
before this techniques is ready for therapeutic use.
When considering potential alternative ECM based
regenerative therapies, it is important to recognize that
most diseased tissue have both a degradation of the
structural elements of the ECM as well as the functional
cellular components. Ultimately these losses result in the
misdirection of cells within the destroyed ECM and the
formation of scar tissue. This is particularly true of is-
chemic tissues, such as those found following a cardiac
infarct, which tend to result in low or no-healing scars
that participate in further organ dysfunction following
the initial insult [94, 95]. Thus, regenerative therapies
must consider how to properly initiate healing by signal-
ing reparative cells to properly remodel the damaged
tissues back to their original state. In an effort to accom-
plish this, Dr. Christman’s laboratory has produced
ECMs derived from cardiac tissues [96—98]. The expect-
ation being that these tissue-specific isolates from
healthy ECMs will help to properly initiate the cascade
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of cellular infiltration and regeneration. Here they
demonstrated that their isolations yielded ECM that
mimicked the myocardium with a complex mixture of
peptides as well as specific detection of GAG proteins.
Furthermore, these tissue ECMs are capable of being
tuned to suit the various handling demands necessary
for operating room procedures with a 37 °C gelation
temperature, tunable degradation rates, and the ability
to be injected through a 27G catheter [96]. Importantly,
when injected into a rodent heart, the gel allowed for
the infiltration of both endothelial and smooth muscles
cells [97]. The isolated ECMs also emulated the native
environment by stimulating hCPCs to up regulate
cardiac markers GATA-4 and MLC2V and VEGEFR2
within only 4 days of culture [98]. However, there were
significant composition differences when they performed
these isolations on several different human hearts [99].
This indicates the importance of elucidating the specific
variations, and describing the effective ECM combina-
tions necessary to elicit reparative responses from cells.
Furthermore, the fundamental approach of this style of
engineering is to attempt to recreate specific tissues
using extracted target-tissue ECM. However, a major
limitation of using digested tissue ECMs is the random
nature by which the matrices are reformed in the result-
ing engineered constructs. Thus, digested tissue ECMs
when reconstituted lose much of their original mechan-
ical properties. This often would necessitate modifica-
tions or additions to create structurally stable therapies.
Additionally, due to the synergistic nature of the tissues
microenvironmetal cues for proper cell direction, the
exact signaling may not exist once the tissue derived
ECM has gelled.

In order to fully understand the nature of these syner-
gistic ECM interactions, researchers have performed
high throughput analysis of mixtures of individual ECM
molecules on stem cell fates [100, 101]. In these studies,
various ECM molecules (e.g. collagen 1V, fibronectin, nido-
gen, etc.) were mixed with various signaling molecules
(e.g. FGF4, BMP4, LIF) and cell-to-cell interactive compo-
nents (e.g. E-cadherin, jagged, EpCAM). Researchers then
varied the mechanical properties of the hydrogels and the
number of mouse embryonic stem cells per site to make
1024 unique conditions and studied their growth and
differentiation [101]. These studies revealed that stiffness
and lack of LIF would differentiate ESCs. Similarly the
presence of BMP or FGF seemed to direct differentiation
away from a pluripotent state. While these reductionist ap-
proaches could yield useful information about potential
synergistic relationships amongst the several contributing
factors in ECM, the simplified context could still miss the
even bigger picture of complete 3D tissue formation. For
example, it has been shown that changes in mammary
gland ECM collagen architecture are responsible for
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pregnancy induced cancer prevention [102]. Further, these
complex datasets are troublesome due to the extremely
sensitive nature of pluripotent cells; simply changing the
pressure on them can cause differentiation [103].

Similar to cell types where directed differentiation can
be targeted through micro-environmental changes (MSCs
[104], epithelial cells [105], myotubes [106]), neural stem
cells are particularly sensitive to the substrate and matrix
mechanical properties of their environment. Due to the
unique nature of functional neurons maintaining Gg
phase, it is critical to understand these environments to
enhance survival.

It is now well understood that the brain microenviron-
ment is primarily composed of proteoglycans, with the
expression of basal membrane components: type IV
collagen, laminins and fibronectin [107]. In general,
these components are localized within three principle
compartments/orientations: basal membrane lining
cerebral vasculature, condensed perineuronal nets sur-
rounding cell bodies, and neural interstitial matrix
loosely arranged filling the parenchyma. While gener-
ally composed of identical ECM components, varying
ratios or sub-components and tertiary structures
determine their involvement in maintaining nervous
system function.

Common in neurodegeneration disorders including
Alzheimer’s, Parkinson’s, Huntington’s, amyotrophic
lateral sclerosis, and multiple sclerosis, are the progres-
sive loss of neurons and deterioration of nervous
system structures. With the increasing of lifespan in the
general population, these diseases are becoming more
prevalent. While each disease has its unique etiology,
they generally share some degree of protein aggregation,
with evidence of this occurring within the extracellular
matrix [108—114]. A number of studies have identified
possible mechanisms of ECM degradation in neurode-
generative disorders, including matrix metalloproteinase
activation [115], decreases in tissue inhibitors of metal-
loproteinase expression [116], aberrant expression of
tissue plasminogen activators [117], and insult-induced
neuro-inflammation [118].

Our comprehensive understanding of neurodegener-
ative disease-restructuring of brain microenvironment
is lacking and the use of nervous system-derived
ECM has yet to be extensively investigated, however,
the potential therapeutic properties of ECM-based
products is coming to light. Importantly, properly
prepared engrafted ECM does not elicit an adverse
immune response [119]. Millions of patients have
been treated with ECM-based, FDA approved products in
various tissues [120-123]. This evidence highlights the
potential importance for recreation of biologically identi-
cal in vitro modeling for research, as well as for potential
therapeutic purposes.
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Conclusion

The microenvironment is a complex 3D mixture of
signaling molecules, interacting cells, and structural
components. With each of these components playing a
critical roll in healthy tissue, it is vital that we under-
stand how their interplay works to identify methods to
properly repair it when it is damaged in disease states.
Furthermore, by thoroughly understanding the microenvi-
ronments participation in activating cell fate determination,
we could better harness this tool for tissue engineering.
Furthermore, with this knowledge we could also offer better
detection methods to identify permissive environments that
lead to diseases such as neurodegeneration, cancer, and
cardiac disease.
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