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Abstract

The research community is intent on harnessing increasingly complex biological building blocks. At present, cells
represent a highly functional component for integration into higher order systems. In this review, we discuss the current
application space for cellular coating technologies and emphasize the relationship between the target application and
coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where
caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are
ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to specific cell types, and
the opportunities derived from these hybrid assemblies have yet to be fully realized.
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Background
The peripheral membrane of a cell dictates every aspect
of how the cell interacts with its environment. While
natural function has evolved over time to address the
needs of the organism, the peripheral membrane’s
natural function is often insufficient for the precise
control of when, how, and where a cell interacts with its
environment in emerging biomedical needs. As a result,
the peripheral membranes of cells are now being tailored
to fit the needs of the specific application space through
the addition coatings to the cell’s surface.
Cellular coatings are rapidly finding use in a wide

range of biomedical research areas. Encapsulation of
islets and other cell tissue began in the 1980s [1–3].
While most of these early methods were shown to
effectively encapsulate cellular aggregates, low biocom-
patibility and undesirable mechanical properties limited
their effectiveness. The combined work of Pathak et al.,
Sawhney et al., and Cruise et al. overcame many these
obstacles and expanded the encapsulation field when
they effectively encapsulated islets of Langerhans and
various cells with poly (ethylene glycol) (PEG) in the
early 1990s [4–6]. The PEG encapsulated islets

introduced the ability of immunosuppression while
maintaining cell viability and allowing selective
permeability.
While the study of cellular coatings on islets of Lang-

erhans for diabetes treatment continues [7–9], improved
understanding of cellular properties and coating tech-
niques has expanded the application space for cellular
coatings. Encapsulation techniques are more sophisti-
cated and allow for individual mammalian cells to be
modified with polymers. As varying cell types are modi-
fied with the coatings, the application space was able to
grow beyond immunosuppression.
In this review we organize the applications of cellular

coatings into four subcategories: targeting cells to
specific tissues, cell-meditated delivery of drugs, cellular
protection in harsh environments, and cancer cell isola-
tion (Fig. 1). We have compiled the most pertinent cell
coating literature to give a thorough representation of
the cellular coating field. This review also attempts to
highlight the various methods used to engineer the cell
surface and how these modifications impact the per-
formance of the coated cell.
The scope of this review is limited to coatings of

polymers, metals, or ceramic materials to form solid
coatings on the surface of individual mammalian cells.
In contrast to genetic engineering of cell surface, these
robust coatings are capable of driving significant changes
to the cell’s natural barrier function and mobility without
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altering the intrinsic biology of the cell. While there are
significant literature of efforts towards the surface engin-
eering of yeast cells [10], the development of mammalian
cell coatings provides a more direct connection to bio-
medical engineering and engineering strategies to impact
human health. Finally, this review focuses on the unique
functionality of 2D coatings and not on the bulk material
techniques prevalent in multicellular encapsulation
strategies.

Application space for cellular coatings
Cellular coatings utilize advancements in surface sci-
ence to impart the modified cells with unique chem-
istries and capabilities. In this section, we highlight
the most exciting recent developments which leverage
the cellular coating of individual mammalian cells.
While protection of cells from the immune system
and other damaging conditions continues to be
explored, cellular coatings also offer the unique ability
to drive migration of specific cells to target tissues,
deliver payloads across robust biological barriers, and
accelerate cellular isolation technologies.

Adhering cells to specific tissues and substrates
In this section, we highlight the diverse application space
for adhesive cell coatings to strengthen cell-cell and
cell-tissue interactions. Cell adhesion molecules aid in
cell positioning through selective binding to cells and
the extracellular matrix. This is most clearly illustrated
by the loss of cell-cell adhesion in cancer cells to
dislodge a stably-bound cell from the primary tumor site
to initiate cancer metastasis [11–16]. The increased
mobility caused by the downregulation of cell adhesion

molecules permits cancer cells to migrate into the circu-
latory system, invade neighboring tissues, and develop
new tumor sites [17–20]. Cell binding is also critical to
the normal function of tissues. For example, an increase
in the expression of stromal cell-derived factor 1
(SDF-1) increases the recruitment of therapeutic cardiac
stem cells following a heart attack [21, 22]. The direct
relationship between adhesion molecule expression and
cell localization has motivated the development of artifi-
cial cell adhesion technologies for controlling cell
position.

Targeting inflamed tissues
Inflammation is a natural tissue response to a harmful
stimulus. The infiltration of immune cells occurs in
concert with dilation of the vasculature and increased
vessel permeability. While acute (short term) inflamma-
tion is essential for the clearance of a harmful agent,
chronic inflammation creates significant health chal-
lenges. Increasingly, researchers are using cellular
therapies to modify areas of chronic inflammation, and
the use of coated cells is an emerging strategy for im-
proving therapeutic cell localization to the inflamed
tissue. Many stem cell populations suppress local in-
flammation through the release of anti-inflammatory
factors [23–28]. However, poor stem cell recruitment
and retention at the inflamed tissue limits the efficacy
of this cell-based therapy. To improve the localization
of cells at the therapeutic site, anti-inflammatory stem
cells are being coated with inflammation-specific adhe-
sion molecules to mimic the adhesion-driven homing
of leukocytes to injuries.

Fig. 1 Current applications of mammalian cell surface coatings
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In inflamed tissues, surface carbohydrates on leuko-
cytes bind to selectin and other glycoproteins on the
endothelial cell membrane to slow the rolling of the cell
along the blood vessel. The decrease of cell velocity aids
in leukocyte penetration into the inflamed tissue.
Through the accurate recreation of a leukocyte’s
inflammation-homing surface, other cell types may be
imparted with dramatically improved retention at the
site of inflammation. Sarkar et al. created mesenchymal
stem cell (MSC) coatings with a sialyl-Lewisx (SLex) lig-
and that binds to P-selectin on the surface of endothelial
cells [29]. They reacted cells with sulfonated-N-hydroxy-
succinimide-LC-biotin to display biotin on the MSC sur-
faces. Subsequent streptavidin exposure leaves excess
binding sites for the indirect attachment of biotinylated
SLex. They observed a temporary reduction of the acces-
sibility of MSC surface proteins, and the biotin on the
stem cell surfaces could be retained up to 1 week with-
out changing cell viability or proliferation. The increased
adhesion of SLex-loaded MSCs on P-selectin functional-
ized surfaces was evaluated by a microfluidic shear assay.
The retention of SLex-coated MSCs was increased over
uncoated MSCs on the P-selectin surface under identical
shear stresses. Under rolling conditions, the significant
decrease of the velocity of SLex-labelled cells across
P-selectin surfaces was supportive of increased retention
at inflammation-adjacent regions of the endothelium.
An in vivo mouse model was utilized to study cell

rolling effects in blood flow. The SLex-modified MSC
movement through circulation was observed with intra-
vital confocal microscopy of an inflamed ear. The
reduced cell rolling speed of SLex-coated MSCs along
inner vessel walls indicated strong SLex-selectin binding
interaction. The amount of SLex-labelled MSCs at the
site of inflamed tissue was significantly higher than that
of uncoated MSCs, indicating the importance of SLex
surface modification to enhance cell rolling and improve
stem cell targeting to the inflamed tissue. The idea of

using surface-modified stem cells to mimic leukocyte
migration and adhesion on the tissue of interest has also
been described by Kong’s recent use of coatings of
vascular binding peptides which bind to vascular cell
adhesion molecules (VCAM) on the endothelial surface
[30]. They used the kinetic models to describe the
dependence of peptide-VCAM affinity and ligand surface
density on the homing of peptide-engineered stem cells
to inflamed or diseased tissues.
In addition to natural cell adhesion molecules and

peptides, antibody-antigen adhesion has been leveraged to
improve binding to the inflamed endothelium. Intercellular
cell adhesion molecule-1 (ICAM1), vascular cell adhesion
molecule 1 (VCAM1), and mucosal addressin cell adhesion
molecule 1 (MAdCAM1) expression on endothelial cells is
up-regulated with inflammation to promote leucocyte roll-
ing and migration. Coatings of antibodies against ICAM1
have been successful in the targeting of MSCs to inflamma-
tion (Fig. 2a) [31]. Ko et al. coated antibodies against ICAM1
on the surface of anchored MSCs (Fig. 2b). The retention of
antibody coated MSCs on human umbilical vein endothelial
cells (HUVECs) was quantified following exposure to in
vitro microfluidic shear. The majority of anti-ICAM1-coated
MSCs were retained on the surface of HUVECs, while there
was extremely low cell retention in both unmodified MSCs
and isotype control antibody-coated MSCs.
Surface-modified stem cells have also been utilized to

other inflammatory diseases, including inflammatory
bowel disease (IBD). Endothelial dysfunction is identified
as a pathogenic factor of IBD, therefore targeting the
endothelium for stem cell delivery is a logical strategy
for IBD therapy. MSCs mediate T cell responses and
restore the natural function of IBD tissues in vivo [32].
Ko et al. developed antibody-coated MSCs for the
treatment of inflamed colon tissues and inflamed
mesenteric lymph nodes (MLN) an in vivo IBD mouse
model. They targeted the inflamed tissue using VCAM-1
or MAdCAM-1. Antibodies against VCAM-1 or

Fig. 2 (a) ICAM1-antibody coated MSC homing to ischemic site. (b) The lipid palmitated protein G conjugation of ICAM1 antibodies to the MSC
surfaces. Reprinted from [31], Copyright 2009, with permission from Elsevier
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MAdCAM1 were attached to the peripheral membrane of
MSCs. Antibody coated MSCs successfully localized to
the target colon tissues and MLN when compared to iso-
type control cells, and coatings against VCAM-1 showed
the strongest effect (Fig. 3). The coated cells remained
functional, and the coated cells suppressed T cell prolifera-
tion to a greater extent than unmodified MSC groups.

Targeting myocardial infarcts
The blockage of blood flow in arteries causes a scarring
response which stiffens local tissue in and decreases
heart function. Local implantation of MSCs and cardiac
stem cells are promising approaches to modulate the
inflammatory environment to minimize scarring and
support restoration of contractility. Critically, the major-
ity of the injected therapeutic cells are not retained at
the site of injury. Several cellular coatings strategies have
been developed to increase therapeutic cell retention at
the infarct site and improve heart function.
Ferromagnetic cell coatings have potential uses including

cellular targeting, tracking, and imaging. Santoso et al.
coated cardiac stem cells with an FDA-approved material
containing iron oxide nanoparticles loaded with ferumoxy-
tol, heparin, and protamine (FHP) for targeting the cells to
an infarcted myocardium [33]. As an added benefit, this
magnetic FHP coating is also effective for magnetic cellular
tracking of coated cells [34]. External magnetic fields are
manipulated to control the position of the FHP-loaded
coated cells in an in vivo rat model. Compared with
non-magnetically positioned FHP-loaded cells, greater
quantities of the magnetically positioned cells were retained
at the infarct site [35]. Additionally, the magnetically
positioned group had a smaller infarct scar size, thicker
myocardium wall, improved ventricular structure, and
increased capillary density.
Another coating strategy to enhance cell homing to

diseased myocardium leverages the overexpression of
homing factors highly expressed on ischemic myocardium,

including stromal cell-derived factor 1 (SDF-1). CXCR4 is
the natural binding partner for SDF-1, and this interaction
is responsible for physiological stem cell recruitment and
retention. Cell coatings were designed to present higher
levels of CXCR4 to increase the rate of migration toward
high levels of SDF-1 [36]. These coatings doubled the in
vitro rate of stem cell migration toward a simulated
infarcted heart region in a transwell migration assay,
demonstrating the potential for similar coatings in future
in vivo repair studies.

Adhesion of cells to functionalized surfaces and cells in
vitro
High throughput, living cell studies are central to the
analysis of heterogeneous cell populations. While flow
cytometry is well suited for the high throughput analysis
of suspended cells, many assays necessitate the cells to
be adhered to a solid substrate for image-based observa-
tion of signaling, cellular metabolism, or cell interactions
[37–39]. Current technologies to attach cells onto a solid
surface are mostly applied in adherent cell types. Lack-
ing the expression of adhesion proteins on the cell mem-
brane, suspension cells do not readily attach to most
surfaces. Iwasaki et al. demonstrated the anchorage of
biotinylated, non-adherent cells on an avidin-patterned
substrate [40]. They metabolically tailored human pro-
myelocytic leukemia cells (HL-60) to express metha-
cryoyl modified cell surface carbohydrates, and a
thiol-ene reaction was used to graft biotin to the engi-
neered HL-60 cells. These biotin coated HL60 cells
adhered specifically to an array of avidin to generate
organized cell arrays of suspension cultured cells. Simi-
larly, Kim et al. patterned non-adherent cells into micro-
arrays by coating cells with biotin and creating an
adhesive region on PDMS using polymer-on-polymer
stamping [41]. Their stamping approach created high
fidelity arrays of B cells for high throughput analysis of
cell function.
Cell arrays are a new approach to study the cell

morphology change, cell differentiation or tissue gener-
ation within a given spatial arrangement. In one strategy,
cell surfaces are coated with single-strand DNA, and
these coatings promote specific adhesion of cells to pat-
terned surfaces of complementary DNA sequences
(Fig. 4a) [42]. The compatibility of this patterning
approach was demonstrated with adherent and nonad-
herent cell types, including MSCF7, Jurkat, red blood
cells, CD4+ helper T cells, and cardiac myoblast cells.
The two-dimensional patterning of coated cardiac myo-
blasts displayed a pattern dependence of cell differenti-
ation (Fig. 4b), and it is expected these arrays of coated
cells will guide future fundamental studies of tissue
assembly, cell behavior, interaction, or tissue dynamics.

Fig. 3 Enhanced MSC accumulation at targeted MLN and colon regions
by the VCAM-1-Ab coated MSC delivery. Reprinted from [32], Copyright
2010, with permission from American Society of Gene & Cell Therapy
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In vitro assemblies of multiple cell types are useful for
the reconstruction of complex tissue scaffolds. In some
cases, cell-cell adhesion in the ECM is required for the
regulation of cellular metabolism, cell differentiation, and
cell proliferation in tissues [43, 44]. In other cases, the loss
of cell interaction reduces adverse effects of many specific
cellular activities. As a result, cell coatings for reversible
cell-cell interactions facilitates the analysis of many
intracellular phenomena [45–48]. Luo et al. created a
photo-cleavable cell adhesive strategy by modifying cell
membranes with photo-sensitive substances using a
liposome fusion approach [47]. Cell interconnection,
which leads to cell aggregation or clusters, was
successfully achieved through interfacial oxime click
ligation chemistry between Jurkats, and disconnection was
triggered by photo-cleavage of the tethers in the cell coat-
ings. This approach was extended to multi-cell assemblies
to study the differentiation behavior of hMSCs in the
presence of fibroblast. Through interaction between
photo-oxyamine-coated fibroblasts and ketone-coated
hMSCs, multi-cell co-culture of these two different cell
types could be organized into layer-by-layer assemblies.
The photo-release of fibroblasts from hMSCs enables
the further investigation of hMSC functionality after
fibroblast-induced differentiation. The oxyamin-ketone
ligation-mediated cell assembly/disassembly system estab-
lished a bidirectional strategy not only to generate a stable
multi-tissue scaffold but also to help the understanding of
cell performance after multi-cellular co-culture.

Cell coatings that incorporate photo-switchable linkages
allow a fully-reversible cell-cell interaction [48]. Coatings of
ß–cyclodextran (CD) will only react with the trans isomer
of azobenzene. When azobenzene is exposed to UV light,
the molecule isomerizes to a cis conformation, and will not
adhere to ß –CD (Fig. 5). To examine the attachment and
detachment efficiency of ß–CD modified cells, cells were
seeded on azobenzene surface. ß –CD-coated cells only
adhered to azobenzene surfaces in a trans-conformation,
and UV-induced cis isomerization resulted in over 80% cell
detachment. Additionally, cell coatings of azobenzene
groups allowed the reversible attachment with ß –CD
coated cells. HeLa cells coated trans-azobenzene groups
assemble with ß –CD coated MCF7 cells, and these
aggregates disassemble under UV irradiation.

Cell-meditated delivery of drugs
The human body is a complex bioreactor where an
intricate chemical balance is maintained through pas-
sive and active transport. Modern drug delivery
systems have been successful in leveraging our passive
transport mechanisms to deliver drugs through the
airways, circulatory system, and diverse tissues. Only
recently has the research community started to utilize
the active transport mechanisms for cell-directed
transport of species in the body. Cell-mediated deliv-
ery is a revolutionary approach to exploiting natural
cell behaviors, which include migration across bio-
logical barriers and targeted homing to tumors or

Fig. 4 (a) The attachment of DNA-coated cells to complementary DNA surfaces. (b) The DNA-modified cells are localized to patterned region.
Reprinted with permission from Langmuir [42], Copyright 2009, American Chemical Society
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sites of inflammation [49–52]. Cellular coatings are emer-
ging as a promising approach for the delivery of a thera-
peutic payload to a specific site. Therapeutic cargo is
attached to the plasma membrane of tissue-targeting
transporter cells to enhance site-specific delivery. Here,
we highlight the opportunities enabled by the recent clin-
ical and preclinical studies which coated transporter cells
are being used for drug delivery applications.

Coated cell mediated delivery for autoimmune/
inflammatory diseases
In many autoimmune diseases, immune cells mistakenly
identify beneficial cells as a harmful species, resulting in
chronic inflammation. In the case of multiple sclerosis
(MS), cellular coatings have been designed to introduce
immunologically-active substances, preventing the immune

cells from attacking the normal nerve cells near the site of
the brain and spinal cord [53]. A recent clinical study
demonstrated the feasibility of antigen-specific tolerance
therapy by intravenously transporting antigen-mimicking
cells to T cells [54]. For MS, autologous peripheral blood
mononuclear cells are coated with myelin antigens are used
to stimulate antigen tolerance through interaction with
myelin-specific T cells. For early stage patients treated with
myelin coated cells, the vital signs and the blood cell com-
position of the patients were stable and no relapse occurred
within 3months of treatment.
Similar cell coatings were designed to target and

deplete the specific T cell populations responsible for
diabetic injury [55]. The surface of erythrocytes were
coated with a foreign ovalbumin species (Fig. 6a and
b). Following intravenous injection, ovalbumin-coated

a b

Fig. 6 (a) Modification of OVA antigens on the erythrocyte surface. (b) OVA-conjugated ERY1 peptides (green) interact with erythrocyte-specific
protein glycophorin-A (red) on the erythrocyte membrane. Reproduced with permission from PNAS [55]

Fig. 5 The reversible azobenzene interaction with ß–cyclodextran (CD)-coated cells is under control of light irradiation. Figure reprinted from
Nature communications [48]. This work is licensed under a Creative Commons Attribution 4.0 International License. For more information
see http://creativecommons.org/licenses/by/4.0/
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erythrocytes were disproportionately targeted by the
dendritic cells capable of indirect antigen specific
tolerance. By also incorporating immune-induced anti-
gens onto the surface of these erythrocytes, the cells
promoted targeted depletion of the CD4 and CD8+ T cells.
These findings were further supported with a type I
diabetic mouse model, where antigen-engineered erythro-
cytes induced clonal depletion of T cells, and the expres-
sion of IFN-γ-positive T cells was significantly reduced
over ovalbumin-negative controls and ovalbumin alone.
Multiple cell types naturally migrate to the site of

inflammation to serve a reparative function. Drug loaded
coatings attached to these naturally-homing cells offer a
new opportunity to target therapies to the inflamed
region (Fig. 7a). However, the coverage of the entire
surface of transporter cells with biomaterials would
interfere with the migration and cellular activities of
transporter cells throughout the body. Cellular patches
were originally proposed by Swiston et al. [56, 57] to

partially cover the migratory cell with a surface anchored
therapeutic material. In this strategy, polyelectrolyte
multilayer (PEM) patches containing a magnetic nano-
particle payload were adhered onto the lymphocyte sur-
face. These T cells were nearly 100% viable following
patch modification and retained their migratory capacity
with the magnetic PEM patch. This innovative idea of
partial surface modification is appropriate to allow either
T cell interactions involved in immunological responses
or drug carrying potential for cell-based drug delivery.
Additional studies by Doshi et al. [58] found that

PEM-modified multilayer patches on the surface of
mouse macrophages had no adverse effects on cell
viability, migration, or phagocytic activity towards poly-
styrene spheres. Optimization of PEM patch size, modu-
lus, and shape enabled prolonged patch attachment on
the macrophage surface without internalization. In vitro
controlled loading of FITC-BSA from polymeric patches
supports the feasibility of drug delivery with patch

Fig. 7 (a) Delivery of PEM-backpack-coated monocytes to inflamed tissue. (b) Backpack design and adhesion. (c) Higher accumulation of modified
monocytes in the inflamed mice skin , compared with backpack alone. Reprinted from [59], Copyright 2015, with permission from Elsevier
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coated cells (Fig. 7b). Patch-coated and uncoated mono-
cytes both undergo stimulation-induced differentiation
into macrophages. The targeting of coated monocytes to
inflamed skin and lung tissues was supported in mouse
models [59]. Higher accumulation of patch-coated mono-
cytes in inflamed tissue over the patch alone, illustrated
that coated monocytes retained their ability to penetrate
across barriers to target regions of inflammation (Fig. 7c).

Coated cell mediated delivery for cancer therapy
The irregular vessel organization, low oxygen supply,
and high interstitial fluid pressure of large tumors im-
pedes the delivery of drugs into large malignant tissues.
Currently, the majority of tumor-targeting approaches
use liposomes, micro- or nanoparticles, and polymers.
However, their insufficient penetration into deep tumor
tissues and rapid clearance limits therapeutic efficacy.
The use of tumoritropic cells as drug carriers is a prom-
ising new approach to deeply penetrate tumor tissues
and increase drug efficacy [52].
There are now multiple examples of drug-coated T cells

used for tumor-specific targeting of a therapy [60, 61]. T
cells, B cells, and natural killer cells all have some level of
tumoritropic capacity [62–65]. These immune cells migrate
across capillaries and blood vessels to tumor sites by target-
ing the cytokines released by the cancer microenvironment
[60, 61]. Irvine et al. coated T cells with liposomes loaded
with cytokines promoting help T cell differentiation,
growth, and endurance at tumor sites [66, 67]. The nano-
particle (NP) coatings were optimized to minimize any
effect on cells’ tumoritropic migration in vitro and in vivo.
Later, this team also studied the cell-based delivery of
phosphatase-encapsulated lipid nanoparticles to promote

T cell expansion through the delivery of T-cell regulating
phosphatases [67]. T cells were coated with these thera-
peutic NPs and used to treat mouse models of human pros-
tate cancer. Mice treated with coated T cells had increased
T cell expansion, reduced tumor size, and increased animal
survival by 60 days over unmodified T cell groups.
Macrophages are also emerging as a useful tool for

cell-mediated penetration into tumor masses. They
effectively carry drug-encapsulated liposomes into tumors for
simultaneous imaging and therapeutic delivery [68]. After
surface modification of doxorubicin (DOX)-loaded lipo-
somes, these drug-loaded macrophages accumulated at the
tumor site of an A549 xenograft tumor in a mouse model.
24 h after injection, accumulation of DOX was significantly
higher in mice treated with of liposome-DOX-loaded macro-
phages when compared to PBS, macrophage, DOX and
liposome-DOX-injected controls. The weekly intravenous
injection of coated macrophages also decreased the 1month
tumor size by around 40% when compared to the
DOX control group in the same study.
Many stem cell populations also naturally target tumor

sites. Neural stem cells (NSC) are actively studied for
the delivery of platinum based therapies to ovarian
tumors [69]. NSCs are coated with a nonporous silica
that encapsulates platinum-based drugs and has minimal
NSC toxicity. These platinum-loaded particles persisted
deep inside in solid tumor masses 24 h following
intraperitoneal injection into an ovarian cancer mouse
model. These findings support NSCs as an alternative
cell carrier for drug loaded coatings into the core of
tumor masses. Finally, human mesenchymal stem cells
(hMSCs) are promising for the delivery of nanoparticle
payloads into tumor masses (Fig. 8) [70]. In one study,

hMSC

Nanoparticle 
Cargo

Tumor Model

a

b

c

Fig. 8 The delivery of NeutrAvidin nanoparticle-coated hMSCs to the HEPG2 tumor spheroid. "Reprinted with permission from [70], Copyright
2010, American Chemical Society"
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NP patches were prepared through the attachment of
NeutrAvidin-coated NPs to partially modify the surface
of covalently biotinylated hMSCs. Coated MSCs targeted
HEPG2 tumor spheroids in vitro, and this approach
supports the use of nanoparticle-based coatings for
cell-mediated tumor targeting.

Preservation of cellular function in hostile environments
Protection against in vivo immune responses
Organ transplant and blood transfusions are common
procedures requiring the use of allogenic tissue and cells.
However, if this allogenic material displays differing major
histocompatibility complex proteins than the host, an
immunological response is triggered and the cell or tissue
is rejected. T-lymphocytes are primarily responsible for
the recognition of allogenic tissue or cells resulting in in-
creased T cells. While conventional therapies to suppress
T cell activity are potentially dangerous [71], cellular
coatings are a physical approach of camouflaging and
protecting the transplanted cell from T cell recognition
and rejection. Camouflaging of human peripheral blood
mononuclear cells with PEG coatings effectively inhibits
the cytokines and Th17 lymphocytes associated with
rejection while elevating the Treg cells associated with
tolerance in a mouse model [71]. Additionally, in vivo
studies showed that after injection of PEGylated donor
splenocytes, Treg lymphocytes remained elevated above
the levels in naïve mice while Th17 lymhocyte levels
remained unchanged 30 days after injection.
Cellular coatings are also used to camouflage trans-

planted erythrocytes from a patient’s immune system
[72–75]. Whole blood and packed red blood cells are
commonly used in cases of anemia, trauma, and during
surgery for the restoration of blood volume and oxygen
carrying capacity. Blood group antigens on erythrocytes
are the most common trigger for immunological rejec-
tion of blood products [72, 76], and a diverse supply of
blood products must be maintained to assure the avail-
ability of properly matched blood. An erythrocyte with
masked antigens can act as a “universal” blood cell,
where only a single blood supply must be maintained.
The design of the cell coating determines the efficacy

of antigen masking, and efficacy varies by the targeted
antigen. Cyanuric chloride-PEG coatings effectively
mask Rh antigens, but they only partially mask A or B
antigens [75]. This divergence in efficacy is likely
attributed to a deficiency of amino binding sites on
A and B antigens or poor access of these antigens
for large PEG macromolecules. The use of a
2-iminothiolane (IT) tether can be used to increase
binding site accessibility by maleimidophenyl-PEG
(Mal-Phe-PEG) through thiol-maleimide chemistry.
Mal-Phe-PEG was found to mask anti-C, anti-c, anti-E
and anti-e antigens using this approach with an IT

extension. However, of greatest clinical significance, A
and B antigens are “camouflaged” from the immune sys-
tem of Mal-Phe-PEG-5000 and Mal-Phe-PEG-20000
(Table 1) [75]. Masking of all ABH/Rh antigens can allow
for blood transfusion at a reduced risk of alloimmunization.
In addition to thiol-maleimide-based PEGylation, other

coating chemistries are effective in masking erythrocyte an-
tigens. Wang, et al. used SVA-mPEG to camouflage RhD(−)
antigens and studied masking efficacy by monitoring T cell
proliferation and differentiation [73]. Polymer grafting to
RBCs with RhD antigens effectively suppressed the immune
response in PBMC and dendritic cells of RhD-sensitized
women. When compared to negative controls (autologous
and heterologous ABO-matched RhD erythrocytes), there
was no increase in proinflammatory Th17 cells for the
erythrocytes coated with mPEG and the anti-inflammatory
Treg populations were maintained or increased.
Hyperbranched polyglycerols (HPG) are also effective in

camouflaging RBCs from immunological rejection [74].
HPGs have good blood compatibility both in vivo [77] and
in vitro [78], and are easily modified before or after covalent
bonding to the cell surface [74]. HPG functionalized with
succinimidyl succinate (SS) adheres covalently to amines
on the cell surface. In a study by Rossi, N.A.A., et al., full
RhD antigen masking was achieved for polymers > 56 kDa,
and these high HPG molecular weights resulted in better
protection than lower molecular weights (33 kDa). The
SS-HPG modification did not damage or rupture the cell.
Of particular interest, the dendrimer-like structure of HPG
also has many excess hydroxyl groups for the potential
incorporation of other coating functionality.

Table 1 Effectiveness of PEG chain on PEGylated RBCs
measured by agglutination (0 indicates no agglutination).
Mal = Maleimide; CnCl = Cyanuric chloride. Reproduced with
permission from John Wiley and Sons [75]

Modifying PEG Reagenta Agglutination with

Anti-A Anti-D

None 4+ 3+

Mal-Phe-PEG-5000 4+ 0

Mal-Phe-PEG-10000 2+ 0

Mal-Phe-PEG-20000 1+ 1+

Mal-Phe-PEG-5000 + 10,000 b 4+ 0

Mal-Phe-PEG-5000 + 20,000 b 1+ 1+

Mal-Phe-PEG-5000 + 10,000 + 20,000 b 3+ 0

Mal-Phe-PEG-5000 and 20,000 c 0 0

CnCl-PEG-5000 4+ 1+
aAll the incubations were carried out in the presence of IT
bThe PEG reagents of different chain lengths were present together in the
reaction mixture
cThe RBCs were first PEGylated with the Mal-Phe-PEG-5000. After removing the
excess reagents by washing, the PEGylated RBCs were reincubated with Mal-
Phe-PEG-20000 in the presence of IT
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Protection against hostile in vitro conditions
The vulnerability of mammalian cells makes cell viability a
huge obstacle in many applications. Mammalian cells are
surrounded by a thin lipid membrane that is highly sus-
ceptible to small changes in the surrounding environment.
In contrast, many non-mammalian organisms have rigid
coatings which protect them in a more diverse range of
environments. For example, microbial cells use their cell
membrane to protect themselves from harsh environ-
ments [79]. Certain bacteria even use their coating to
shutdown metabolic activity to survive harmful UV radi-
ation, temperatures, and chemicals [80]. Several research
groups are now actively working to create similar protect-
ive coatings for mammalian cells, enabling active control
over cell activity in a broad range of harsh environments.
Nanoparticle engineering is a useful tool to protect mam-

malian cells against foreign toxic substances or stresses [81,
82]. Silica acts to encapsulate some microbial cells as a pro-
tective shell. The biosilification of individual mammalian
cells was explored by Lee et al. to create protective coatings

around cells for improved activity in hostile conditions
(Fig. 9) [79]. HeLa, 3 T3 fibroblasts, and Jurkat cells were
coated through incubation in poly(ethyleneimine) (PEI)
followed by incubation in tetramethyl orthosilicate and
3-mercaptopropyl trimethoxysilane. When compared to
unmodified cells, silica coated HeLa cells had higher viabil-
ity for continued trypsin exposure and high concentrations
of the cytotoxic chemical poly(allylamine hydrochloride).
Increased viability in these harsh conditions was also
achieved for coated fibroblasts and coated Jurkat cells.
Prior work by the same group has showed that the

degradable organic-metal nanoshell, produced by the
reaction between tannic acid (TA) and ferric ions (Fe),
could directly form a protective coating on individual
yeast wall [83]. TA, a type of polyphenol, has been known
for its reaction with metal ions to form an organic-metal
particle complex [84, 85]. According to high protein affin-
ity of TA and TA-Fe reaction, Park et al. generated cyto-
protective TA-Fe nanocoatings on the surfaces of various
mammalian cells (HeLa, NIH3T3 fibroblast and Jurkat) by

Fig. 9 (a) Cell Surface modification of HeLa cell with silica nanocoating. (b) Protection of HeLa@SiO2 (silica coated) cells versus non-coated HeLa
cells to enzymatic trypsin attack. (c) Survival ratio of HeLa@SiO2 cells versus uncoated HeLa cells when exposed to various PAH concentrations.
Reproduced with permission from John Wiley and Sons [79]
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simply incubating the mixture of TA and Fe into cell solu-
tion. Due to the ability of TA to absorb UV light, the TA-Fe
coating can prevent cells from UV irradiation-induced
DNA damage. While native cells were ruptured by
dehydration or reduced pressure, the results showed that
higher UV-irradiation tolerance and higher resistance
against cationic polymer (PEI) penetration was achieved for
the TA-Fe coated cells compared to the non-coated ones
[80]. Additionally, coatings based on this metal-organic
complex preserved mammalian cell viability better than the
silica coatings [79].
Fully organic coatings also protect mammalian cells

against harsh environments. PEGDA coatings protect
cells from chemical lysis through exclusion of harsh
surfactants. Photopolymerized coatings formed in buff-
ered solutions of 25 wt% PEGDA (Mn 575 or 3500) pre-
serve the viability of encapsulated Jurkat and A549 cells
in 5% sodium dodecyl sulfate (SDS) for at least 15 min
[86, 87]. When using a photodegradable PEGDA chem-
istry [88], viable cells are released following SDS expos-
ure to proliferate in vitro [86]. These same coatings
protect cells from hypotonic lysis in pure deionized
water. Under hypotonic conditions, the coatings mech-
anically reinforce the cell membrane to prevent rupture
of the cell.
Zhang, et al. designed a dextran-based drug eluting

conformal coating that was anchored to human embry-
onic kidney 292 T cells while still maintaining high cell
viability [89]. Curcumin was used as a model drug for its
anti-oxidant and anti-inflammatory nature which was
shown to slowly release over 72 h. The cellular coating
was shown to protect the cells from reactive nitrogen
and oxygen species in vitro. While results showed the
coating system could be clinically beneficial following
transplantation, a three-day observation of rhodamine-
labeled coatings showed that the majority of coating
fluorescence was located in the cytoplasm making it
unsuitable for permeant encapsulation.
Oxidative damage to cell membrane proteins is a major

cause of shortened circulation time of erythrocytes. As
erythrocytes age, cells undergo lipid peroxidation which
increases the amount of phosphatidylserine in the outer
membrane, aggregation of Band 3 proteins, and early
clearance of erythrocytes [90]. TEMPO is a radical scaven-
ger, and cell surface coatings incorporating TEMPO pro-
tected erythrocytes in an in vitro model of oxidative stress
longer than control coatings without TEMPO. The benefit
of TEMPO was found to be concentration dependent, and
the incorporation of TEMPO was not cytotoxic. Interest-
ingly, polymer coatings which lack TEMPO also offered
some protection against erythrocyte clearance. Addition
of the cross-linking agent bis(sulfosuccinimidyl)suberate
to covalently bound poly(dimethylacrylamide) minimized
the aggregation of Band 3 proteins. Overall, this class of

mammalian cell coating retained cell membrane integrity
for at least 24 h and erythrocyte aggregation was not
observed [90].

Cell isolation for Cancer diagnostics
Cancer patient survival and quality of life are all strongly
correlated with the stage at diagnosis. As a result,
analysis of the peripheral blood for signs of cancer is
being pursued as an opportunity for routine, minimally
invasive cancer screening. The presence of tumor cells
in circulation for early stage disease is a potential diag-
nostic marker residing in an easily accessible tissue. The
critical challenge of a blood biopsy for cancer is the
isolation of targeted cells from unwanted cells, and the
isolation of these living cells is commonly achieved with
cell surface modification [87].
Magnetic-Activated Cells Sorting (MACS) is based on

forming magnetic coatings on cells and is already widely
used in clinical cell sorting [91, 92]. Alternative sorting
techniques based on protective cell coatings area also
emerging to fill niche applications. MACS utilizes para-
magnetic coatings to alter the position of specifically
labeled cells. MACS coatings typically consist of labeled
magnetic nanoparticles or microparticles that are tar-
geted to specific cells with antibodies or specific protein
interactions [93]. Typically, antibody-labeled magnetic
beads are used to make antigen-positive cells susceptible
to magnetic fields. Cells are then passed through a col-
umn surrounded by a magnetic field which pulls mag-
netically functionalized cells to the column walls. Cells
that are not pulled to the wall are collected separately.
These coatings are designed as assemblies of individual
particles on the cell surface to not interfere with normal
cellular processes. In most cases, these coatings are not
specifically removed, and their impact on cell function is
minimal. In cases where the residual coating is not pre-
ferred, many methods for detaching the magnetic parti-
cles from the cell have been successful [93].
The performance of these MACS systems is best con-

trasted with the other dominant cell sorting technology,
fluorescence activated cell sorting (FACS). MACS allows
for high throughput separations that are not as easily
achieved with FACS. The greatest disadvantage to
MACS is lower purity than achieved by FACS. In order
to combat this, in recent years cells have been passed
through the magnetic field twice, each time using a dif-
ferent magnetic tag, to achieve > 90% purities [94]. Most
commonly, high purity cell sorting is achieved by imple-
menting magnetic sorting first to perform an enrichment
step followed by FACS to achieve the desired high pur-
ity. Despite the lower selectivity, many labs will still use
MACS because it is much cheaper than using FACS.
Specifically at many research universities, FACS user fees
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are >$100 / hr. (up to 108 cells [95]) whereas the AutoMACS
systems only cost $15/sample.
In contrast with MACS and FACS which trade off speed

for purity, our lab is developing a new coating-based cell
sorting method designed for both speed and purity. In Anti-
gen Specific Lysis, antibodies and other specific interactions
are used to specifically mark the target antigen-positive cells
with a photoinitiator. The mixture of labeled and unlabeled
cells is added to a monomer formulation and irradiated.
The exclusive presence of the initiating species at the sur-
face of specific cells localizes the polymerization reaction,
forming a nanoscale coating only on the surface of targeted
cells. These coatings are designed from derivatives of PEG
diacrylate to protect the cells against surfactant and hypo-
tonic lysis. The polymer provides a protective shell during
lysis and is later degraded to allow cell proliferation (Fig. 10)
[86, 87]. The degradable polymer coating is capable of
achieving high Jurkat cell viability in media and when
exposed to 5% SDS or deionized water [86].
In the isolation of A549 lung cancer cells from an

excess of Jurkat cells, antibodies against EpCAM were
used to target the photoinitiator to the A549 cells. Fol-
lowing lysis in 5% SDS a > 98% pure population of A549
cells was achieved. In control studies, antibodies against
CD45 were used to isolate a > 96% pure Jurkat popula-
tion from a majority of A549 cells [86]. This system is
also capable of achieving high purity (> 99%) when
isolating A549 cells from blood. Coating polymerization
and lysis process are batch processes, easily accom-
plished in under an hour. The batch size is fundamen-
tally limited by delivery of light for polymerization, so
scale up is governed by optics, and instruments capable
of sorting 109 cells/h are commercially available for
approximately $2000 (Photon Systems Instruments).
Thus, ASL is a coating approach to cell isolation that
delivers high purity and high speed. Product yield is the
most significant limitation to this coating-driven isola-
tion process. ASL yield is directly correlated to the

density of photoinitiators on the surface of the cell [87].
Cells with low antigen densities result in low photoini-
tiator density and low cell yield. As a result, the protect-
ive coating based ASL isolation is only appropriate for
high throughput, high purity isolations where the low
yield is tolerated.

Coatings design
The rational design of a cell coating for a specific applica-
tion requires consideration of function of the coating and
the interaction of the coating with the cell and the local
environment. Here, we systematically detail the coating
design process moving from the natural cell surface out-
ward. First, the nature of the coupling between the cell
and the coating is critical to both the function of the cell
and the coating. The coating must support the cell’s nat-
ural functions while being anchored to the cell surface.
Next, we discuss the impact of coating material selection
on cell function and target application.

Design of Cell/coating interaction
The cell coating community benefits from several
well-developed bioconjugation techniques that have
been developed for the broader concept of cell surface
engineering. These are categorized into covalent and
noncovalent strategies (Fig. 11), and are extensively
reviewed elsewhere [96, 97]. In this section, we specific-
ally discuss the conjugation methods as they relate to
the design of a cell coating, and we emphasize the
advantages and disadvantages of each technique. Many
additional resources are currently published for greater
detail on chemical modification of cell surface in the
absence of a synthetic coating [96, 98–101].

Antibody conjugation
Cell surface proteins act as convenient functional han-
dles to engineer a cell’s surface. Antibodies are commer-
cially available for most proteins found on mammalian

Fig. 10 (a) Cell selective modification with polymer coating to create protective coating. (b) Survival rate of polymer coated cells versus non-coated Jurkat
cells. Reprinted from [86], Copyright 2015, with permission from American Chemical Society (https://pubs.acs.org/doi/abs/10.1021%2Facsami.5b06298)
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cells. Antibodies localize on the cell surface by antigen
attachment and can then be further modified to allow
polymers or nanoparticles to attach to these antibodies
functionalizing the cell surface.
Biotinylated antibodies are commercially available and

are commonly used for the attachment of cell coatings.
Avidin, streptavidin, and neutravidin all have a high
affinity for biotin, and this creates an adaptable linkage
between a coating technology and cell surface binding
antibodies [59, 86, 87]. For example, Anselmo et al. used
biotinylated antibodies to anchor drug loaded patches
on monocytes for cell-directed cell therapies. Their
“cellular backpack” approach uses layer-by-layer (LBL)
fabrication with a magnetic NP-loaded layer for drug
payload and an attachment layer terminated with biotin
groups that was exposed to streptavidin followed by an
antibody of choice allowing for monocyte attachment.
Patch-adhered, purified monocytes were then released
from the solid substrate to yield monocytes with a LBL
coating on one side of the cell [59]. Our lab also uses
target specific biotinylated antibodies for cell modifica-
tion. Biotin, localized on the cell surface, is bound to
streptavidin conjugated eosin that when exposed to
green light in a monomer mixture, creates a polymer
hydrogel coating around the cell [86, 87, 102]. In a
distinct approach, some researchers are modifying the
lysine residues on antibodies to create antibody conju-
gates with the coating initiators. Cell selective encapsula-
tion was accomplished by Sakai et al. using antibodies
covalently conjugated to horseradish peroxide (HRP).

HRP serves as a catalyst in a cross-linking monomer
solution to form a hydrogel sheath on the surface of a
cell presenting the target antigens [103].
The greatest advantage to antibody anchoring is the

ability to target the surface of specific cells. Antibodies
only bind to specific antigens, and this selectivity guides
the attachment to different types of cell surfaces. This
advantage is highlighted in our group’s use of antibody-
directed cell coatings for rapid cell isolation [86, 87] and
the cell-selective encapsulation achieved by using anti-
bodies conjugated with an HRP catalyst [103]. The most
significant disadvantage to an antibody anchoring to the
cell surface is the cost of antibody production. Antibody
production is done either in vivo or in vitro, where
amount of antibody produced is the largest factor in
cost. In vitro production on an industrial scale can cost
anywhere from $45/mg to $1/mg depending on batch
size [104]. The price gets significantly higher for anti-
bodies intended for use in human subjects or custom
antibody production [104].
In all, antibodies are often the most convenient choice

for the small-scale research and development of cell
surface anchoring systems. Antibodies support greater
cell viability than most covalent anchoring systems.
However, antibody cost will play a major role in the
overall economics of the application. It is likely that for
most commercial or clinical applications, a nonspecific
anchoring system coupled with a conventional upstream
cell sorting would be more economical than an antibody
anchoring system.

Fig. 11 Common methods of anchoring a coating to the mammalian cell surface
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Electrostatic interactions
The negative charge of a mammalian cell surface helps to
drive necessary ions such as potassium or calcium
through the cell. The negative charge on cells results from
the presence of sialic acid residues on glycoproteins, and
the negative charge is also important in preventing cell ag-
gregation [96]. For cell modification, the negative charge
on peripheral membranes serves as a convenient electro-
static binding sites for positively charged polymers, poly-
cations, and nanoparticles. Studies have explored many
different polycations to modify mammalian cells including
poly-L-lysine (PLL) [105], polyallylamine hydrochloride
(PAH) [106, 107], and PEI [79].
This electrostatic anchoring strategy was recently

exploited to reduce cell agglomeration that commonly
occurs in cell therapy and cell processing. One approach
was to replace the slight negative charge on the cells with
a high density of positive charges for enhanced cell-cell
repulsion. By incubating cells in PLL, the polycation spe-
cies electrostatically adsorbs to the cell surfaces in a
speckled cell coating [105]. Since these coatings only
partially covered the cell’s surface area, the cells were able
to internalize the polymer within a few days and return to
normal function. Additionally, minimal cell aggregation
was observed in coated cells while uncoated cells formed
aggregates. Ribeiro et al. demonstrate coating cells from
two bone cancer cell lines and a fibroblast line [105], while
other groups have reported electrostatic anchoring of
polymers to K562 cells [107] and macrophages [58]. Due
to all mammalian cells having a negative charge, electro-
static coupling can be generalized to many cell popula-
tions. The most popular use of electrostatic binding of a
polymer to the cell surface is in the field of LBL cell coat-
ings [58, 107, 108], discussed in greater detail below.
Electrostatic cell modification is also convenient for

nanoparticle coatings. For example, the surface of super-
paramagnetic iron oxide nanoparticles (SPIONs) was
functionalized with positively charged PAH to generate a
stable form of cationic magnetic NPs in aqueous solu-
tion. The SPIONs could then be coated onto HeLa cells
through simple incubation [106]. A similar strategy of
electrostatic coating formation of silica nanoparticles has
yielded cytoprotective coatings around cells. The pri-
mary cell modification is created through an electrostatic
interaction between the cell membrane and PEI [79].
A significant advantage of electrostatic cell modification

is that the chemistry involved is simple and inexpensive.
Additionally, it is not selective to specific cells making the
process easy to translate to different cells or usable in
systems with multiple cells types. The promiscuity of elec-
trostatic coupling is a challenge for cell-specific applica-
tions. The greatest disadvantage to electrostatic cell
modification is the toxicity of many polycations [97, 98].
Polycation toxicity is related to the density of lysine

groups and can be mitigated through adequate lysine
capping with PEG groups in the polymer backbone
(Fig. 12) [109]. Specific polycations also have their own
drawbacks, as well. PEI is not degradable and prevents cell
growth and division [79], and PLL permeabilizes cells
through the formation of polycation pores [105].

Lipid and hydrophobic modification
Hydrophobic interactions are crucial in biology as they
play a role in lipid bilayer formation and protein folding
and interactions [97]. The structure of the phospholipid
bilayer in the peripheral membrane creates a stable bar-
rier between the cytoplasm and the environment. By
mimicking the hydrophobic structure of the bilayer, it is
possible to stably link unnatural components to the cell
surface [97]. Given the abundance of phospholipids in
the peripheral membrane, modified lipids are rational
choices for bilayer integration. Lipid conjugations can be
formed through covalent binding of polymers and pro-
teins to the lipid [96]. These lipid conjugates are readily
incorporated into the bilayer and have minimal impact
of cell viability and function.
CXC chemokine receptor 4 (CXCR4) plays an important

role in recruiting MSCs to chemokines released at the site
of cardiac injury, including SDF-1. DMPE lipids were used
to anchor a conjugate of DMPE-PEG-CXCR4 on the sur-
face of MSCs through hydrophobic interactions within 2
min. The lipid conjugate had no impact on other adhesive
molecules, cell viability, or proliferation, and nearly all
MSCs had CXCR4 on the surfaces [36]. Lim, K.S., et al.
also studied DMPE-PEG-peptide conjugates on MSCs to

Fig. 12 Impact of capping lysine groups with PEG chains on polycation
cytotoxicity and the ability to grow multilayer films. Reprinted with
permission from [109], Copyright 2011, American Chemical Society
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promote adhesion between the CRPPR peptide and the
CRIP2 protein receptor. Jurkat cells were also modified
with DMPE-PEG-SPION-FITC to show cells could be
modified with tracking agents [110].
Cholesterol is another naturally-present material

which resides in the peripheral membrane. Zhang et al.
created drug-loaded, multilayer coatings anchored to the
cell surface with cholesterol. A uniform coating was
formed on individual cells that resulted in controlled
release of curcumin that protected cells from reactive
nitrogen and oxygen species while maintaining high cell
viability [89].
While the attachment of a lipid enables robust anchor-

ing, similar surface modification is attainable with a single
fatty acid chain. Palmitoylation is routinely achieved by
covalently attaching a palmitate group to the coating ma-
terial to conjugate the coating to the peripheral membrane
[97]. Palmitated protein G (PPG) was mixed with MSCs
to allow fatty acid insertion into the cell membrane
through lipid-lipid interactions, and protein G was presented
on the cell surface. [31]. MSCs have also been modified by
Armstrong et al. utilizing a protein-polymer-surfactant
complex [111]. Enhanced green fluorescent protein and
myoglobin, which promotes tissue oxygenation, was coupled
with N,N-dimethyl-1,3-propanediamine (DMPA) where the
hydrophobic nonylphenyl tail allowed for high membrane
penetration. In a cartilage model system, the myoglobin
complex is tight and non-linear allowing for high tissue
oxygenation and reduced hMSC necrosis at the center of the
cartilage from 42 ± 24 to 7 ± 6%.
The greatest advantages to lipid/hydrophobic cell

modification are that 100% protein transfer can be
achieved [97] and that it is less harmful to cells compared
to covalent modification [96]. Additionally, palmitoy-
lation is a reversible process [97]. However, choles-
terol conjugates are difficult to create and require
many chemical addition steps [97] and the interac-
tions are not always strong.

Receptor-ligand affinity
Surface receptors offer a natural target for the modifica-
tion of a cell’s surface. Hyaluronic acid (HA) selectively
binds to CD44 receptors on lymphocytes and has been
utilized as an anchoring strategy in a variety of LBL cell
coatings. These LBL coatings are first formed on a solid
substrate with a terminal chitosan-HA complex layer.
CD44 on the lymphocyte surface binds to the HA, and
then the coated cell is released by cleaving the coating
from the solid support [56, 57]. This strategy was used to
attach HA-coatings to B-lymphocytes, and the cell-coating
association is strong enough to resist mechanical separ-
ation [56]. Swiston et al. also used an HA-CD44 attach-
ment approach to coat B-lymphocytes and T-lymphocytes
with cellular patches, and determined the coating did not

impact on CD44 dependent functions or cell migration in
uncoated regions of the cell [57]. HA-CD44 affinity was
also leveraged by Gilbert et al. to create oriented micro-
tube coatings on lymphocyte B cells to prevent cell-cell
interactions by selectively functionalizing the end of the
microtube with HA [112].
Cell modification using receptor-ligand interactions

allows for cell specific coatings to be created. Addition-
ally, the cell surface is not robustly modified with
receptor-ligand approaches [56]. As a potential chal-
lenge, the promiscuity of these systems can occasionally
lead to uncontrolled aggregation of coated cells [56].

Covalent binding
Covalent binding is one of the most common methods
of cell coating attachment. Proteins, carbohydrates, and
lipids on cell surfaces contain functional groups that
serve as covalent binding sites for materials. In contrast
to the techniques for generating non-natural functional
groups on the peripheral membrane through biosyn-
thetic or metabolic pathways [97, 113], this review
focuses only on the naturally-available binding sites on
the cell surface. The most commonly used, naturally-
present functional groups are amine derivatives and
thiols found in cell surface proteins.
In all, covalent cell modification offers a great advan-

tage due to the high binding strength and stability [97].
However, covalent bonding generally is non-reversible
[96]. Additionally, many covalent coating strategies have
a significant, concentration-dependent decrease cell in
viability [114].

Amine groups Amine groups found in lysine groups
and at the N-terminus of proteins are easily coupled to
carboxylic acid containing polymers and nanoparticles.
The most common form of amine group modifcation is
through the N-hydroxysuccinimide (NHS) activation of
a carboxylic acid. A sulfonated derivative of NHS (sulfo-
NHS) is frequently used in cell surface midification for
improved water solubility and minimal cellular internal-
ization [97]. Sulfo-NHS chemistry successfully biotinyl-
ated a surface for eventual coating with sLex ligands to
increase the rolling interaction of the cell with
p-selectin [29]. Our lab also used a similar sulfo-NHS-
biotin to covalently modify cell surfaces with biotin to
later bind a streptavidin-photoinitiator conjugate. Our
approach facilitated the eventual attachment of PEGDA
cell patches to photoinitiator-labeled A549 cell surfaces
through surface-initiated photopolymerization [114].
The PEGDA films were of thickness large enough to
load nanoparticles, and sulfo-NHS-biotin concentra-
tions in buffer below 2 mM did not impact cell viabil-
ity [114]. Covalent binding for amine group targeting
has also been employed to enhance drug delivery.
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Sulfosuccinimidyl-6-(biotinamido)hexanoate can easily
be bound to cell surfaces through amine binding.
Once conjugated to the cell surface, biotin acts a
binding site that allows for the decoration of hMSCs
and HUVECs with NeutrAvidin-coated nanoparticle
patches [70].
Beyond NHS, polymers are also covalently bound to

amines on the cell surface through cyanuric chloride
activation. Cyanic chloride covalently links to amines on
the cell surface. This method is frequently used owing to
its adaptable chemistry and the chemical stability of
cyanic chlroide conjugated proteins [72, 97]. Most
notably, RBCs were PEGylated by targeting amino acids
on the cell surface with cyanic chloride [72].
Alternatively, succinimidyl valerates (SVA) activate

carboxylic acids for amide bond formation, and this
strategy effectively masked antigens on an erythrocyte
surface with high cell viability using an mPEG-SVA
conjugate [71, 73]. Similarly, amine-reactive succinimidyl
succinate (SS) is effective in amide bond formation for
antigen masking with a hyperbranched polyglycerol
(HPG). As expected, the density of grafted HPG groups
increased with the grafting reaction time [74].
Gołąb et al. provided the only direct comparison of

the SVA and NHS conjugation approaches for mamma-
lian cell coatings. They biotinylated Treg cells with
either biotin-PEG-SVA or biotin-PEG-NHS. Treg cells,
used as an immunosuppressive agent, were coated onto
pancreatic islets. Both NHS and SVA allow covalent
binding to cell surfaces through primary amines. Over
40% more Treg cells were attached to islets when using
SVA linkages compared to NHS [115].

Thiol groups Thiol groups from cysteine in cell sur-
face proteins are present from the reduction of disul-
fide bridges or, less frequently, from naturally
occurring free thiols. Stephan et al. showed high
levels of free thiols could be found on T-cells, B-cells,
and hematopoetic stem cells, but only minimal levels
of free thiols were found on RBCs [66]. With high
levels of free thiols not being found in all cells lines,
this leads to amino groups being more commonly
used due to their high presecence and ease of modifi-
cation. When thiol groups are avalailable they still
serve as good covlaent modification sites due to their
higher nucelophilicity than amino groups [116].
Malemide is commonly used in thiol reactions due to

its selectivity and stochimoetric addition [116]. Stephan
et al. also studied the use of maleimide-thiol conjugation
of drug-loaded liposome nanoparticles to various thera-
peutic cells. The liposomes contained a maleimide-
modified lipid bilayer surface that readily reacts with cell
surface thiols allowing for the conjugation of NPs to the
cell. These grafted nanoparticles were nontoxic to cells

and allowed for enhanced drug delivery of IL15 and
IL21 [66]. The same group also studied covalent coup-
ling of maleimide functionalized lipid nanoparticles to
the thiol groups of T-cells that could allow membrane
permeable drugs to penetrate the immunological
synapse. Phosphate inhibitor drugs conjugated to the
lipid NPs showed greater T-cell expansion at tumor sites
and increased treated animal survival [67]. Altenatively,
maleimide-based PEGlyation was studied for antigen
masking of RBCs. RBCs alone did not have enough thiol
groups mask antigens using a maleimidophenyl-PEG
species. However, 2-iminothiolane, which reacts with cell
suface protein amino groups, introdcued more thiol
groups to promote subsequent maleimide coupling [75].

Material Design for Bulk Coatings
Surface-engineered cells are capable of supporting differ-
ent categories of adhered bulk materials. The materials
on a cell coating can be functionally designed through
their structure, surface characteristics, and physicochem-
ical properties for different biomedical purposes. Here,
we present the distinct types of materials previously used
for cell coatings, including discrete polymer chains,
nanoparticles, layer by layer polymers, and interfacial-
polymerized hydrogels (Fig. 13).

Cell coating composed of discrete polymer chains
In the simplest embodiment, a coating can be con-
structed from individual polymer chains tethered to the
cell membrane. In general, surface-tethered chains are
most effective in non-barrier coatings, where the gaps
between the chains will not limit the desired coating
function. Optimal coating applications for discrete
chains include the fluorescent labeling of cell surfaces,
cell adhesion, and cell homing. The discrete chains are
ideal for these applications as the gaps between chains
still permit abundant intercellular sensing and commu-
nication. For adequate anchoring and coating functional-
ity, the grafted chains are typically heterofunctional
polymer derivatives. In one example, Anderson et al.
used a peptide terminated polymer chain grafted to the
surface of MSCs for MSC homing to inflamed blood
vessels expressing E-selectin [117]. Lower grafting
densities of the peptide polymer on MSCs maintained
normal viability, proliferation, and differentiation charac-
teristics of uncoated cells. However, at high densities,
the coating attenuated the adhesion of MSCs by interfer-
ing with adhesion proteins. When compared to cross-
linked coatings, the use of discrete polymer chain
coatings for this study allows for easier control over
surface coverage. The authors were able to identify
coating conditions that supported the in vitro adhesion
of viable, functional MSCs on the E-selectin modified
surfaces under shear flow.
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While heterofunctional PEGs allow the incorporation of
two functionalities, controlled radical polymerization is
becoming increasingly popular in creating multifunctional
polymers for cell surface coatings. In particular, atom
transfer radical polymerization (ATRP) offers a simple
synthetic route to a diverse range of multifunctional
coatings. D’Souza et al. used ATRP to create fluores-
cently labeled, tissue targeting coatings on HL-60 cells
[118]. N,N-dimethylacrylamide was co-polymerized with
fluorescein-o-methacrylate to provide a cell-friendly
polymer backbone that is easy to track fluorescently. One
end of the fluorescent polymer was conjugated with

amino-biophosphonate to support bone targeting while
the other end was an NHS-activated ester for adhesion to
the HL-60 cell (Fig. 14). The coated HL-60 cells exhibited
higher interaction with bone fragments in vitro than
uncoated cells, while still maintaining high cell viability.
For individual polymer chains to form an effective

barrier coating around cells, the chains must be suffi-
ciently dense to prevent interaction with the target
species. Most notably, this strategy has been extensively
employed in the prevention of alloantigen recognition.
Wang et al. grafted a monofunctional SVA-mPEG chain
to prevent the identification of antigens on donor cells

Fig. 13 Material systems for coatings on mammalian cell surfaces. Adapted with permission from Langmuir [106], Copyright 2011, American
Chemical Society. Adapted with permission from Biomacromolecules [102], Copyright 2015, American Chemical Society. Adapted with permission
from Nano Letters [57], Copyright 2015, American Chemical Society. Reprinted from [118], Copyright 2014, with permission from Elsevier

Fig. 14 The design of bone-targeted polymer chain attached to the cell surface. One end is for cell attachment and the other end for bone
targeting. Reprinted from [118], Copyright 2014, with permission from Elsevier
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by host T-cells [71, 73]. Cell PEGylation effectively
shielded the surface antigens on human PBMC and mur-
ine splenocytes from T-cell recognition [73]. Both the mo-
lecular weight and surface density of the grafted polymer
chains govern the immunoprotection of mPEG-modified
cells. Thicker coatings were observed on the peripheral
membranes of PBMCs treated with higher molecular
weight (20 kDa) of mPEG when compared to lower mo-
lecular weights (2 and 5 kDa), and the concentration of
polymer in solution had a positive correlation with coating
thickness [73]. Similarly, mPEG is also effective in camou-
flaging antigens on red blood cells [119, 120].
Discrete polymer chains are also an appropriate strategy

for the loading of protective agents into a coating. Incorpor-
ation of protective agents into a polymer coating localizes
these species to the cell membrane to sequester materials
prior to interaction with the cell. Individual cells were
coated with a TEMPO-containing poly(dimethylacrylamide)
material, and coated cells were protected from oxidative
conditions without loss of membrane integrity [90].
The long term stability of discrete polymer chain coat-

ings is dependent on the stability of the surface modifica-
tion site and the stability of the polymer backbone. Given
the discrete nature of the polymer attachment, these coat-
ings are susceptible to internalization coating loss or shed-
ding from extracellular vesicle formation. The timescale of
this loss is strongly tied to the attachment site and
method, where the activation of internalization pathways
will sharply decrease the persistence of the coating on the
surface. Most synthetic chains formed via ATRP contain
highly stable backbones [118], while peptide based chains
will suffer from protease susceptibility [121].
Discrete polymer chains are a highly scalable approach

to cell coating deposition. In general, these materials are
synthesized at scale, diluted in buffer, and added to the
surface of the cell. These polymers are easily manufac-
tured in gram to kilogram batches and are significantly
more shelf stable than most therapeutic approaches. The
addition of these materials to cells in solution allows the
scale up through appropriately size bioreactors.

Cell coatings composed of nanoparticles
Discrete nanoparticles are also an effective approach for
changing a cell’s surface properties while leaving gaps in
the coating for the cell to interact with its environment.
The characteristics of nanoparticle coatings closely
match those of discrete polymer chains on a surface, but
the diversity of coating materials is greatly expanded
beyond polymers to metals and inorganic nanoparticles.
This expanded material set enables numerous cell coat-
ings applications, including biosensing [34], cell imaging
[122], drug delivery [123], and cytoprotection [79]. The
nanoparticle dimensions and functional groups regulate
cell surface receptor activities and internalization [124,

125]. Recently, the modification of the cell membrane by
the immobilization of NPs, as opposed to the potentially
cytotoxic intracellular uptake, offers a biocompatible
strategy for distinct surface chemical properties for
specific cell surface functions.
Cellular coatings based on SPIONs are incredibly

useful in cellular sorting and biomedical imaging appli-
cations. Dzamukova et al. designed electrostatic cell
coatings composed of SPIONs that resisted cellular
internalization into the cytoplasm. The positive charged
PAH was stably modified on the SPION surfaces by a
single incubation step [106]. The PAH-SPIONs were
electrostatically deposited onto the negative charged
HeLa cells membrane. The coatings had no impact on
peripheral membrane completeness, enzyme activity,
and cell proliferation. These magnetically-functionalized
cells were spatially positioned with a magnetic field.
Silica coatings are offer excellent protection against

trypsin and poly(allylamine hydrochloride), these nonde-
gradable coatings are only short-term applications where
the cells do not need to proliferate [79]. The silica coat-
ings prevent the normally-adherent HeLa cells from
attaching to tissue culture polystyrene flasks. As a poten-
tial solution, the silica coating allows for functionaliza-
tion with 3-mercaptopropyl trimethoxysilane for the
deposition of a variety of surface adhesive chemistries
[79]. Additionally, the viability of coated HeLa cells
seeded into a cell culture flask decreased from of 77%
after coating to < 60% after 12 h. The authors conclude
the cell division process is hindered by the silica coating,
but this limitation could potentially be addressed by tun-
ing the physiochemical properties of the coating. In all,
this study illustrates a central compromise with these
coatings between short term survival in harsh conditions
and long-term proliferation of the cell population.
Polymeric NPs have been extensively studied for the

controlled release of drugs. Berlin et al linked polymeric
particles to neural stem cells (NSCs) for in vitro delivery to
a tumor-conditioned environment [69], and the NSCs
displayed selective localization in tumor tissues and were
not detected in healthy tissues. Others have arranged these
NPs into cellular patches to improve the interactions of the
coated cell with its environment during cell-based delivery
[70]. These coated cells maintained their tumoritropic cap-
acity, and polystyrene NPs were actively transported to the
site an in vitro model of a tumor spheroid. This study also
determined that NP aggregation, NP internalization, and
peripheral membrane elasticity was strongly dependent on
the approach for anchoring these NPs to the cell surface
[70]. NP aggregation and internalization is a significant
concern for any emerging coating application, and it is
especially critical for cell-directed drug delivery applications
to ensure these materials are on the peripheral membrane
and not in the cytosol of the delivery cell.
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The stability of NP coatings is tied to the stability
of the NP and the nature of cell grafting. As for
discrete polymer chain coatings, NP coatings are
potentially lost from the surface by internalization
[126, 127], vesicle shedding, or degradation of the
NP. Again, internalization and shedding are linked to
the chemical nature and location of attachment [125].
Polymeric NPs are typically designed to degrade over
well-defined timescales [49], while metallic NPs are
often significantly more stable [123].
NPs are also a highly scalable approach to cell coat-

ings. Like discrete polymers, these materials are syn-
thesized separately and mixed with cells in buffer.
The maturity of many NP systems enables reprodu-
cible manufacturing in large batch sizes, and most NP
formulations can be designed for shelf stability. The
mixing of NPs with cells allows effortless scale up to
clinically relevant doses.

Cell coatings composed of layer-by-layer materials
Layer-by-layer (LBL) systems are a powerful and versa-
tile approach for the creation of nanoscale coatings on
cells. Most commonly, a polyelectrolyte multilayer
(PEM) is formed through the exposure of the cells to
alternating charged layers that are electrostatically
adsorbed onto the negatively-charged cell membrane.
LBL coatings preserve the activity of encapsulated thera-
peutics, and these coatings are frequently used for
tunable drug delivery from multi-drug loaded films
[128]. The diverse physical and chemical properties from
each selected polymer layer also offer different function-
alities for versatile biochemical reactions/functions or
mechanical supports in this ultrathin structure. Layers
can be polymer-based or particle-based. As a hybrid
example, ultrathin PEM layers were directly incorpo-
rated onto individual human leukemia cells by LBL
electrostatic deposition, and polyhydroxyl fullerene
microbeads were loaded into PEM layers to provide
adhesion between polyelectrolyte layers. The PEM coat-
ing that included polylysine and polyethyleneimine with
fullerenol was able to fully encapsulate leukemia cells
without inducing nitric oxide production and in vivo
inflammatory responses [108].
PEM fabrication allows not only the formation of a

complete surface coating but also the creation of poly-
meric cellular patches. Polymer patches are frequently
designed for multiple functional cargos for a variety of
potential uses including drug delivery [58, 59, 70, 114],
biosensing [56, 57], and control of cell-cell communica-
tion [56]. These patches are typically fabricated through
lithography on a solid substrate, adhesion of the cells to
the patches, and release of the patches from the solid
support. This strategy effectively created small thermo-
plastic circular payloads on cells for as a drug vehicle.

The small payload was designed to adhere onto cell
membranes and allow unidirectional drug release toward
each patch-bound cell through a drug impermeable
layers in the patch system. These unidirectional drug
release patches are hypothesized to be capable of target-
ing circulating cancer cells and localizing drug release to
only the targeted cells [107].
More frequently, LBL cell patches are created with the

intention of cell-directed drug delivery, and these “back-
packs” of drugs are manufactured by the sequential
deposition of polymer release, drug payload and cell
adhesion layers on a solid support (Fig. 15a) [56–58,
107]. Release layers between the LBL patch and the solid
substrate are either temperature-controlled (with
thermo-responsive polymer PNIPAAm) or pH-mediated
(with hydrogen-bonding polymer PMAA and PVPONs)
dissolution layers. Chitosan/hyaluronic acid-loaded PEM
backpacks have effectively labeled CD44 cells through
HA-CD44 ligand receptor interaction [56–58]. LBL
backpacks also regulate cell communication and aggre-
gation (Fig. 15b). Early work by Rubner et al detailed
direct correlations between patch diameter, the number
of cells applied on each patch, and the degree of cell
aggregation [56]. LBL backpacks on macrophages over
6 μm were sufficiently large to avoid phagocytosis, and
cells have negligible changes in mobility and viability
after attachment of the cellular backpacks [58]. LBL
backpacks were fabricated with PLGA and magnetic NP
payload regions to provide drug encapsulation with a
capacity of cell tracking through fluorescent or magnetic
imaging [56, 57, 59]. These multifunctional coatings
were targeted to inflamed tissues through the VCAM-
mediated leukocyte migration without obstruction of
pulmonary capillaries. Additionally, these LBL backpacks
did not interrupt the cell surface receptor interaction in
uncoated regions of the cell.
As discussed above, the larger surface area of the LBL

coatings frustrates the internalization or shedding of the
coatings [58]. These coating lifetimes are typically defined
by the stability of the coating substituents. The diversity of
LBL coatings substituents enables an extremely wide
range of coating lifetimes available, and this attribute is
very useful for tuning release profiles in drug delivery
applications [59].
Surface adhered LBL processing is amenable to massive

production quantities through well-established micro-
fabrication techniques. As such, patches can be read-
ily produced in any desired scale for later attachment
to a cell surace. In contrast, the LBL growth of poly-
mer coatings directly on a cell substrate is excessively
time consuming. The slow nature of sequential cell
incubation and centrifugation steps would require a
significant technical advantage of this approach to
outweigh the tedious deposition process.
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Cell coating composed of interfacial hydrogels
Radical polymerization allows a covalently crosslinked
coating on the surface of the cell. In general, the cross-
linked coatings are formed through a surface-mediated
polymerization which restricts the polymerization to the
cell surface by only presenting initiation species at the sur-
face of the cell. The immobilization of initiators at the cell
membrane is accomplished by covalent binding of cell
surface functional groups [87, 102], antibody-antigen af-
finity [86, 87], or lipid intercalation [129]. Hydrogel films
on cells are ideal for applications requiring a completely
crosslinked coating, including cell behavioral studies,

selective cell isolation [86, 87], and cellular immuno-
protection [102].
Hawker et al generated a visible light-mediated hydro-

gel encapsulation on human Jurkat cells through
surface-initiated chain transfer radical polymerization
[129]. Their approach used a chain transfer agent
coupled to a lipid to link the polymer to the surface of
Jurkat cells. Eosin Y was used to initiate polymerization
under visible light irradiation, and the growing polymer
was grafted to the cell surface through chain transfer.
The amount of chain transfer agent on the surface of
cells was found to be the main factor in controlling the

Fig. 15 Cell assembly mediated by PEM backpack attachment on macrophage. (a) The design of multilayer PEM backpack. (b) The backpack
attachment was through HA-CD44 interaction on CD44-present macrophage. CHI = chitosan; HA= hyaluronic acid ; MNP= magnetic
nanoparticles; PAH= ; PLGA = poly(lactide-co-glycolide); PMAA = poly(methacrylic acid); DiO= 3,3′-Dioctadecyloxacarbocyanine Perchlorate;
PVPON= poly(vinylpyrrolidone); PAH= poly(allylamine hydrochloride). Reprinted from [56], Copyright 2010, with permission from American
Chemical Society (https://pubs.acs.org/doi/abs/10.1021%2Fbm100305h)

Fig. 16 Strategy for enzyme mediated formation of alginate hydrogel films on HRP-labeled cell surfaces. HRP = horseradish peroxidase. Reprinted
from [103], Copyright 2015, with permission from Elsevier
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cell surface polymerization kinetics, and these cells
remained viable after hydrogel encapsulation.
Enzymatic polymerization has also effectively formed

covalently crosslinked coatings on the surface of cells.
Taya et al used HRP as a catalyst to initiate the stable
hydrogel crosslinking by attacking the phenolic hydroxyl
moieties in the presence of alginate polymer (Fig. 16)
[103]. After enzymatic degradation of their alginate
hydrogel coatings, the HepG2 cells were able to prolifer-
ate at the same level as untreated cells.
Our group combined the concepts of antibody-antigen

recognition and free radical photo-polymerization to
generate a crosslinked hydrogel only on the surface of
antibody-labeled cells. To form these coatings, we adapted
a visible light-mediated polymerization scheme developed
by Cruise et al. for nonspecific polymerization around
porcine islets [130, 131] into a surface receptor-specific
cell encapsulation strategy. We restricted the presence of
eosin, a photosensitizer used in type II photopolymeriza-
tion, to the surface of cells using biotinylated antibody
labeling and a streptavidin-eosin conjugate. Polymer is
only formed on the surface of eosin-loaded cells. Through
antigen-specific protection of cells, we created a high
throughput cell isolation system. The selection of a cross-
linked hydrogel coating supported protection of the cell
from both mechanical and chemical insults [86, 87, 102,
114]. The mechanical properties of the covalently cross-
linked coating also protected the cell from hypotonic lysis
by preventing expansion of the coated cells.
Immunoprotective polymer coatings create design chal-

lenges for supporting natural cell function. For the trans-
plantation of therapeutic cells, oxygen and glucose must
pass freely across the polymer coating to support cell ac-
tivity, while the coating must prevent recognition of sur-
face antigens by the immune system. Ultrathin hydrogels
with a well-defined molecular weight cutoff maximize flux
of beneficial materials while excluding larger species. Our
lab has studied the use of surface-initiated polymerization
to encapsulate individual Jurkat cells with PEGDA in order
to study molecular transport of ultrathin hydrogels [102].
Encapsulation in a 200 nm crosslinked PEGDA film
maintained high cell viability and function. Transport of
fluorescently-labeled dextrans (4, 10, and 20 kDa) across
the polymer cell surface was measured with time
dependent fluorescent microscopy. Coatings of polymer-
ized PEGDA-575 and PEGDA-3500 allowed the rapid
transport of the 4 kDa species while completely excluding
molecules larger than 10 kDa. As expected, coatings
formed from larger molecular weight PEGDA species sup-
ported more rapid diffusion than smaller molecular weight
PEGDA. Of note, the magnitude of the diffusion constants
and molecular weight cutoffs of the polymer coatings were
comparable to that of the bulk material. The similarity of
these transport properties supports a similarity in polymer

structure between these nanoscale films and larger bulk
materials and simplifies the prediction of coating properties
derived from the polymer organization, including transport
descriptors as well as coating mechanical properties.
The stability of crosslinked hydrogel coatings is

defined by the stability of the bulk hydrogel. As these
coatings typically encapsulate the entire cell, the loss of
the coatings by shedding or internalization is minimal.
The exceptional stability of crosslinked PEG materials
create a challenge for prolonged viability of cells, and
the programmed degradation these hydrogels through
photo- [86, 87] or protease-cleavable [132] subunits is
needed. The stability of hydrogels of extracellular matrix
components is also tied to the remodeling capacity of
the resident cells or the site of implantation [121].
The formation of interfacial hydrogels usually requires

the introduction of reaction energy through an irradi-
ation source for rapid gelation and precise control over
polymerization times. These light sources present the
primary limitation to the scale up of these coating tech-
niques. If adequate light sources are available, these
systems can be scaled up readily.

Characterization challenges unique to coated cells
Cell analysis
The health and function of the cell is paramount for any
coated cell application, and the probes used for viability
and function assays must reach the cell for accurate
interrogation of function. Critically, the exclusion of these
probes by a cell surface coating fundamentally alters the
analysis of cellular function. Thus, an explicit description of
probe transport across the coating is essential to the assay
of coated cells. Our lab has reported that 100 nm thick
PEDGA coatings on cells completely prohibit species larger
than 10 kDa from interacting with the encapsulated cell
[102]. As a result, functional analysis of cell surface recep-
tors using antibodies or moderate sized macromolecular
species (fibrobast growth factors, interleukins, transforming
growth factors, Tumor necrosis factor alpha) are inconclu-
sive. We also observed slower transport of ~ 4 kDa species
across our coatings, suggesting transport of insulin (~ 6 kDa)
would be hindered across these PEG coatings (Fig. 17) [6].
As a result, it is reasonable to expect a delayed insulin
response to glucose for a healthy, functional B cell inside a
hydrogel coating. While other coatings have distinct trans-
port characteristics, this example highlights the importance
of membrane transport on these functional assays.
Many viability assays probe the integrity of the cellular

membrane using dye exclusion methods [54]. Broken or
impaired cells allow colorimetric dyes to label intracellu-
lar species (DNA, cytosolic enzyme, mitochondria, etc.).
For instance, Trypan blue is a charged dye that stains
intracellular proteins only when the peripheral mem-
brane is damaged [133]. Similarly, ethidium bromide is a
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cell-impermeable, DNA intercalation dye that fluores-
cently labels necrotic cells [54]. These exclusion assays as-
sume that the cell membrane is the only transport barrier
to the permeation of the dye, and any additional transport
barrier creates an opportunity for a false-positive viability
assay. Similar challenges exist with the transport of probes
for intracellular viability analysis. In particular, calcein
assays are among the most common viability dyes. For a
viable response, the acetomethoxy derivative of calcein
must reach intracellular esterases to cleave the aceto-
methoxy groups to yield fluorescent calcein [134]. Again,
the correct interpretation of cell viability depends on prior
characterization of acetomethoxy calcein transport across
the cell coating. In all, the implications of any transport
barrier introduced by the cellular coating must be
accounted for prior to any determination of viability and
function of an encapsulated cell.

Quantifying coating thickness
For the thinnest cellular coatings, accurate measurement
of the coating thickness is challenging due to optical im-
agining limits. When dealing with coatings less than 300
nm, surface scientists often use ellipsometry, atomic force

microscopy, profilometry and or electron microscopy to
determine layer thicknesses. Unfortunately, the irregular
shapes and heterogeneous chemical composition of
peripheral membrane surfaces introduces significant
challenges to get a baseline for measuring the coating
thickness. In particular, the carbohydrates extending from
the cell surface in the glycocalyx [135, 136] are heteroge-
neous and are likely intertwined with any cellular coating.
Hydrogels also add the extra obstacles to thickness meas-
urement. The solvent choice will dramatically change the
measured thickness value. As such, all coating measure-
ments of hydrogel coatings should be in a buffered, hy-
drated state. The issue of hydrogel solvation precludes all
surface analysis tools operating under vacuum and signifi-
cantly complicates the use of any embedding media. For
transmission electron microscopy, the distinction between
polymer, cell, and embedding medium is also challenging
with coating materials of similar electron densities. When
staining these materials, the transport barrier introduced
by the coating can also lead to inconsistent staining within
samples. As a result, the characterization of coating thick-
ness, and by extension the stability of these coatings, is a
significant challenge for the cell coatings community.

Fig. 17 Transport of FITC-dextran in PEGDA-coated Jurkats. The PEGDA hydrogel films prohibit the FITC-dextran larger than 10 kDa. Reprinted with
permission from Biomacromolecules [102], Copyright 2015, American Chemical Society
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Our lab recently used fluorescent intensity correlations
as a possible route to address this challenge [102].
Biotinylated bovine serum albumin (bBSA) microarrays
on a glass slide were used to mimic a cell surface labeled
with biotinylated antibodies. The microarrays were con-
jugated with streptavidin-eosin and then coated with
PEGDA films through a photopolymerization process
identical to that used to coat cells. The fluorescence
intensity of the microarray using fluorescent NP loaded
coatings was measured using epifluorescent microscopy.
The coatings on the glass microarrays were measured
with profilometery, and the coating thickness correlated
strongly with the fluorescent intensity of the image. This
correlation was then used to approximate the thickness
of the cellular coating based on the fluorescent intensity
of the coatings on the cell.
The emergence of super-resolution microscopy is

overcoming some challenges associated with coating
thickness measurement. Methods such as near-field
scanning optical microscopy [137], multi-photon fluor-
escence [138], stimulated emission depletion [139], and
saturated structured-illumination microscopy [140] are
capable measuring nanoscale coatings, but often present
their own issues such as cell damage or high operation
difficulty [141]. Most popularly, stochastic optical recon-
struction microscopy (STORM) has been developed as a
high-resolution fluorescence microscopy that operates at
approximately 20 nm imaging resolution [141]. STORM
works by using a photoswitchable fluorophore which
favors the off state. As each fluorophore emits a rare
emission in the on state, the signal from the isolated
fluorophore can be traced to the center of the diffraction
limited spot, and the position of that fluorophore is
determined with greater resolution than the original
diffraction limited spot. Over time, the center of
multiple emission events are reconstructed into a fluor-
escent image with sub-diffraction limit resolution. The
ability to measure position within tens of nanometers
allows nanoscale cellular coating thickness to be deter-
mined. We expect STORM and other super-resolution
microscopy techniques to be powerful in the thickness
analysis of nanoscale cellular coatings.

Quantifying ligand surface density
In thin coating formation, the density of linkages to the
cells surface plays a significant role in the coating forma-
tion process and the ultimate physicochemical properties
of the coating. For coatings formed from surface medi-
ated radical polymerization, the abundance of initiator is
a significant factor in growth kinetics, and in a quasi-
planar geometry this is expressed as a surface density
(molecules/μm2) [87, 142, 143]. Increased initiator dens-
ity increases the generation of active radicals near the
surface available for polymerization. Using microarrays

with serial dilutions of bound initiator we have shown
that, while keeping all other parameters constant, thick-
ness of hydrogel formed increases with increasing initi-
ator surface density [144]. We also observed a minimum
surface density of initiator for gelation to occur, and
each monomer formulation will have its own intrinsic
lower limit which depends on many factors such as con-
centration or monomer molecular weight. For cell
surfaces, the abundance of initiator is a significant chal-
lenge to complete hydrogel encapsulation.
In efforts to determine specific targets that are suitable

for complete coating formation, quantitation of specific
surface antigens can be performed [145]. This is typically
accomplished by labeling the binding site with a fluoro-
phore, and correlating the fluorescence to a calibrated
standard. Our lab used Quantibrite beads to determine
the relative abundance of antibody/antigen sites on the
surface of a catalogue of human cells and for the non-
specific labeling of amines on the surface of Jurkat cells
[87, 145]. In an NHS-based binding system, the number
of available amines is significantly higher than is
obtained using antibody labeling of the most abundant
antigens [87]. At present, there is sparse data on the
density of coating binding sites on the surface of cells
for cell coatings, and as a result, the implications of
grafting density on coating design are yet to be fully
detailed.

Mechanical properties of the coating
In applications of involving physical protection of cells,
the quantitative analysis of the mechanical properties of
the coating are critical. Unfortunately, the mechanical
analysis of materials becomes challenging as the size
scale of the material decreases. At small size scales, the
contribution of the interfacial structure begins to domin-
ate over that of the bulk material structure, and simply
scaling down the bulk properties is not predictive of the
behavior of the coating. Additionally, chemical and
structural heterogeneity in the material will create
significant variation in the local properties, and the
impact of this heterogeneity on the target application
must be considered.
Direct measurement of the mechanical properties of a

thin coating on a cell is challenging. Mammalian cells
are highly compliant, and the measurement of a thin,
soft hydrogel on the surface of a cell is problematic. For
approximation of compressive mechanical properties,
micro- and nano-indentation systems are appropriate
only if the coating can be accurately recreated on a stiff
surface. Tensile testing of the material is only reasonable
if it is possible to recreate a thin, unsupported mem-
brane of the material, but the difference between the
cell-supported and unsupported interfacial environment
must be considered. More commonly, the properties of
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the coating are approximated by relating the properties
of coated cells and the unmodified cells. Here, the cell
analysis suite using micropipette aspiration and mechan-
ical indentation developed by Hochmuth and others
allows the extraction of cell-associated properties [146].
In analysis of the coating on the cell, there are many

important caveats. First, the translation of these cell-as-
sociated properties to more common material properties
is nontrivial. Cortical tension is a measure of the equilib-
rium biaxial tension of the cell membrane and
associated structures in a spherical geometry. In
contrast, most bulk materials are evaluated in a uniaxial
tension at a given strain rate in a planar geometry. Next,
the natural variance in the mechanical properties of a
given type of cell further complicates the mathematics of
extracting the coating’s mechanical properties. Finally,
cells respond to external stimuli, and any difference in
the response of the cell with or without the coating will
distort the analysis of the coatings properties. In our
own unpublished studies, variable activation of lympho-
cytes created significant variance in the measurement of
the coated and uncoated cells. In all, the mechanical
properties of the coated cells are best considered as
properties of the cell-coating system and are not quanti-
tatively predicted by the mechanical properties of the
bulk materials used in the coating.

Conclusion and prospects
Cellular coatings fundamentally change how a cell inter-
acts with its microenvironment, and coated cells are being
deployed in a rapidly expanding range of applications.
Current efforts primarily focus on cell adhesion, cell medi-
ated drug delivery, cellular protection, and cell isolation.
Cellular coatings have the potential to impact a broader
diversity of fields than those highlighted above. In particu-
lar, cellular coatings are ideal for altering cellular building
blocks for organoids and tissue structures. New coatings
will enable the protection of cells from chemical, mechan-
ical, and biological insults in new synthetic biological
tissues and systems. Additionally, coated cells can help
direct the assembly of these tissues. Prior work has shown
the self-assembly of cells using editing of a cell’s biology
[147–149] to have cells of high and low adhesive strength.
Similar self-assembly is readily achieved by modulating
the adhesive strength of any cell through a cell coating.
This would allow core-shell structuring of organoids com-
posed of arbitrary cells without altering the cell’s internal
biology.
Coating materials are intimately coupled to their target

applications. To date, polymeric cell coatings are largely
based on matrices for tissue engineering [6, 7, 102, 114,
118] and layer by layer materials [54–57, 83, 105, 106].
Just as tissue engineering biomaterials are rapidly transi-
tioning from bio-inert to bioactive, the cell coating

community is also embracing coatings which deliver
drugs [49–52], modulate the immune system [72–75],
and naturally degrade [86–88]. The development of
responsive and/or naturally degrading inorganic coatings
is expected to increase the utilization of coated cells in
engineered biological systems. Bioresorbable/bioabsorb-
able metals are primarily magnesium based, and future
cell coating developments would allow temporary metal-
lic coatings [150]. As new functionalities are incorpo-
rated into coating materials, the application space for
coated cells will continue to expand.
Rare progenitor cells are of high interest across all

of biology and medicine. The field of rare cell biology
is fundamentally limited by the ability to isolate and
study these rare cellular events. While the study of
semi-rare tumor cells in circulation is broadly studied,
advancements in cell coating yield delivered by more
effective surface polymerization strategies will enable
the study of more infrequent cell populations. The
physiological role of these rare cell populations in
many natural and disease states would be possible
through technological advancements in cell coatings
based isolation.
Characterization tools are rapidly emerging to

analyze cellular coatings. Quantitative data on poly-
mer coated cell thickness and uniformity of coverage
will be more abundant through the greater availability
of super resolution microscopy. Optical resolution of
coatings below the diffraction limit of light will give
better estimates of the thickness of coatings without
correlation to other measured parameters. Addition-
ally, the higher resolution will also improve the detec-
tion of small gaps in polymer coatings.
Perhaps the greatest unsolved limitation in polymer

coatings is the poor distinction between physisorbed
and covalently bound polymers. On stiff 2D sub-
strates, this distinction is determined through rigor-
ous rinsing (shear) or stronger solvents. In the cell
coatings, both shear shear and nonaqueous solvents
are incredibly damaging to cells. The only possible
approach with conventional technology is to directly
probe the adhesion of these coatings with optical
tweezers, micromanipulation, or atomic force micros-
copy. The labor intensive direct probing of the coat-
ings would prohibit the collection of the large sample
sizes required of biological phenomena. A new tech-
nology that can distinguish between covalently bound
and physisorbed materials would dramatically improve
our ability to develop relationships between the
cell-anchoring chemistry and the properties of the
coated cell.
The rapid development of functional coatings for

single mammalian cells has created an exciting new
era of cellular engineering, where the functional

Davis et al. Journal of Biological Engineering            (2019) 13:5 Page 24 of 28



design of a cell’s surface is unconstrained by the cell’s
biology. Our ability to characterize these coatings and
the coated cell are informing the current limitations
of these systems while simultaneously empowering
the development of new coatings that break these
paradigms. As new application ideas drive the devel-
opment of new coating materials, the complexity of
these functional biological hybrid materials will
surpass these powerful examples we see today.
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nanoparticles; SS: Succinimidyl succinate; STORM: Stochastic optical
reconstruction microscopy; sulfo-NHS: Sulfonated derivative of NHS;
SVA: Succinimidyl valerates; TA: Tannic acid; VBPs: Vascular binding peptides;
VCAM: Vascular cell adhesion molecule; VCAM-1: Vascular cell adhesion
molecule 1
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