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Abstract

Reverse-engineering how complex multicellular systems develop and function is a grand challenge for systems
bioengineers. This challenge has motivated the creation of a suite of bioengineering tools to develop increasingly
quantitative descriptions of multicellular systems. Here, we survey a selection of these tools including microfluidic
devices, imaging and computer vision techniques. We provide a selected overview of the emerging cross-talk
between engineering methods and quantitative investigations within developmental biology. In particular, the
review highlights selected recent examples from the Drosophila system, an excellent platform for understanding the
interplay between genetics and biophysics. In sum, the integrative approaches that combine multiple advances in
these fields are increasingly necessary to enable a deeper understanding of how to analyze both natural and
synthetic multicellular systems.
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Background
Answers to many human health challenges require an inte-
grated systems-level understanding of the body [1]. Bio-
complexity, the emergence of properties that are more than
the sum of individual constituents, leads to profound impli-
cations on how to solve problems in regenerative medicine,
cancer therapy, and personalized medicine [2]. This com-
plexity spans multiple spatial scales from molecules, such
as proteins and DNA, to cells, tissues, organs and organ
systems. It requires a systems-level analysis to understand
this complexity [3]. The general paradigm of systems re-
search adopts an iterative approach, which usually involves
transitioning from experiments to model formulation then
to revision of original hypotheses (Fig. 1a) [4].
Genetic model systems, such as the worm—C. elegans,

the zebrafish or the fruit fly—Drosophila melanoga-
ster, serve as proof-of-principle platforms for developing
tools to analyze multicellular systems or to test new tech-
niques in forward-engineering living systems [5]. In par-
ticular, Drosophila enables genetic studies of how genes
are regulated to control morphogenesis [6–8] and physi-
ology [9]. It is an excellent system for studies that are at
the crossroad of biophysics, information processing, and

molecular and developmental biology. The fruit fly system
provides many advantages, including cheap and easy hus-
bandry, rapid life cycle, and many available genetic tools
[5, 10–16]. These advantages contribute to the status of
Drosophila as a premier model for reverse-engineering
multicellular systems. Of note, several fundamental signal-
ing pathways were first discovered in Drosophila, including
Hedgehog [17], Notch [18] and Wingless pathways [19].
Therefore, Drosophila has been extremely crucial in biol-
ogy and bioengineering researches in many areas and will
surely continue to play a critical role in years to come [20].
Beyond fundamental research, Drosophila has been

used to study many health challenges, including cancer
[21–28], neurodegenerative disorders [29–31], infectious
diseases [32], cardiac disease [33], aging and metabolic
diseases [34], wound healing and organ regeneration [20,
35–38] (Fig. 1b). Drosophila disease models can acceler-
ate the rate of therapeutic drug testing and discovery
due to the availability of genetic tools and a genome that
lacks redundancy [11, 39–41]. Thus, Drosophila has a
proven track record for understanding the biocomplexity
of multicellular systems.
Here, we review a selected set of engineering tools

and methodologies that are broadly applicable to
reverse-engineer organ development. As a case in point,
we focus on selected examples centered on the
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quantitative analysis of Drosophila (Fig. 1). This review
highlights selected engineering advances that have led to
the development of tools in the field of high-throughput
and high-content screening: microfluidic devices, im-
aging technologies, and imaging analysis algorithms.
Many novel and elegant engineering designs, such as
various microfluidic devices and imaging modalities,
have more precise manipulations and extract deeper in-
sights from genetic systems, with a large breadth applied
to the zebrafish, the fruit fly and the worm [42–45].
Rapid advances in machine learning and deep learn-
ing have greatly increased researchers’ ability to ex-
tract and analyze biological data. These tools are
enabling increasingly quantitative characterization of
fruit flies and other multicellular systems. Finally, the
availability of many computational modeling tools
(see, for example, reviews such as [46, 47]) has facili-
tated and accelerated the iterative cycle of hypothesis
testing and revision (Fig. 1a). The review concludes
with a perspective on current trends and future po-
tential directions for reverse-engineering of multicel-
lular systems.

Microfluidic devices enable controlled imaging
and perturbations of fruit fly development
Microfluidic devices refer to systems that use chan-
nels with dimensions of tens to hundreds of

micrometers to manipulate a small amount of fluids
[48]. A big challenge in studying the fruit fly is how
to accurately apply perturbations and manipulate its
organs due to their small size. Microfluidic devices
are an increasingly important technique for address-
ing this challenge. In the following section, we dis-
cuss how microfluidic devices were applied in
representative individual studies and how they have
contributed to the improvement of current experi-
mental approaches.

Sample preparation and immobilization
Immobilization is a critical step to achieve high reso-
lution imaging and precise manipulation for moving
samples, such as Drosophila larvae. For example, to
study the larval nervous system, researchers require the
larva to be immobilized to image neuronal physiological
activities. However, immobilization of larvae is difficult
because of its digging and burrowing motion. Trad-
itional immobilization techniques, such as tape or glue,
still allow minor larval movement and reduce larval via-
bility [49, 50]. Therefore, several strategies have been de-
veloped to immobilize samples. For example, Mondal et
al. used a deformable membrane controlled by a water
column to mechanically restrain larvae. The device al-
lows them to image vesicle trafficking in the neurons of

Fig. 1 Workflow for reverse-engineering multicellular systems and the broad applicability of Drosophila as an integrative test case. a A
prototypical, iterative flow for systems analysis of multicellular systems consists of using microfluidic devices to precisely manipulate tissue
samples, advanced imaging technologies to generate high-content data, image processing pipeline such as machine learning for data extraction
and computational modeling for hypothesis revision and regeneration. b Drosophila is an excellent model organism for investigating a broad
range of grand challenges in systems biology and bioengineering. For regenerative medicines, Drosophila helps identify physiological processes
involved in wound closure. Drosophila also serves as models for many human diseases, such as Alzheimer’s disease and cancer. For personalized
medicine and functional genomics, the effects of alternative gene mutations can be mapped to phenotype. Drosophila also serves as a high-
throughput platform for drug screening that is physiologically relevant to human
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Drosophila, C. elegans, and zebrafish at high resolution
[51, 52]. Another chip designed by the same group im-
mobilizes larvae by clamping the mouth region to re-
duce digging movement. There is an additional design
that pneumatically immobilizes larvae and allows for auto-
mated larva loading, immobilization and unloading. Both
methods achieved significant immobilization and resulted
in high-resolution imaging of neural responses [53, 54].
Mechanical restraint achieves easy immobilization but
leads to reduced viability and innate response to mechan-
ical perturbation [53, 54].
Anesthesia is an alternative to mechanical

immobilization. Heemskerk et al. developed an
immobilization chamber that uses desflurane for
anesthesia [55]. A newer design uses both CO2 and com-
pression to immobilize larvae [56]. The chip also incor-
porates inputs for food feeding that allow for long-term
(> 10 h) immobilization and imaging. Researchers were

able to observe regenerative axonal growth up to 11 h of
injury of the larva, demonstrating that CO2 did not
affect the physiology of the larva in this study. An im-
proved design uses coolant, instead of CO2, for
anesthesia and immobilization (Fig. 2a). This technique
enabled the imaging of in vivo mitochondria movement
in axons with high resolution without affecting the larva
physiology [57].
Orienting a multicellular sample during loading is a

frequently encountered problem. To overcome this,
Ardeshiri et al. employed a rotatable glass that can
suck onto the head of the larva to rotate the larva
[49, 58]. Another creative solution allows samples to
be prepared on the cover glass first before the sili-
cone slab is placed on top to form the channels of
the device [59]. This design allows more flexible prep-
arations, better orientations and wider accommoda-
tion of a variety of samples.

Fig. 2 Microfluidic devices for handling, imaging and perturbing Drosophila. a Cryo-anesthesia presents an alternative to immobilization of larvae
by physical restraint. The cryo-anesthesia device can support long-term observation while not affecting normal larval physiology. Figure modified
with permission from [57]. b The REM-Chip is a device that precisely controls mechanical perturbation on Drosophila wing discs and couples
chemical with mechanical perturbations. The device can be extended to integrate additional modalities, such as the application of electric fields.
Figure modified with permission from [77]. c The automated microinjector allows more precise injection of genetic construct or drugs into the
embryo in terms of location (5 μm resolution) and volume (as small as 30 pL) than existing microinjectors. Figure modified with permission from
[61]. d The embryo-trap array rapidly orders and orients hundreds of Drosophila embryos in a high-throughput manner, permitting systematic
study of dorsoventral development of the embryo. It enables parallel imaging of dorsoventral plane in hundreds of embryos. Figure modified
with permission from [67]
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Microinjection
Delivery of genetic constructs into fly embryos requires
precise microinjection. For perturbation studies, drugs/
toxins must also be accurately introduced into fragile
embryos. Due to the requirement of precise placement
and the small volume of injection, microinjectors have
become tools of choice. Several microfluidic devices
have been created to miniaturize this technique and to
surpass the reliability of manual injection. First, Delubac
et al. designed a microfluidic system for automatic em-
bryo loading, detection and injection [60]. The device re-
trieves and places the embryos in contact with the
injector/needle. The injection begins when the system
detects the embryo in front of the injector. This fully-au-
tomated process enables high-throughput screening of
embryos and/or creation of transgenic Drosophila lines.
However, there is no control as to how deep the injector
can go. Later, Ghaemi et al. incorporated a long-taper
needle and a micro-positioner to control the depth of in-
jection (Fig. 2c) [61]. This system enables deep (up to
250 μm), highly-precise injections (a resolution of 5 μm)
and low injection volumes (as low as 30 ± 10 pL) with
minimum damage because of the tapered needle. The
precise (position and volume) injection of toxins (NaN3)
into specific locations of the Drosophila embryo enables
a detailed spatiotemporal study of how toxins affect em-
bryo development [61].

Sorting, positioning and orienting of samples
One of the advantages of using Drosophila embryos is
the high-throughput data collection enabled by the
number of embryos that can be obtained at low cost.
However, sorting, positioning and orienting of many em-
bryos or other post-embryonic organs is a technical hur-
dle that needs to be addressed. Furlong et al. adopted
the concept of fluorescence-activated cell sorting (FACS)
and designed a device for sorting embryos expressing a
fluorescent protein marker [62]. The device uses a ro-
botic valve to separate the embryos into fluorescent and
non-fluorescent samples. In 2004, Chen et al. presented
a pressure-controlled microfluidic sorter for Drosophila
embryos that directs the flow direction of embryos into
different outlets [63]. The computer simulation and flow
experiment with dye demonstrated the functionality of
the device. Chen et al. improved the design to allow for
high-speed sorting, enabled by a deflecting jet to change
the movement of the object [64].
Bernstein et al. presented an early attempt to pos-

ition and orient Drosophila embryos in batch for
high-throughput microinjection. They designed a
micro-assembly of protruded hydrophobic surfaces to
achieve large-scale positioning and orienting of the em-
bryos [65]. Embryos are flowed through the device and are
immobilized when in contact with the hydrophobic

surface. The designed achieved 95% immobilization rate
and 40% alignment rate. They also presented a conceptual
design of the high-throughput microinjection system that
would work with the orientation array, still yet to be real-
ized as a physical working model [66].
Lu and collaborators developed a series of array-based

microfluidic devices for positioning and orienting
Drosophila embryos. A first microfluidic array was
designed to utilize passive hydrodynamics to trap, pos-
ition and vertically orient Drosophila embryos (Fig. 2d)
[67, 68]. The vertical orientation of the embryo allows
the observation of dorsal-ventral patterning of proteins
of interest. The device provided high-throughput dorso-
ventral patterning data. Subsequently, the researchers
modified the device to horizontally orient the embryo
[69]. The Lu lab further improved the design to increase
the loading efficiency to > 90% [70]. The new iteration
also allows for anoxia perturbation of the embryos and
potentially other forms of perturbation.

Multi-modal perturbations to organ systems
Spatiotemporal control over a range of perturbations
(e.g. mechanical, chemical and electrical) on multicellu-
lar samples often requires multi-modal microfluidic de-
vice designs. Lucchetta et al. designed pioneering
microfluidic devices to investigate how temperature reg-
ulates embryogenesis [71, 72]. The device generates a
temperature step between the two compartments of a
Drosophila embryo. This spatiotemporal perturbation of
temperature created a way to understand the complex
biochemical networks governing Drosophila embryogen-
esis [73]. Researchers have adopted this design and used
it for other perturbations. For example, a similar design
exerts spatiotemporal control of oxygen gradient on liv-
ing embryos [74]. To accommodate various Drosophila
samples and apply different kinds of chemical stimuli,
Giesen et al. came up with a device that can immobilize
a range of Drosophila organs and apply chemical stimu-
lations [75]. The authors demonstrated the use of the
device to perturb and image brain, leg and proboscis.
They successfully measured calcium-based neuron re-
sponses to chemical stimuli at single-cell resolution
using this device.
Zhang et al. devised a microfluidic system that applies

millinewton-level mechanical stimuli to Drosophila lar-
vae [76]. The system uses a pipette controlled by a ro-
botic system to apply the mechanical stimulation. The
robotic system significantly increases the accuracy and
consistency of mechanical stimulation over manual op-
eration. Another device that allows for precise mechan-
ical perturbation of organs uses a diaphragm deflectable
by pneumatic pressure to apply uniaxial compression on
Drosophila wing disc (Fig. 2b) [77]. Using this device,
Narciso et al. probed the genetic and mechanical
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mechanisms of Ca2+ signaling in wing discs, a model
organ for investigating signal transduction during organ
growth. The device allows accurate mechanical stimula-
tion of the wing disc, and it can be modified to accom-
modate other organoid-size systems and/or adding
additional perturbations, such as electric stimulation
[78].

Trends for microfluidic devices for multicellular systems
Microfluidic devices enable high-throughput analysis
and perturbation with high spatiotemporal resolution.
Recent efforts have combined functionalities that were
traditionally achieved by multiple microfluidic devices
into one design. For example, Shorr et al. invented a de-
vice that incorporates various automated operations of
Drosophila embryo, including high-throughput auto-
matic alignment, immobilization, compression, real-time
imaging, and recovery of hundreds of live embryos [79].
These new devices have achieved multiplexing of various
modalities, and allow for acceleration of research in de-
velopmental biology and multicellular systems [80].
The possibilities brought up by microfluidic devices

are numerous and the development of new manufactur-
ing technologies is helping the democratization of
microfluidic devices as well. Computer-aided design
(CAD) and simulation have greatly increased the
accuracy and functionality of newly-designed devices
[63, 64, 79]. 3D printing is enabling the customizable pro-
duction of microfluidic chips [81, 82], as the resolution of
those printers has improved significantly. 3D printers have
brought down the cost of manufacturing and enabled the
easy transfer of designs [80]. Other quick-fabrication
techniques, such as hybrid-polyethylene-terephthalate
laminate (PETL), are also lowering the barrier to entry
for microfluidic devices [78, 83]. In addition, many
universities are also providing training programs and
have clean-room facilities that can support the adop-
tion of microfluidic devices among new users [80].
Combined, these developments are encouraging the
development of microfluidic devices with new applica-
tions in developmental biology and the synthetic
biology of multicellular systems.

Three-dimensional imaging modalities enable the
analysis of thick multicellular systems
Due to the larger scales involved, multicellular systems, in-
cluding Drosophila tissues, require three-dimensional im-
aging techniques. An increasingly diverse range of imaging
modalities is enabling researchers to investigate deeper into
tissues. Recent improvements of fluorescence-based im-
aging modalities have increased imaging resolution, sample
penetration and acquisition rate while reducing phototoxic-
ity and photobleaching [84, 85]. In the meantime, other
new imaging modalities, such as harmonic generation

microscopy and micro-computed tomography (micro-CT),
enable label-free imaging [86, 87] (Fig. 3a, b). In this
section, we discuss variations of fluorescent imaging tech-
niques and label-free imaging. We also cover the advan-
tages and limitations of each imaging modality.

Confocal microscopy
Confocal microscopy uses a pinhole aperture to reject
out-of-focus light to improve resolution and signal-to-
noise ratio, compared to wide-field microscopy (Fig. 3c)
[88]. Confocal microscopes can achieve a penetration
depth of up to around 100 μm [89]. Confocal microscopy
is divided into two main subcategories: laser scanning
confocal microscopy and spinning disk confocal micros-
copy [89]. In laser scanning confocal microscopy, a sin-
gle illumination spot is rastered across the field of view.
The image acquisition rate is relatively low because of
the point-by-point scanning system, especially when ac-
quiring 3D stacks with multiple fluorescent channels
from a sample. Because of the small focal point, laser
scanning confocal microscopy can cause significant
photobleaching and the specimen’s long-term viability is
compromised due to phototoxicity [89]. Continuous ef-
forts have resulted in significant increase of scanning
speeds to lessen this limitation [90]. Alternatively, a spin-
ning disk that contains many focus pinholes provides a
multipoint scanning strategy that significantly increases
the collection rate. This reduces photobleaching and im-
proves specimen viability. However, this comes at a cost of
reduced 3D-sectioning capability and resolution.

Light-sheet fluorescent microscopy
In light-sheet microscopy, only a single plane of focus is
illuminated (Fig. 3b). The camera detects fluorescence
from a direction perpendicular to the light-sheet. The
scanning speed of a light-sheet fluorescent microscopy is
100–1000 times faster than that of laser scanning con-
focal microscope. These characteristics minimize both
phototoxicity and photobleaching and enable long-term
imaging experiments of 3D multicellular systems [84].
This advantage allows imaging of a beating heart of a
zebrafish or imaging of whole Drosophila embryos with
fast rates of acquisition [91]. For example, Drosophila
embryos can complete normal development even after
being irradiated for 11,480 images by a light-sheet
microscope [92]. The limited illumination of the speci-
men also results in high signal-to-noise ratio.
Light-sheet microscopes are highly customizable and

can be coupled with other imaging techniques and/or
downstream computational processing. For example,
Greiss et al. achieved single-molecule imaging in a living
Drosophila embryo, which is highly opaque in later stages,
with reflected light-sheet microscopy [93]. Tomer et al.
built a simultaneous multiview light-sheet microscopy that

Wu et al. Journal of Biological Engineering           (2019) 13:33 Page 5 of 16



can acquire 175 million voxels per second (Fig. 3d) [94,
95]. Chhetri et al. developed isotropic multiview
light-sheet microscopy for long-term imaging with double
the penetration depth and 500-fold larger temporal reso-
lution than previous design of light-sheet microscopes
[96]. Aided by image segmentation and computational
tracking, researchers reconstructed the geometry of the
entire tissue and measured morphogenic dynamics during
embryo development [97]. Lattice light-sheet microscopy,

which results in an ultrathin light sheet, further increases
the speed of image acquisition (scanning 200 to 1000
planes per second) with reduced phototoxicity [98].
Light-sheet microscopes can be constructed at rela-

tively low cost, compared with other imaging technology
setups. A great resource for building a customizable
light-sheet microscope is an open hardware and software
platform called OpenSPIM [99]. However, a significant
challenge for light-sheet microscopes is how to process,

Fig. 3 Imaging technologies open doors to deeper insights of Drosophila. a Single-photon (confocal) microscopy and multi-photon microscopy
visualize samples by exciting the fluorophore and detect the emitted fluorescence. Harmonic generation microscopy, however, does not involve
excitation of target molecules for visualization. Second-harmonic generation involves the combination of two photons into one photon without
loss of energy. b Laser scanning confocal and spinning disk confocal microscopes illuminate the whole sample and detects epifluorescence,
while light-sheet only illuminates the focal plane and detects fluorescence from the perpendicular direction. Adapted with permission from [196].
c Confocal microscopy can achieve excellent imaging quality for imaging tasks that do not require penetration deeper than 100 μm. Figure
modified with permission from [197]. d SiMView combines two-photon microscopy with light-sheet microscopy that delivers high imaging
speeds and near complete physical coverage of the embryo while reducing photobleaching and phototoxic effects. Scale bar: 50 μm. Figure
modified with permission from [94]. e Second-harmonic generation microscopy visualizes muscular architecture and trachea system in detail
without fluorophore labeling. Figure modified with permission from [112]. f Third-harmonic generation microscopy was used to visualize lipid
trafficking. Scale bar: 50 μm. Figure modified with permission from [113]. g Micro-CT reveals the postmating responses by Drosophila female
reproductive tract. Figure modified with permission from [125]
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store and move the very large datasets generated in
single experiments.

Multi-photon fluorescence microscopy
Multi-photon fluorescence microscopy relies on the sim-
ultaneous absorption of multiple photons to excite fluor-
ophores (Fig. 3a). This process requires a high-energy
laser concentrated at the laser focal point. Outside the
focal point, the laser power is below the threshold re-
quired for two-photon excitation. This allows multi-pho-
ton microscopes to excite samples at a tiny volume
around the focus point, thus reducing phototoxicity and
extending the duration of in vivo imaging. The precise
excitation at the focal point also improves the
signal-to-noise ratio.
Multi-photon microscopes use near-infrared lasers

with longer wavelengths (lower energy per photon) than
lasers used in one-photon confocal microscopy. The
near-infrared laser allows deeper penetration (2–3 times
deeper for two-photon) into the sample, compared to
confocal microscopy (Fig. 3d) [85]. The laser, because of
the longer wavelength, also scatters less. Therefore,
multi-photon microscopy provides good 3D sectioning
capability for thick specimens. Researchers were able to
image calcium dynamics in Drosophila adult brain in
vivo in behavioral studies and odor-activated neuron re-
sponse due to the deep penetration capability of
two-photon microscopy, which is the most commonly
used multi-photon microscopy [100–102]. Besides
two-photon, three-photon microscopy has received in-
creasing popularity because of its increased penetration
and signal-to-noise ratio. For example, scientists have
successfully imaged through adult mouse skulls at >
500 μm depth using three-photon microscopy [103].
However, multi-photon microscopy has low acquisi-

tion rates due to the point scanning system and leads to
accelerated photobleaching [104, 105]. Two-photon mi-
croscopy also causes autofluorescence of some chromo-
phores, such as NAD(P)H, which can cause significant
noise for image acquisition [106]. The cost is also signifi-
cantly higher because of the more sophisticated laser,
optics, mechanics, and maintenance required. Neverthe-
less, the improvement of functionality and the continu-
ous reduction of costs will enable multi-photon laser
scanning microscopy to be adopted by the wider
research community. Multi-photon microscopy currently
defines the upper limit of penetration depth in
diffraction-limited microscopy [85].

Harmonic generation microscopy
The fluorescence microscopies discussed above have
several innate shortcomings, such as photobleaching,
phototoxicity, and the need to label the molecules [107].
Harmonic generation microscopy, on the other hand,

achieves label-free imaging. Harmonic generation refers
to the nonlinear optics phenomenon where multiple
photons reach a molecule and generate a new photon
without the presence of a fluorophore. For example,
during second-harmonic generation, two identical in-
coming photons are combined to generate one outgoing
photon with a wavelength of exactly half of the excita-
tion beam (Fig. 3a).
The biggest advantage of harmonic generation mi-

croscopy is that it does not require labeling of the mol-
ecules of interest. Harmonic generation microscopy
also substantially reduces photobleaching and photo-
toxicity because it does not rely on the excitation of
fluorophores [108]. In addition, harmonic generation
microscopy achieves deep penetration by using
near-infrared wavelengths for the incident light.
Harmonic generation microscopy has the ability to con-
struct high-resolution three-dimensional images of
several hundred microns of depth.
Harmonic generation provides additional structural in-

formation on molecular or supra-molecular order not
easily detectable with fluorescence strategies. Second-
harmonic generation is caused by materials that are non-
centrosymmetric [109]. These materials include collagen
fibril/fiber structure (type I and II fibrillar collagen),
myofilaments, fibers, polarized microtubule assemblies,
and muscle myosin (Fig. 3e) [87, 110–112]. Second-har-
monic generation microscopy has been used to image
developing muscle structures and the trachea system in
2nd-instar larva, and the lipid bodies in Drosophila cells
[112, 113]. Researchers used second-harmonic gener-
ation microscopy to investigate the structure of Drosoph-
ila sarcomeres and visualize myocyte activity to study
rhythmic muscle contraction [114, 115].
Third-harmonic generation occurs at structural inter-

faces with local transitions of the refractive index [116].
Third-harmonic generation was used to image lipid in
Drosophila and mouse embryos. When coupled with
second harmonic generation microscopy and two-pho-
ton imaging, one can explore the interactions between
lipid, extracellular matrix and fluorescence-marked pro-
teins (Fig. 3f ) [113, 117–119]. Researchers used
third-harmonic generation to visualize rhodopsin in the
eye [120], and to measure the morphogenetic movement
in Drosophila embryos by visualizing lipid droplets
around cell nuclei and the interfaces of yolk structures
[121]. Together, second- and third-harmonic generation
microscopy modalities serve as powerful label-free im-
aging techniques.

Micro-CT
Micro-computed tomography (micro-CT), like trad-
itional CT, uses X-rays to produce sectioning of a
sample and uses computers to reconstruct the 3D
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morphology of the specimen [122]. Micro-CT produces
images with microscopic resolution and avoids artifacts
due to processing of samples used for fluorescence
imaging [123]. Because insects are made of only soft
tissues, they are ideal for micro-CT. With very simple
contrast staining, micro-CT can produce quantitative,
high-resolution, high-contrast volume images of Dros-
ophila, bumblebee, etc. [86, 124]. Micro-CT has become
increasingly popular and is used to study morphological
changes in a broad range of Drosophila tissues (Fig. 3g),
including the female reproductive tract [125], neuronal
structures [126], urolithiasis studies of calcium oxalate
deposition [127], and wings for computational aero-
dynamic analysis [128].
The combination of multiple imaging modalities opens

new possibilities to utilize the strengths while avoiding
the limitations of individual techniques. For example,
Truong et al. combined two-photon microscopy with
light-sheet microscopy to implement two-photon-
scanned light-sheet microscopy for Drosophila embryos
[129]. This combination achieved twice the penetration
of one-photon light-sheet microscopy and is more than
ten times faster than two-photon laser scanning micros-
copy. Researchers also combined multi-photon micros-
copy with harmonic generation microscopy to construct
a comprehensive picture of samples including both the
fluorophore-labeled molecules and non-labeled struc-
tural molecules [130]. However, a major challenge for
systems bioengineers is to process large datasets gener-
ated by these advanced imaging techniques. There is a
critical need to automate the analysis of large datasets
and to reduce high-dimensional data that includes infor-
mation of molecular species and biophysical properties
of cells through both space and time [131].

Trends of imaging technologies for multicellular systems
Besides the introduction of new imaging principles,
existing imaging technologies are often combined for
multiplexing of functionalities that further increases in
performance [93–96, 98]. There is also a trend of
democratization of imaging technologies, from the
OpenSPIM project supporting the construction of cus-
tomized light-sheet microscopes to mobile phone-based
microscopy [99, 132–134]. The increase in acquisition
speed and resolution encourages the advance of image
analysis methods to handle the ever-increasing amount
of data generated from analysis of multi-cellular systems
with Drosophila providing a versatile system for
proof-of-concept studies.

Data-driven learning algorithms accelerate the
quantitative analysis of multicellular systems
The exponential increase in biological data acquisition
rates challenges conventional analysis strategies [135].

Integration of advanced algorithms for bio-image ana-
lysis is thus highly desired. The result of a bio-image
analysis pipeline can be as simple as quantification of
fluctuations in cellular areas over time or as complex as
a high-dimensional array of features of a Drosophila
wing. In short, the goal of analysis is to convert images
into arrays of numbers that are amenable to statistical
evaluation. This helps create data-driven models or to
validate predictions from phenomenological or mechan-
istic models. In this section, we discuss how both
conventional machine-learning and deep-learning algo-
rithms play critical roles in the analysis of multicellular
systems, using selected examples focused on the fruit fly.
In particular, we show how deep learning is rapidly
emerging as a solution to accelerate the analysis of bio-
logical big data (Fig. 4a).
Machine-learning algorithms leverage training datasets

to find features within the data to fulfill the task of either
classification or prediction [136]. A feature is a measur-
able property or characteristic of a phenomenon within
the image. Feature extraction can either be manual or
embedded within the algorithm’s architecture. Machine-
learning algorithms are either supervised (requiring
example input-output pairs to train the algorithm) or
unsupervised (input data not annotated). Unsupervised
learning algorithms, such as k-means clustering, perform
poorly on noisy datasets and are frequently unsuited to
bio-image analysis [137]. Therefore, supervised machine-
learning algorithms are more commonly adopted for
bio-image analysis (Fig. 5).
One of the major challenges in cellular tracking is

obtaining high-quality segmentation masks of cells and
separating regions of interest from noisy images at each
time points. Non-machine-learning techniques, such as
Otsu’s method [138] and P-tile method [139], are very
sensitive to noise and do not produce good quality seg-
mentation masks. An alternative approach is using re-
gion accumulation algorithms, such as watershed
transformation [140] as implemented in EpiTools [141],
where seed points are defined within the image and are
iteratively grown to form the complete label [142]. How-
ever, these algorithms result in over-segmentation and
require further manual processing.
In comparison, researchers have started using super-

vised machine learning based on pixel classifiers for
image segmentation because of their versatility and ro-
bustness. Some of the most widely used algorithms in
designing a pixel classifier are support vector machines
[143], adaptive boosting (AdaBoost) [144] and random
forest [145]. A number of open-source packages, such as
CellProfiler [146], Ilastik [147], CellCognition [148], Phe-
noRipper [149], Wndchrm [150], Fiji [151] and EBImage
[152], implement the above algorithms. However, the al-
gorithms used in most of the existing packages require
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selection of features by a user (Fig. 4b). Incorporating
too many features slows down the implementation of
the algorithm and makes them unsuitable for real-time
quantification. Manual feature selection and extraction
also increase the processing time for each image and

hence make these algorithms unsuitable for big data
processing.
To resolve these issues, researchers have started to use a

class of machine learning algorithms called deep learning,
which completely bypasses manual feature extraction.

Fig. 4 Data-driven learning accelerates the quantitative analysis in systems bioengineering. a The literature on cell image analysis shows an
exponentially increasing interest in cell segmentation and the emergence of new approaches for this purpose. In total, 250 journal papers
describing cell segmentation methods were analyzed in [198]. b) Upper panel shows automated extraction of trichrome densities for Drosophila
wings using an open source package, FijiWings. Lower panel shows heat map of intervein area and trichrome densities for the whole wing blade
using the same software. Figure modified with permission from [199]. c Schematic shows how the neural net architecture can be used for
modelling many–one interactions between genetic perturbations and development. Figure modified with permission from [200]. d A comparison
of segmentation methods demonstrates that convolutional neural network performs better than Ilastik (based on random forest) for
segmentation of phase contrast images of HeLa cells. Figure modified with permission from [200]. e Schematic showing use of convolutional
neural networks for the purpose of image registration. Figure modified with permission from [163]
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Deep-learning techniques achieve higher accuracies than
classical machine-learning methods. These algorithms rely
on neural networks, where layers of neuron-like nodes
mimic how human brains analyze information (Fig. 4c)
[153]. Since deep learning is a relatively new concept in
computer vision, its impact in the field of bio-image in-
formatics is yet to be fully realized [154]. The architecture
of neural networks automates the extraction of features,
thus eliminating the need for feature selection (Fig. 5).
Thus, deep-learning algorithms are suitable for processing
large datasets as there is a significant reduction in compu-
tational time achieved by avoiding a separate task of fea-
ture extraction. Once trained, deep-learning algorithms
can analyze data from new sources of bio-images.
Rapid development in processing capabilities and

availability of packages, such as TensorFlow [155],
Blocks and Fuel [156], Torch [157], Caffe [158] and

MATLAB, are making deep-learning techniques widely
accessible to the systems biology and bioengineering
communities. Deep-learning algorithms generate more
accurate segmentation masks in less time, compared to
conventional supervised learning algorithms.
One of the most common deep-learning algorithms is

convolutional neural network (CNN) [159]. In a CNN,
every network layer acts as a detection filter for the
presence of specific patterns in the data. The first layers
in a CNN detect large patterns that can be recognized
and interpreted relatively easily. Later layers detect in-
creasingly smaller patterns that are more abstract. The
last layer makes an ultra-specific classification by com-
bining all the specific patterns detected by the previous
layers. However, the usage of this class of algorithms is
heavily restricted by the amount of training data avail-
able in biology. To overcome this problem, a modified

Fig. 5 Workflow utilizing supervised machine learning for classification and prediction. a A supervised machine learning approach first requires
the algorithm to learn the task of classification/prediction, based on the training data. Conventional machine learning approaches require another
set of algorithms for identifying, selecting and extracting the features from the images. The extracted features are then used for projecting the
image into a high-dimensional feature space. The task of classification/prediction is then done over this feature space. b In contrast, deep
learning identifies these features through its complex neural architecture, trying to mimic the human brain, without requiring additional steps for
it. Once trained, these models tend to perform much faster and are suitable for real-time quantification
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full CNN called U-Net was created [160]. U-Net was
used to segment cells in Drosophila first instar larva ven-
tral nerve cord using only 30 training images, thus sig-
nificantly reducing the size of training data required for
conventional CNN. Duan et al. used CNN to identify
and mark the heart region of Drosophila at different
developmental stages [161]. The algorithm performs
better than the conventional machine-learning algo-
rithms (Fig. 4d).
Additional applications of deep learning for analyzing

multicellular systems in Drosophila include image regis-
tration. For example, cultured samples often move dur-
ing image acquisition. The movement, along with
deformations within the tissue, makes spatial quantifica-
tion of features a difficult task. Image registration for
biological samples is a two-step process: a) segmentation
to identify regions to be registered, and (b) registration
of the region of interest. Conventional machine-learning
algorithms are not well-suited for this task as they often
rely on manual identification of intensity-based features
that vary over time. Liang et al. used deep learning to
segment out the pouch from time-lapse movies of
Drosophila wing discs that expresses GCaMP6, a
genetically-encoded fluorescent sensor [162]. Segment-
ing and registering the wing disc is challenging due to
the highly dynamic and stochastic Ca2+ dynamics [162].
The full CNN architecture identifies high-level embed-
ded patterns, which are sometimes impossible to identify
and extract manually. Segmentation was followed by a
modified traditional image registration approach for
tracking the moving wing disc pouch. Similarly, a full
CNN was also used with a novel non-rigid image
registration algorithm to optimize and learn spatial
transformations between pair of images to be registered
(Fig. 4e) [163].

Trends of data analysis techniques for multicellular
systems
In summary, data-driven learning algorithms, such as
machine learning and deep learning, serve as powerful
new techniques for image processing of multicellular
systems such as Drosophila. These algorithms can be
used to tackle complicated problems and reveal struc-
ture in data that is too big or too complex for the hu-
man brain to comprehend. One of the biggest challenges
in using these algorithms is that they require extremely
large datasets that are well-annotated to train the algo-
rithm. To circumvent this challenge, researchers have
been working on ways to train models more efficiently
with less data. Advancements in transfer learning enable
the deep learning to apply classification capabilities ac-
quired from one data type to another data type, thus in-
creasing its robustness [164]. However, there are several
challenges that need to be overcome to fully unleash the

power of deep learning in biological research. A signifi-
cant challenge is to make these techniques accessible.
Collaborations are required between computer vision re-
searchers and biologists for developing general-use pack-
ages. Support and proper documentation standards are
needed for maintaining new computational packages to
enable researchers to benefit and more quickly adopt
new algorithm methodologies.

Concluding perspectives
Systematic approaches that integrate advanced micro-
fluidic devices, imaging acquisition, and machine learn-
ing are essential techniques for analyzing the
development of multicellular systems. There is an emer-
ging need and intensive focus toward accelerating the
cycle of hypothesis generation and testing and interdis-
ciplinary collaboration through the engineering of inte-
grative experimental and computational pipelines (Fig.
1b). Significant progress is being made that combines
device manufacturing, computer vision, statistical ana-
lysis with mechanical automation of time-consuming
biological experiments by multidisciplinary teams [165,
166].
From the traditional fluorescence-based imaging to

X-ray-based micro-CT, we are seeing a range of new im-
aging technologies being applied to multicellular
systems, including genetic model systems such as
Drosophila. Advances in traditional fluorescence-based
imaging is also significantly increasing image-acquisition
speed, penetration and signal-to-noise ratio [93, 95, 96,
102]. In the meantime, label-free imaging of structure
and/or measurements of tissue mechanics is leading to
broader applications [111, 167]. These imaging modal-
ities further combine with other technologies to provide
increasing imaging capabilities. An emerging bottleneck
for automating multimodal imaging experiments is the
need to develop capabilities for parallel imaging modules
integrated with customizable multichannel microfluidic
devices to image many biological samples at a time.
This, in turn, will increase the need for data storage and
management solutions for labs. The significant advances
being made in acquisition speed and resolution also de-
mands a paradigm shift of analysis methods to handle
the gigabytes and terabytes of data that are generated
per imaging session [94, 96]. These new trends are blur-
ring the knowledge boundaries of different research
disciplines and encouraging the collaboration of micro-
fluidic device designers, imaging technicians and com-
puter vision scientists.
With the large amount of image data generated from

experiments, machine learning is becoming an integral
part of bio-image analysis. Significant progress in terms
of computational power and availability of open-source
modeling languages like TensorFlow has made machine
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learning accessible to cell and developmental biologists.
Recently developed algorithms, based on the concept of
transfer learning, has decreased the required sample
sizes needed for training learning algorithms. For in-
stance, U-Net required only 30 training images to
analyze Drosophila larval neural cord, compared with
hundreds of images needed for traditional CNN [160].
Algorithms that perform even faster than U-Net, such as
context encoding networks, Mask R-CNN and Dee-
plabv3+, have also been proposed recently [168–170].
However, a domain expert is required to implement
these techniques, because they require fine-tuning of pa-
rameters and hyperparameters within the network [171].
Currently, computer vision algorithms can handle a var-
iety of tasks, including registration of dynamic imaging
data, removal of obstructing elements in images,
normalization of images, improvement of image quality,
repair of data, and pattern discovery [172–174]. These
algorithms will enable more robust and accurate quanti-
fication of images of multicellular systems.
Finally, computational models are an additional tool

for reverse-engineering multicellular systems. They are
often required to generate new insights for explaining
emergent phenomena. They also systematize the process
of hypothesis generation to close the iterative loop in
reverse-engineering multicellular systems (Fig. 1a). For
example, the interplay between mechanical forces, bio-
chemistry and genetics governs how cells organize them-
selves into organs (as reviewed in [6]). These processes
require computational models to integrate experimental
data and reduce the complexity to identify underlying
principles governing system behavior [175]. Historically,
Drosophila provides an ideal playground for developing
and testing computational models of many aspects of
development including pattern formation [176–180],
organ growth control [181] and morphogenesis [182].
Various methods have been used to model cell-based

processes in Drosophila, with a significant focus on
modelling cell mechanics during morphogenesis. These
methods include cellular Potts models, vertex models,
continuum models, viscoelastic models, subcellular
element models and immersed boudary methods, to
name a few. Interested readers are referred to several re-
views that focus on computational model development
and validation [46, 47, 183]. A key consideration in ana-
lyzing multicellular systems is the need to account for
heterogeneity (reviewed in [184]) and multiple length-
scales (reviewed in [185, 186]). Another challenge is to
develop multiscale models of physiological activities
under different timescales, from milisecond to hours
([187], reviewed in [185, 188–190]). Finally, the inte-
gration of inference tools that estimate the subcellular
distribution of forces is enabling more direct compari-
sons between model predictions and quantified

experimental image-based data (one such example in-
cludes [191]). A couple of recent reviews on inference
tools include [192–194].
A future goal for the reverse engineering of multicellu-

lar system should be the integration of data acquisition
and analysis as highlighted in this review with the devel-
opment and validation of computational models to guide
the analysis of multicellular systems into generalizable
pipelines [46]. Because of the variability of the experi-
mental data in biology, there is a need to integrate
uncertainty into model development. A Bayesian prob-
abilistic framework is one mathematical strategy that in-
corporates uncertainty quantification into the
optimization processes [195]. A Bayesian probabilistic
framework can be used as a tool for estimating the pa-
rameters required to run bioprocess simulations, using
experimental data extracted from bio-image analysis.
Using such frameworks for biological systems will help
in the robust and accurate quantification of parameters
involved in computational simulations. In conclusion,
the integrative engineering analysis of multicellular sys-
tems, often with Drosophila and other genetic model
systems paving the way, is now reaching an exponential
phase of synergistic growth.
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