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Abstract

Background: Gene regulatory networks with different topological and/or dynamical properties might exhibit similar
behavior. System that is less perceptive for the perturbations of its internal and external factors should be preferred.
Methods for sensitivity and robustness assessment have already been developed and can be roughly divided into
local and global approaches. Local methods focus only on the local area around nominal parameter values. This can
be problematic when parameters exhibits the desired behavior over a large range of parameter perturbations or
when parameter values are unknown. Global methods, on the other hand, investigate the whole space of parameter
values and mostly rely on different sampling techniques. This can be computationally inefficient. To address these
shortcomings ‘glocal’ approaches were developed that apply global and local approaches in an effective and rigorous
manner.

Results: Herein, we present a computational approach for ‘glocal’ analysis of viable parameter regions in biological
models. The methodology is based on the exploration of high-dimensional viable parameter spaces with global and
local sampling, clustering and dimensionality reduction techniques. The proposed methodology allows us to
efficiently investigate the viable parameter space regions, evaluate the regions which exhibit the largest robustness,
and to gather new insights regarding the size and connectivity of the viable parameter regions. We evaluate the
proposed methodology on three different synthetic gene regulatory network models, i.e. the repressilator model, the
model of the AC-DC circuit and the model of the edge-triggered master-slave D flip-flop.

Conclusions: The proposed methodology provides a rigorous assessment of the shape and size of viable parameter
regions based on (1) the mathematical description of the biological system of interest, (2) constraints that define
feasible parameter regions and (3) cost function that defines the desired or observed behavior of the system. These
insights can be used to assess the robustness of biological systems, even in the case when parameter values are
unknown and more importantly, even when there are multiple poorly connected viable parameter regions in the
solution space. Moreover, the methodology can be efficiently applied to the analysis of biological systems that exhibit
multiple modes of the targeted behavior.
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Background

Biological oscillators govern various biological processes,
such as cellular respiration, cardiac functions, and circa-
dian rhythms [1-3]. In the terms of synthetic biology, the
research of oscillatory systems is motivated by (1) a better
understanding of known biological systems [2, 4—6], and
(2) by the development of systems that could potentially
be used in practical applications [7, 8]. An implementation
of the first synthetic repressilator by Elowitz and Leibler
[4] was, together with the synthetic toggle switch by
Gardner et al. [9], an important breakthrough in synthetic
biology. Since then the focus has shifted from simpler to
more complex biological systems [10]. For this reason,
the development of robust and fast-response systems is
of vital importance. For example, Fink et al. [7] designed
an artificial fast-response system in mammalian cells that
can respond to chemical signals in minutes rather than
hours. In the terms of optimization, this can be trans-
lated to multiobjective optimization [11]. Otero-Muras
and Banga [12] recently proposed a multiobjective opti-
mization framework for synthetic biology based on the
Pareto optimality. This framework is however limited to
the library of synthetic parts, which can be a potential
limitation. Moreover, when designing complex biological
systems, the desired modes of behavior should not be
the only criteria. One should also take into an account
the system’s robustness, i.e. its stability in terms of cor-
rect behavior for a large range of different perturbations
of extrinsic and intrinsic factors. If two systems exhibit
the same required dynamics, then the more robust system
should be preferred [13]. This allows for the development
of more efficient and stable biological systems. In order to
determine the robustness of the system, one must be able
to efficiently explore and characterize its parameter space,
for which mathematical modeling is usually applied [14].
To find the optimal parameters that exhibit the desired
behavior, different heuristic approaches, such as genetic
algorithms (GAs) can be used [14—16]. While GAs have
numerous applications, they usually provide only a single
near-optimal solution. However, these approaches do not
give us an insight into the shape of the solution space and
the robustness of the acquired solution. Other approaches
are focused on the efficient investigation of the whole
parameter regions for which the system displays some
predefined behavior. These regions define so-called viable
parameter space. Identification of the viable parameter
space allows for a more thorough analysis in the context
of system’s robustness, sensitivity and possible modes of
behavior [13, 17, 18]. Schillings et al. [18] used adaptive
Smolyak interpolation that relies on sparse polynomial
approximations to characterize the solution space of bio-
chemical networks. The assumption here is that the func-
tion we want to interpolate is sufficiently smooth, which
is not always the case. This problem can to some extent
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be addressed with the adaptive interpolation. Li et al. [19]
introduced structural and correlative sensitivity analysis
(SCSA) which belongs to the family of global sensitivity
methods based on the decomposition of variance. Since
the viable parameter spaces only represent a small frac-
tion of all feasible solutions, we are more interested in
viable regions, and not on the solution space as a whole.
Hafner et al. [13] developed a ’glocal’ robustness analy-
sis and model discrimination method that can be used
for the analysis of circadian as well as other oscillators.
This approach allows us to efficiently explore the model’s
parameter space and assess its robustness. One of its
major drawbacks is that it is not applicable to biologi-
cal systems with high dimensional and poorly connected
viable parameter regions. Two regions are poorly con-
nected if one cannot traverse the solution space from
one viable region to the other with the arbitrarily small
steps, while constantly preserving the viability of the cur-
rent solution. This is not problematic for the evolutionary
developed systems, where the viable solution space is
usually connected because natural systems have evolved
through small, gradual changes of individual biochemical
parameters. And while this may be true for the naturally
occurring motifs, it is not necessarily the case for the
synthetically developed gene regulatory networks (GRNs).
When designing synthetic GRNs, one could choose dif-
ferent parts, e.g., transcription factors (TFs) with similar
behavior and different kinetic properties, such as binding-
site affinities and degradation rates. This problem was also
addressed by Zamora-Sillero et al. in [17], where they pro-
posed an efficient ellipsoid based sampling. The limitation
of this approach is that the increasing dimensionality may
exponentially increase the number of iterations needed to
identify all viable parameter regions. This can occur if the
viable solution space is loosely connected.

Herein, we present an improved ’glocal’ approach for the
computational analysis of viable parameter spaces in high-
dimensional dynamical models of biological systems. The
methodology is based on the robustness estimation and
model analysis methodology described by Hafner et al.
[13] and is due to exhaustive sampling with GAs and clus-
tering not only limited to models with connected solution
spaces. The methodology consists of multiple steps, i.e.
(1) the estimation of viable parameter regions with GAs,
(2) efficient exploration of viable regions with local sam-
pling, and (3) robustness estimation for each of the viable
regions. Our methodology differs from the one intro-
duced by Hafner et al. [13] in two main aspects. Firstly,
we employ GAs for the initial estimation of viable param-
eter regions, whereas Hafner et al. relies on the literature
available data. The problem is that the number of already
published viable parameter values can be quite limited for
a particular system, and can guide the exploration in the
wrong direction. The second important difference is that
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our approach can account for and discriminate between
multiple poorly connected viable regions, whereas the
‘glocal’ methodology by Hafner et al. is limited to a sin-
gle viable region. Moreover, our methodology can be
applied to the systems that exhibit multiple modes of
behavior, such as alternative current (AC)-direct current
(DCQ) circuit [20]. We evaluate the proposed methodology
on the repressilator model, on the model of the AC-
DC circuit that can switch between the oscillatory and
bistable behavior as described in [20] and on the model
of the biological edge-triggered D flip-flop in a master-
slave configuration proposed by Magdevska et al. [14]. We
perform the analysis of viable regions of the repressila-
tor model with different cost functions. We analyze four
different versions of the D flip-flop model, which differ
in the functional forms describing the protein degrada-
tion (Michaelian versus linear functions) and transcrip-
tion factor binding at promoter level (competitive versus
independent). We validate the results obtained with deter-
ministic simulations with the additional stochastic sim-
ulations. These are performed on the randomly selected
samples from the viable regions of each model. The pro-
posed methodology is efficient and thorough, and can be
applied for the model-to-model comparison in terms of
their robustness. Finally, it is not limited only to systems
that exhibit oscillatory dynamics, but can be applied to
complex biological systems with arbitrary dynamics.

Methods

The proposed approach consists of multiple consecutive
steps, namely (1) global estimation of viable parameter
regions, (2) efficient local sampling, and (3) robustness
analysis (see Fig. 1). We apply our approach on mod-
els of repressilator, AC-DC circuit, and D flip-flop in a
master-slave configuration. Topologies of these models
are displayed in Fig. 2.

Global estimation of viable parameter regions

Nominal parameter values can be extracted from the lit-
erature. We are more interested in the analysis of the
whole solution space, rather than a single viable solu-
tion. Furthermore, in general, nominal values are often
unknown or only partially known. The viable parame-
ter space is composed of parameter regions in solution
space for which the system exhibits a predefined behav-
ior. More formally, the parameter space can be defined as
a Cartesian product

P
eF = X 0, (1)

i=1
where ©7 represents the whole parameter space, p is the
number of parameters and ©; represents a range of fea-
sible parameter values for the i-th parameter. Ranges of
biochemical parameters used in our examples are shown
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in Table 1. Each point in the parameter space represents
a candidate for a viable solution. A parameter point 6 is
viable iff the given condition is met

E(0) < Ey, (2)

where E(0) is a cost value of candidate point and Ej is
a predefined threshold, that divides candidates based on
their qualitative behavior, e.g., does a candidate exhibit
oscillatory behavior or not. The cost function must be
designed in a way to promote candidates that exhibit the
desired behavior and in some cases to promote addi-
tional biological criteria such as biomass maximization.
For edge-triggered D flip-flop in a master-slave configura-
tion, we defined a cost function in the frequency domain
as a mean squared error (MSE) between an ideal and the
observed signal of the biological system

E©) =) (h — h)?, (3)

i=1

where # is the maximal number of considered harmon-
ics of observed response for candidate 0, and h;, h; are
i-th harmonics of the observed and ideal response, respec-
tively. We have chosen the frequency domain since it
better describes the signal in the term of its harmonics and
thus simplifies the analysis. An additional useful property
of this cost function is its invariance to the phase of the
oscillating signal. Nonetheless, this cost function is appro-
priate only when we are able to define the exact dynamics
we would like to achieve for the response of a model. If
we are interested in the system behavior in a more qual-
itative way, e.g., does a system exhibits stable oscillations
or not, then the cost function should be defined to cover
all possible configurations that dictate the correct behav-
ior. For this reason, we defined the second cost function
in the frequency domain, which optimizes the difference
between the neighboring peaks and a peak prominence of
a response signal in a frequency domain

1 P P
E@)==5 0i= ) 0vi— Vi), 4)
i=1 i=2

where y; is the i-th peak, P is the number of peaks, and
o; is standard deviation for the i-th peak in the neigh-
boring window of size 3. Ideal sine signals have only
one prominent peak. To avoid rewarding the signals with
many peaks, we consider only average standard deviation
per peak. The minimal size 3 for the window was cho-
sen in order to promote high and narrow peaks. This cost
function is defined more loosely in order to not overlook
the large range of possible rigid oscillating signals regard-
less of their amplitude and period, while still favoring
undamped oscillations with high amplitudes and a stable
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Fig. 1 Visualization of the proposed methodology. The methodology is depicted in the following consecutive steps (1) global estimation of viable
regions with GA, (2) efficient exploration of viable regions with local sampling, and (3) robustness analysis for the discovered viable regions
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Fig. 2 The schematics of biological repressilator, AC-DC circuit and proposed D flip-flop in a master-slave configuration. Figure (a) displays the
schematic diagram of a repressilator. Proteins X, Y and Z in a negative feedback loop inhibit adjacent proteins. Figure (b) displays the design of
AC-DC circuit. Mutual inhibition of X and Y can produce bistable behavior. Figure (c) displays the schematic of proposed biological D flip-flop in a
master-slave configuration, where CLK is the synchronization signal and d is the input. Proteins a and a, represent the master segment of the
flip-flop, whereas g and g, represent the slave segment
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Table 1 Possible ranges of parameter values we used in our

models

Parameter Span Unit
Transcription 1072-50 h~!
Translation 1072-50 AT
Protein production 107" -50 h~!
Protein degradation 1073 -50 h=!
mMRNA degradation 1071 -100 A1
Dissociation constant 1072 - 250 nM
Michaelis constant 1072 -250 nM
Protease concentration 10-1000 nM
Dilution rate 06 AT
Hill coefficient 1-5

Reaction volume (Vg - N4) 1 nM~!

Values obtained from [40, 45, 46] are a rough estimate of real kinetic rates for
prokaryotes and eukaryotes combined. Nevertheless, we excluded the possibility of
some extreme cases, like extremely long-lived or unstable proteins. Vg describes
reaction space volume and N4 Avogadro constant.

periods. We applied both cost functions to the repres-
silator model to analyze the size and shape of its viable
parameter regions.

In the first step of the proposed methodology, the viable
regions are estimated by the GA. GAs are inspired by
natural evolution and are often used to solve hard opti-
mization problems [15]. Subjects within the population
gradually evolve by the means of genetic operators, i.e.
mutation, reproduction, and selection. Our initial popu-
lation consisted of 5000 randomly generated candidates.
Each candidate 6 was represented as a vector of biochem-
ical parameters mutated with predefined probability. In
the literature mutation probabilities most often range on
the order of 0.01 per position. While this is much higher
than in biology, mutation rates should be chosen on the
properties and the difficulty of the problem we are aiming
to solve [21]. In our case, every biochemical parame-
ter was multiplied with a random value between 0.8 and
1.2 with the probability 0.75 (high mutation probability
was set in order to promote greater exploration of solu-
tion space). Every parameter can, therefore, increase or
decrease in each iteration of GA. Reproduction was imple-
mented using the two-point crossover. Unlike mutation,
which serves as a fine-tuning mechanism, the crossover
introduces a certain amount of variability in the popula-
tion, which makes the problem less susceptible to local
extrema. At the end of every iteration of genetic algo-
rithm, subjects are evaluated with the appropriate cost
function, and only the fraction of the individuals are cho-
sen for the next generation by tournament selection. We
used the tournament size of a tenth of the entire popula-
tion. In contrary to the traditional use of GAs, we sampled
all viable subjects, from which the initial viable set @ jg
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composed. The exploration of solution space stops when
the maximal number of generations is reached. To obtain
only the approximate estimation of viable regions, the
total number of generations should not be too high. We
terminated our GA after 10 generations.

Efficient local sampling

Since the viable parameter space exploration with GAs
is biased towards the evolvability of the problem defined
with the selection of a cost function, GAs are not appro-
priate for the final estimation of the solution space. To
obtain a more accurate estimate of the viable regions, the
solution space is efficiently and thoroughly explored in
an iterative manner as described by Hafner et al. [13].
We apply the Gaussian sampling in the direction of the
principal components of the explored solution space

SO — {E[ v(i—l)] +)»(i_1)§j|j =1, ,N} s (5)

where S is a set composed of candidates for viable solu-
tions in i-th iteration of size N (in our case N = 10°),
E[v@=D] is a mean of the viable candidate solutions in
the set v~D obtained from the previous iteration of the
sampling process, &; is the j-th Gaussian sample along the
principal components of viable set V™D, and AU~V is
the variance scaling factor. Note that the scaled variance
should always be greater than the initial variance of princi-
pal components in order to cover the whole viable solution
space. We set the initial value of A©) to 4 and decreased
it linearly to 2 in the last, in our case tenth iteration. In
this way we focus only on the potential solution areas and
avoid unnecessary sampling. At the end of every iteration
new viable set v® is obtained by evaluating candidates in
set S For more details please refer to [13].

To distinguish between poorly connected regions we
used the K-means clustering algorithm. This allows for
more efficient and accurate characterization of loosely
connected viable regions. Since the K-means algorithm
expects the number of means, i.e. clusters, one must esti-
mate the correct number of clusters the data is divided
into. We tackled this problem with the gap statistic [22].
Let us define Wy as the within-cluster sum of squares
around the cluster means. Gap statistic is a cluster analy-
sis algorithm that compares log(W}) with its expectation
under the appropriate reference null distribution of the
data E*[ log(Wy)]

G(k) = E*[log(Wi)] —log(W). (6)

For example consider clustering # uniformly distributed
points in p dimensions. Expected value of log(Wy) is then

E* [log(Wy)] = log(pn/12) — (2/p)log(k) + A, (7)

where k is a number of clusters and A is a constant. If
in reality our data consists of K well separated clusters,
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then the log(W}) will decrease faster than its expected rate
E*[log(Wy)] for k < K and slower for k > K. Hence,
when k = K the gap will be the largest. Similarly, we
set the number of clusters in our data according to the
largest gap obtained by gap statistic. In [22], the authors
proposed two different choices for the reference distribu-
tion, namely (1) generate each reference feature uniformly
over the range of the observed values, and (2) generate
the reference features from a uniform distribution over a
bounding hyper-box B aligned with the principal compo-
nents of the data. We have chosen the second approach
since it is invariant to the rotation of the data. Note
that the same technique was used by Hafner et al. [13]
for the purposes of Monte Carlo integration. For more
information about gap statistic see [22].

When a viable area is recognized as a separate region, it
is extensively explored regardless of any other regions by
an iterative procedure described in Eq. (5). This, however,
poses a threat that explored viable regions overlap, which
makes it harder for model-to-model comparison. Alterna-
tively, we can compare only the most robusts regions of
both models or combine all regions into a single set.

Due to its computational complexity, clustering is
applied only when one of the three criteria is met, namely
(1) maximal number of iterations is reached, (2) the num-
ber of viable points in next iteration is n-times smaller
than number of points in the previous iteration (in our
case n = 10), or (3) the convergence of a region C
exceeds a predefined threshold Cy. Our motivation behind
point (2) is that if samples are truly well separated, then
the number of viable samples obtained by local sam-
pling will be significantly smaller if we sample points
as a single region as opposed to separate sampling for
every viable region. Regarding the third point, we defined
convergence for region j as the Frobenius norm of the dif-
ference between current iteration principal components
rc (vj)(i) and the previous iteration principal components
PC(V/')(i_D. The reason for the selection of this norm is
that the main principal components directly influence the
direction of sampling in consecutive iterations. We thus
defined convergence as

c = ‘ ‘PC(vj)(i) — PC(vpD ‘ ‘F . ®)

This allows us to avoid unnecessary clustering at the
beginning of the sampling process when the number of
viable candidates does not suffice for representative clus-
tering results. This iterative process stops when all regions
are sufficiently explored, i.e. principal components do not
change over next iterations or the maximal number of
iterations is reached.

Page 6 of 21

Robustness analysis

A model of the robust system can cope with a large range
of changes of internal or external factors, e.g., temper-
ature, that can directly influence its kinetic parameters.
The more robust model will in general have a greater vol-
ume of viable parameter regions and will be able to cope
with perturbations of its parameters. To assess the model
robustness, we estimate the volume of each viable region
V with Monte Carlo integration [13, 23, 24]

Vol(V) =~ (Iv]/|S]) * Vol(B), 9)

where Vol(B) is the volume of a bounding hyper-box B
aligned with principal components of the data, |S]| is the
number of uniformly generated samples within B and |v|
is the number of viable samples within S. Because prin-
cipal components are perpendicular, the volume of B can
be calculated as a product across lengths of hyper-box
edges. Sampling within B therefore drastically reduces
the number of samples required to estimate the viable
volume in the same precision as opposed to uniform sam-
pling of the whole parameter space. Note that instead of
bounding box one could also calculate the convex hull and
calculate its volume. This is computationally more expen-
sive compared to the bounding box approach, especially
when considering that we already calculated the princi-
pal components in the previous step of our methodology.
To make model-to-model comparison we cannot disregard
that models can have a different number of dimensions.
For this reason, we normalized the viable volume to obtain
a relative volume, which we calculated as a ratio between
the viable volume and the volume of the total solution
space

Vol (V) = Vol(V) | Vol(@P). (10)

One question remains. What is the required number of
samples in Monte Carlo simulations to assess the viable
volume within the error § for a confidence ? Every uni-
formly generated sample 6 within the bounding box B can
be viewed as a Bernoulli random variable

1 if 0 isviable,
U= . (11)
0 otherwise.

The mean of U is then u = “211((;)) . The standard deviation

o is not known. Since U is a Bernoulli random variable,
the maximal variance ¢ is 1/4. The central limit theorem
can then be applied
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P( V] * Vol(B) — Vol(V)‘ < 8)
sl M1 = Vo)

ISIP(
ool )

P<| = o * Vol(B)

25 % /IS
2P(Z§ *|S) —1,

Vol(B) (12)

where Z is a normally distributed random variable with

. . 28%4/[S]
zero mean and unit variance. To get 2P (Z < 63) ) —

1 > B, the number of samples |S| must be at least

o (ﬁ 1) « Vol(B)|”
28 ’

S| = (13)

is inverse cumulative distribution function of
0.98+Vol(B) ‘2
e

where &1
Z. For a confidence level of 0.95, we get |S| >

In other words, if we want to assess the viable volume
within one percent of the total bounding box volume with
the confidence level of 0.95, S should contain at least 10*
samples.

Results

Repressilator

Repressilator is a simple GRN composed of an odd num-
ber of repressors connected in a negative feedback loop.
The simplest repressilator is a Goodwin oscillator, which
consists of a single repressor [25]. We are interested in
the repressilator with three repressors, first described by
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Elowitz and Leibler [4]. The GRN topology of the repressi-
lator is displayed in Fig. 2 (a). The dynamics of repressila-
tor can be described by the following ordinary differential
equations (ODEs)

dmi)( = —§ymX + ——7 + (14)
dt 1+(é)" ’

am¥ _ smY 4 —2 ot oy (15)
dt +(m) ’

d:l;TZ = —b8,mZ + H—(O(W + o, (16)
ax
== BmX — 8,X, (17)
ay
- = BmY —5,Y, (18)
%f = pmZ — 8,7, (19)

where mX, mY and mZ are mRNA concentrations of
repressors X, Y and Z, respectively. Parameter §,, is
mRNA degradation rate, §, protein degradation rate, o
transcription rate, oo leakage rate, 8 translation rate, and
Kd dissociation constant. Hill coefficient # describes the
strength of cooperative binding between transcription
factors. The deterministic simulation of repressilator is
shown in Fig. 3.

To analyze the effect of selecting different cost func-
tion on the size and shape of viable parameter regions,
we studied two different scenarios. In the first scenario
we applied cost function from the Eq. (3) to obtain a sig-
nal with amplitude of 300 nM and a period of 12 /. We
considered a parameter point viable if the harmonics of
its response did not deviate, on average, for more than

7001 T
_—Y
600 - —_—Z
=
£ 500 A
5
= 400
o
=
& 300 1
[9)
5
S 200 A
100 A
O 4
0 10 20 30 40 50
Time [h]
Fig. 3 Results of a deterministic simulation performed on the repressilator model. Blue, red and green represent the concentration of proteins X, Y
and Z, respectively. The duration of simulation is 48 h with the initial conditions X = 150 "M, Y = 0nM,Z = 0 nM,and @ = 49.61 h™!,ag = 143
h=l,n=44,8=2183h"",8n =172h7",8, = 078 h~' and Kd = 123.12 nM. Protein concentration oscillate with the period of 12 h and the
amplitude of 300 nM
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10 nM from the harmonics of the ideal signal. The first,
second and last iteration of exploration of viable regions
for scenario 1 are displayed in Fig. 4 (a). Parameter space
exploration is projected to the first two principal compo-
nents. We can observe that the viable space is well defined
and consists of a single region, which is also confirmed
by a gap statistic that predicted one optimal cluster. Our
results are consistent with the findings of other researches
[13, 17]. For the second scenario, we used Eq. (4) as a
cost function and considered parameter point viable if the
amplitude of its response was roughly between 200 nM
and 400 nM, and its cost value below —200. We estimated
the amplitude of the signal with the size of its leading
harmonic. The exploration of viable regions for the sec-
ond scenario is displayed in Fig. 4 (b). Here, similarly to
the first scenario, the solution space is well defined and
connected. The obtained solution spaces can be directly
compared on the basis of their volume. The viable volume
for scenario 2 is by our observations approximately 20-
fold larger than for scenario 1. Since the second scenario
has a more loosely defined cost function, this coincides
with our expectations. We can compare the volumes in
Fig. 5, in which we projected two viable regions to their
main principal components. Figure 6 represents the box-
plots of parameter values for both cases. We can observe
that the range of values the parameters span, is in the same
range for both regions, except for the parameter §,. In
the second scenario, §, has significantly greater span com-
pared to the first one, which is also the main reason behind
the difference in the viable volumes.

Deterministic simulation approaches are only able to
describe average response of the system and do not
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directly account for the noise influences. We addition-
ally validated the obtained results with the execution of
stochastic simulations using stochastic simulation algo-
rithm (SSA) [26, 27] and its quasi steady-state approxi-
mation (QSSA) [28]. Latter allowed us to directly project
the deterministic reaction system to its stochastic equiv-
alent. We randomly selected nine points from the viable
solution space and three points outside the viable solution
space to compare the results of stochastic and determin-
istic simulations (see Fig. 7). We repeated each stochastic
simulation for a hundred times and measured the aver-
age amplitudes and periods, which are visualized in Fig. 8.
Points sampled from the feasible parameter regions per-
tained the oscillatory behavior also in the stochastic simu-
lations. Moreover, periods were within the same ranges as
in the deterministic simulations. Larger amplitudes were
observed in stochastic simulation results, presumably due
to intrinsic noise, which is not regarded in determinis-
tic simulations. Points which reflected stationary behavior
in deterministic simulations pertained this dynamics in
stochastic simulations as well.

AC-DC circuit exhibits bistability and oscillations

The AC-DC circuit described by Panovska-Griffiths et al.
[20] presents the combination of the toggle switch and
the repressilator circuit. This GRN pattern has a natu-
ral role in the determination of the spatial organization
of cell type generation and aids in the tissue development
of the ventral regions of the vertebrate neural tube [20].
The topology of this circuit allows switch-like as well as
oscillatory behavior by changing the concentration of the
signaling molecule S. Moreover, Perez-Carrasco et al. [29]
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-20
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o
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-10
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Fig. 4 Exploration of viable regions of the repressilator models. Blue dots represent viable solutions, red dots represent candidates for viable
solutions. Blue dots in Iteration 1 correspond to the viable solutions obtained with GA. Figure (@) displays the exploration of viable regions based on
the first cost function, Figure (b) displays the exploration of viable regions based on the second, more loosely defined cost function
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showed that the coexistence of oscillatory and stable gene
expression can in the dependence of the intrinsic noise
give rise to the coherence of oscillations. We are interested
in the multi-modal behavior of the AC-DC circuit. For
the sake of simplicity, we excluded the signaling molecule
from the model and focused on two modes of behavior,
i.e. bistable and oscillatory behavior. The schematic of the
AC-DC circuit is displayed in Fig. 2 (b). The dynamics
of the AC-DC circuit can be described by the following
equations

dmX

L = —6;,mX + %y (20)
dt 1+(m) +<@)

dmY

— = —§ymY + < 21
i (R =

dmZ

e _ smZ + — (22)
dt 1+(%)
ax
dy
= = BmY —6,Y, (24)
dt
az
- BmZ — 5,7, (25)
dt

where mX, mY and mZ are mRNA concentrations of pro-
teins X, Y and Z, respectively. Parameter §,, is mRNA
degradation rate, 8, protein degradation rate, & transcrip-
tion rate, B translation rate, and # is a Hill coefficient.
Kd,, Kdy,, Kd., Kd; are dissociation constants. Notice the
similarity to the repressilator model, whereas the third
and the second term in the denominator of Egs. (20, 21)
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correspond to the toggle switch dynamics. The results of
deterministic simulations for both modes of behavior are
displayed in Fig. 9. The same model can exhibit different
modes of behavior with the same initial conditions and
different kinetic parameter values.

We regarded a parameter point viable if its response
exhibited oscillations or bistability. We tested the bista-
bility with two scenarios. First, the initial concentration
of protein X was low and Y was high and vice versa in
the second scenario. Throughout the simulation, the pro-
tein with the initial high concentration should stabilize
at 400 nM and the protein with initial low concentra-
tion should stabilize at 0 nM. To optimize the bistable
behavior we resorted to the cost function (Eq. 3), where
we directly compared the response in the time domain
instead of in the frequency domain. If the observed
response did not deviate, on average, from the ideal sig-
nal for more than 4 nM, we considered a parameter
point viable.

Equivalently, we considered a parameter point viable if it
exhibited oscillations. We applied the cost function from
Eq. (3). We considered only the first ten harmonics and
treated a point in parameter space viable if the differ-
ence between the harmonics of its response and the ideal
response did not exceed 15 nM per harmonic on average.
We set the amplitude of the ideal signal to 200 #M and the
period to 12 h. We thus defined two cost functions, one
for each scenario and ran GA twice. In the local sampling
step, we concatenated all viable solutions together and
treated every sample from the parameter space equally,
regardless of its behavior, i.e. oscillations or bistability.
Because the number of viable samples in the first iteration
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Fig. 9 Results of a deterministic simulations performed on the AC-DC circuit model. Blue, red and green represent the concentration of proteins X, Y
and Z, respectively. The duration of simulation is 48 h with the initial conditions X = 37 nM, Y = 280 nM, Z = 280 nM. Figure (a) shows the bistable
dynamics for a point in the parameter space o = 591 h™',n = 4.16, = 4735h™!,8m = 063 h™', 8 = 1.12 ™1, Kdy = 165.03 nM, Kdp = 111.2
nM, Kde = 101.5 nM, Kdg = 0.48 nM. The initial concentration of protein X is low and Y is high. Through time the concentrations of proteins X and Y
balanced at 0 and 400 nM, respectively. Figure (b) shows the oscillating dynamics for the parameter point e = 2626 h~!,n = 3.82, 8 = 18.14h™',
8m =092h7",8, = 129 h~", Kdy = 15142 M, Kdp = 197.61 nM, Kde = 41.88 nM, Kdy = 11.7 nM. Proteins X and Z have the same amplitude of
200 nM, while the amplitude of protein Y is around 80 nM. All proteins have the same period of 12 hours
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of local sampling was to low (10-times smaller), clustering
was performed and two distinct regions were obtained.
After that, each region was explored separately for 10 iter-
ations and the exploration was terminated regardless of
the gap statistic predictions. Figure 10 displays the course
of the exploration of viable regions. Our approach cor-
rectly identified both viable regions and explored them
independently.

We also assessed the robustness to the perturbation
of parameters for both regions. A viable region with the
oscillatory behavior has an approximately 500-fold greater
volume that the viable regions with bistable dynamics.
This can be confirmed with the boxplots of the parameters
spans in both viable regions (see Fig. 11). Transcription
(a), translation (8), mRNA degradation (6,,) and disso-
ciation constant (Kd,;) have significantly smaller span for
the bistable region than for the region with the oscilla-
tory behavior. Our results indicate that the AC-DC model
tends to the oscillations more than to the bistability.

We validated the obtained results with the execution
of stochastic simulations in a similar way as in the
repressilator model. We randomly selected six random
points which reflected oscillatory behavior and six ran-
dom points which reflected bistable behavior in the deter-
ministic simulations. All of the selected samples reflected
the predefined dynamics in stochastic simulations as well
(see Fig. 12). We repeated each stochastic simulation for a
hundred times and measured the average amplitudes and
periods for the samples that reflected oscillatory behavior,
and average distance between the stable states for the samples
that reflected bistability. The obtained results are visual-
ized in Fig. 13. As in the case of the repressilator model,
larger amplitudes were observed in stochastic simulation
results, while the periods were approximately the same.

Edge-triggered d flip-flop in a master-slave configuration
In electronics, D (delay) flip-flop is a memory circuit
that exhibits two stable states and can thus store 1 bit
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of information. D flip-flop delays the input bit for one
clock cycle and is triggered by high or low clock levels.
The clock signal (CLK) is a synchronization signal fre-
quently used in electronics. The sensitivity on high or low
levels of CLK can be problematic when the input signal
is not exactly synchronized with CLK, which can result
in unpredictable behavior. The master-slave configuration
solves this problem by connecting two flip-flops succes-
sively. The master flip-flop is triggered on the low CLK
levels and the slave flip-flop on the high CLK levels. The D
flip-flop in a master-slave configuration is therefore trig-
gered solely on the positive edge of the CLK signal. In bio-
logical terms, the CLK represents a synchronization signal
that governs periodic cellular processes. A determinis-
tic model of biological edge-triggered D flip-flop based
on ODEs was already established and studied by Magde-
vska et al. [14]. Recently, Andrews et al. [30] demon-
strated the implementation of sequential logic in cells with
genetic Negated OR (NOR) gates. Among others, they
implemented and successfully verified the correct behav-
ior of a gated D flip-flop in Escherichia coli (E. coli).
Their flip-flop correctly switched and maintained states
for more than 2 days, and accurately responded to a
synchronization signal. Nonetheless, there are two dis-
tinctions between their implementation and one proposed
by Magdevska et al. Flip-flop by Andrews et al. is con-
structed with NOR gates, and responds only on the high
levels of the synchronization signal, whereas Magdevska
et al. proposed the edge-triggered flip-flop, which is com-
posed of two bistable switches regulated with delay, i.e.
d, and synchronization, i.e. CLK signals. In the latter,
when d = ¢, flip-flop oscillates between a high and low
state with twice the period of CLK signal. In this way,
flip-flop acts as a 1-bit counter. We used this property
to obtain the desired dynamics with GAs. We applied
our methodology on the flip-flop topology described
in [14], which can be presented with the following
ODE-based model
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Fig. 10 Exploration of viable regions for the AC-DC circuit. Blue and green dots represent viable solutions, red dots represent candidates for viable
solutions. Blue dots in Iteration 1 and 10 correspond to viable solutions with bistable dynamics, while green dots correspond to solutions with

oscillatory dynamics
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Parameters o, o, @3 and oy are the expression rates of
proteins 4, a., q and gq., Kd and Ky are dissociation and
Michaelis constants, # is Hill coefficient, 41, §; are degra-
dation rates of the observed proteins, 8 ; is dilution rate
and E is the total protease concentration. We introduce
parameters 7 and Q23 to study the effects of different
functional forms describing the binding of transcription
factors to the promoters and the effects of different mod-
els of protein degradation. Namely, when 2; equals 0 we
presume competitive binding of transcription factors to
the promoters regulating the expression of 2 and a.. When
Q1 equals 1 independent binding is presumed. Parameter
Q9 defines the degradation model for which we use either
linear or Michaelian form (see Eq. 30). The Michaelian
model of degradation was derived in the same manner
as described in [31] and [32]. The schematic of a general
biological D flip-flop is shown in Fig. 2 (c). Results of a
deterministic simulation for the flip-flop model with inde-
pendent binding of transcription factors (2; = 1) and
linear degradation term (23 = 1) are shown in Fig. 14.
Parameters €21 and 2, define different functional forms
of the same flip-flop model. We were interested in the
comparison of the solution spaces for each of the func-
tional forms. We evaluated the viable solution space and
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its volume for each of the four combinations, i.e compet-
itive versus independent binding and Michaelian versus
linear protein degradation. To obtain the viable set of
parameters, we adopted the cost function from Eq. (3) and
deemed the parameter point non-viable if the difference
between the first ten harmonics of its response and the
ideal signal exceeded, on average, 10 nMs per harmonic.
The amplitude of the ideal signal was set to 50 nM and the
period was set to 48 h. Figure 15 presents the exploration
of viable regions for each of the four functional form com-
binations. Our approach identified single well-connected
solution space in each case.

To assess the robustness of different functional form
combinations we evaluated the relative volumes of their
solution spaces, which are presented in Table 2. The
results indicate that Michaelian protein degradation form
increases the solutions space and thus the robustness of
the proposed topology, but not as much as noncompet-
itive transcription factor binding at promoter level. We

wanted to confirm this hypothesis with the investigation
of parameter spans in each of the solution spaces. These
are presented in Fig. 16. The spans of protein degrada-
tion rates (8; and &) are larger when the Michaelian
protein degradation model is presumed. When compar-
ing the models with Michaelian protein degradation form,
noncompetitive binding increases or pertains the span
of feasible parameter ranges. The same holds for the
linear protein degradation form, except in the case of
dissociation constant, where larger span is observed for
competitive scenario.

We additionally validated the obtained results with
the execution of stochastic simulations. We randomly
selected three feasible random points for each functional
form combination. Majority of the solutions pertained the
response observed in deterministic simulations, however,
the noise affected these solutions to a greater degree than
in the repressilator or AC-DC circuit models (see Fig. 17).
On the other hand, when execution large number of
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stochastic simulations, approximately the same response  roughly estimates global viable solution space through the
is observed as in deterministic simulations in all but one  optimization with the proposed genetic algorithm. Next,

tested sample (see Fig. 18). the viable solution space is more thoroughly explored
with efficient local sampling. Because the viable solu-
Discussion tion space can be hyzz‘pothetically unconnected, we took

We developed the computational pipeline that canbe used  a step further and proposed clustering to perform fine-
for model-to-model comparison in terms of the robustness  grained exploration. The size and shape of viable regions
to the perturbation of their kinetic parameters. Our work  can then be utilized for the assessment of model robust-
is based on the already established ‘glocal’ method intro-  ness. We successfully applied and validated our method-
duced by Hafner et al. [13]. In the first step, our approach ~ ology on three distinct models that exhibit oscillatory
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Fig. 14 Results of a deterministic simulation performed on the model of the D flip-flop in a master-slave configuration with independent binding of
transcription factors (€21 = 1) and linear degradation term (€2, = 1). Black, black-dashed, green and blue lines represent the concentration of
proteins g, ac, g and qc, respectively. Green line represent the CLK signal with the 24 h period. The parameters of the model are a1 = 3473 h~',

o) =4936 7" a3 =3273h7" s = 4954 h™1, 81 = 1.93h™1,8, = 069 h™!, Kd = 444 nM and n = 4.35
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and/or bistable behavior. Our approach utilizes exhaus-
tive search of solution space, first by GAs and then with
a prudent selection of samples, which is performed with
local sampling in the direction of main principal compo-
nents. We demonstrated the applicability of the proposed
approach on three different deterministic ODE-based
models.

One must also be aware of the potential drawbacks of
the proposed approach. The first limitation is that the
gap statistic and clustering are not perfect. There is not

Table 2 Approximated relative volumes of the feasible solution
spaces in the D flip-flop model

Q4 Q) Relative volume (Vol')
0 0 33.107°
0 1 12.107°
1 0 95-107°
1 1 25-107°

The functional forms used in the model are defined with parameters 2y and ;.
Namely, parameter €2; defines competitive (0) or noncompetitive (1) binding sites
at promoter level. Parameter 2, defines Michaelian (0) or linear (1) protein
degradation form.

a strict consensus of what constitutes a separate cluster
and different approaches will cluster the same population
of samples differently. The drawback of gap statistic is
that in order to test the null hypothesis, one must assume
the distribution of the data points. We have shown, that
if samples are uniformly distributed gap statistic always
predicts the optimal number of clusters, however, this is
not always the case for non-uniformly distributed data. To
address this problem one could take methods for deter-
mining the number of clusters into account only partially
as a guide and select the number of clusters based on
observations. By our experience gap statistic consistently
overestimated the number of clusters in the model of the
AC-DC circuit and D flip-flop model. We approached
this conservatively by setting the maximum number of
clusters in the clustering step to 2 and by faster termi-
nation of the algorithm. The first viable region obtained
by GAs can be clustered only once. All consecutive
regions are then disregarded regardless of the gap statistic
prediction.

The second possible drawback is that GAs and the prob-
ability based sampling introduces non-determinism into
the sampling process, i.e. repetitive runs with the same
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configuration can return different results. We mitigated
this with high population size and with a high probability
of mutation and crossover in GA optimization. Similarly,
we set the variance scaling factor A relatively high at the
beginning of our sampling process, when we were not as
confident in the explored solution space, and gradually
decreased it towards the end.

We have shown that the size and shape of a viable solu-
tion space are directly dependent on the definition of
cost function and the threshold selection, which can be
defined subjectively. We demonstrated the consequences
of different interpretations of viable solution with the
investigation of viable parameter regions on the same
repressilator model for two different cost functions. The
first cost function was defined in a strict manner, whereas
the second one was defined more loosely. The viable
parameter region of the repressilator model was greater
when we employed the exploration of viable regions based
on a loosely defined cost function. This coincides with our
expectations and to some degree validates the correctness

of our approach. In both cases, the parameter spans
were roughly the same except for the degradation rate
3y (see Fig. 6), which in the end contributed to the dif-
ference in the viable volume. Both cases have the same
Hill coefficient ranges, 2 < n < 5. Higher values of
Hill coefficient correspond to the positive cooperativity of
transcription factors and a nonlinear response. The first
implementation of a repressilator by Elowitz and Leibler
[4] achieved non-linearity with the selection of tran-
scription factors that function as oligomers, i.e. the TetR
repressor protein is a dimer [33], and the Lacl repressor is
a tetramer [34].

To illustrate the exploration of viable regions with mul-
tiple well defined and unconnected clusters we analyzed
the AC-DC model for two different modes of behavior.
Our method proved to be effective in this scenario as well.
Based on our observation, the AC-DC circuit tends more
towards the oscillatory behavior than to bistability. We
can assume this because the viable parameter volume is
significantly larger for the parameter solutions that yield
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oscillatory dynamics in comparison to the bistable solu-
tions. However, for the sake of simplicity, we excluded
the signaling molecule S from the model and thus dis-
regarded the switch like dynamics. It has already been
shown that by adjusting the strength and/or the con-
centration of the signaling molecule the AC-DC circuit
can exhibit both modes of behavior for the same sets
of parameters [29]. Our simulations clearly indicate that
in order to achieve either bistability or oscillations, the
system should reflect non-linear transcription response.
This can be described with larger values of the Hill coef-
ficient [35]. Other researchers have already addressed
this problem. For example, Lebar et al. [36] designed a
bistable genetic switch based on designable DNA-binding
domains of transcription-activator-like effectors (TALEs)
[37]. Since TALEs bind non-cooperatively as monomers,
a simple mutual repressor-based toggle switch does not
support bistability. In order to introduce non-linearity
and achieve bistability, Lebar et al. designed a bistable
switch with an additional positive feedback loop of TALE
repressors.

We investigated the robustness of the proposed D
flip-flop model in dependence of different functional
forms describing the protein degradation (Michaelian
versus linear functions) and the transcription factor-
promoter binding process (competitive versus indepen-
dent binding). The flip-flop model proposed in [14] was
extended into four different models upon which the pro-
posed methodology was executed. We used the obtained
results to assess the relative volumes of feasible solutions
spaces in each of the models. These were used to per-
form the model-to-model comparison and to assess their
robustness. We showed that Michaelian degradation form
increases the chances of obtaining oscillations as already
described in [38], but not as much as noncompetitive
binding sites at promoter level [39]. When performing
stochastic simulations we observed larger noise sensitivity
as in the repressilator or AC-DC ciruit models. Solu-
tions more resilient to intrinsic noise could potentially
be obtained with the selection of different cost function
defining feasibility of the solution, i.e. with larger oscil-
lation amplitudes. The required amplitudes used in the
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Fig. 18 Boxplots visualizing the stochastic response of the D flip-flop model, namely amplitudes and periods of observed oscillations. €21 defines
competitive (0) or noncompetitive (1) binding sites at promoter level, and €2, Michaelian (0) or linear (1) protein degradation form. Figures in
column (a) present the average oscillation amplitudes and figures in column (b) the average oscillation periods. Sample numbers correspond to the
numbers used in Fig. 17. A hundred simulations were performed for each sample. Average oscillation amplitudes and periods were measured in
each of the simulations. Bold black lines present the results observed in deterministic simulations for the corresponding samples

D flip-flop model were set to 50 nM while amplitudes
between 200 and 400 nM were regarded as feasible in the
repressilator and AC-DC circuit models. Our results still
indicate that the D flip-flop is robust to perturbations of
its kinetic parameters and that the possibility of its imple-
mentation in the biological host is promising. Andrews
et al. [30] demonstrated the feasibility of D flip-flop in
E. coli. Still, their flip-flop is triggered on high signal
levels and not on an edge of the synchronization sig-
nal. This makes the circuit hard to control, since the
high level of the synchronization signal needs to be long
enough to trigger the transition from one state to another
and at the same time short enough to prevent multiple
switches.

Our results indicate that the viable solution space of bio-
logical oscillators is generally well defined and connected,
which has been already confirmed by other researchers
[13,17]. This is expected for the naturally occurring motifs
that exhibit oscillations since they possibly evolved with
random mutations that contributed to the small grad-
ual changes of kinetic parameters [40]. However, it is
interesting to observe similar properties in the synthetic
circuits. This can be partially explained with the fact that
the design is to some degree inspired by the systems
we can observe in nature. Except for the AC-DC circuit,
our models displayed single connected viable regions.
The existence of multiple unconnected viable regions for
the AC-DC circuit can be contributed to its capability
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of multimodal behavior. The values parameters span are
generally different for both modes of behavior.

For a biological system to be robust, it must be able
to withstand the fluctuations of biochemical parameters
due to external factors, intrinsic noise, and single-cell vari-
ability. Our methodology can give one the insight into
the shape and size of the viable parameter regions, and
into the overall robustness of a system. Our approach
has, therefore, two main applications. Firstly, by knowing
the effect of parameters on system behavior, one could
fine-tune the problematic parameters and use synthetic
constructs, such as degradation tags to speed-up pro-
tein degradation [41], or design parts with higher binding
affinities. For example, Fink et al. [7] designed coiled coils
to increase the affinity between split proteases and thus
increased the response of a system. However, approaches
to experimentally tune the value of a given parameter are
quite limited, especially in a predictive way. Secondly, one
could use the proposed methodology to compare differ-
ent systems with similar behavior and different topologies.
For example, simple bistable switch could be compared
with the bistable switch with positive feedback loops
proposed by Lebar et al. [36]. The results of these com-
parisons could guide the researcher in the selection of
more robust topologies and finally in the process of the
implementation of reliable biological circuits.

We validated our methodology on biological GRN mod-
els that primarily exhibit oscillatory or bistable behavior.
However, it is not hard to see how one could adapt this
approach to cover other modes of behavior as well. By
modifying the genetic algorithm and adjusting the cost
function, one can adapt our approach to a variety of
dynamical models and not only models of GRNs. We
demonstrated the application of the proposed method-
ology solely on the results obtained with deterministic
simulations. These models describe the average response
of the system without the noise influences [42]. The noise
influences can be to some degree indirectly analyzed with
the analysis of parameter variability effects on the deter-
ministic dynamics of the system [43]. In many cases it is
more suitable to use stochastic modeling approaches, such
as SSA [26]. These approaches directly describe the inher-
ent stochasticity of biochemical reactions. In our case
studies we only used the stochastic simulations to validate
the correctness of the results obtained with determinis-
tic approaches. However, these approaches could as well
be used to generate the data upon which the proposed
methodology would be applied. Moreover, the methodol-
ogy could be used in a combination with any other either
experimental or computational approach that is able to
generate the response of the system at the sampled param-
eter values. However, there are some potential drawbacks
in the straightforward application of these approaches.
Deterministic models will always yield the same response
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for a given set of initial conditions and parameter val-
ues. Contrary, stochastic or experimental procedures will
always differ to some degree even with the same con-
ditions [27]. This means that multiple repetitions of the
same experiment will be needed to achieve statistical sig-
nificance, which in turn increases the time complexity of
our methodology. Most of the approaches that present an
alternative to deterministic models inherently increase the
time complexity to generate the results even for a single
simulation run. In order to at least partially circumvent
this problem, one of the many parallelized adaptations
of SSA with lower computational complexity could be
applied [44].

Conclusion

In this paper we proposed a novel approach that can be
used to assess the viable parameter regions for an arbitrary
GRN model, and which can be applied in the design of
synthetic biological systems. Identified parameter regions
allow us to compare different models in terms of their
robustness and also to identify the critical segments of
the selected system. This can be exploited for the design
of more reliable and robust systems. For example, if the
degradation rates of observed proteins are constrained to
a small interval, one can then specifically focus on this
segment by exploring the effects of different degradation
tags [41] and thus fine-tune the problematic parameters.
Moreover, our approach can be used as a foundation
for other analyzes. For example, bifurcation or sensitivity
analysis can be done more efficiently and with higher pre-
cision if one is confident in the size and shape of the viable
solution space.
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