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Review: biological engineering for nature-
based climate solutions
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Abstract

Nature-based Climate Solutions are landscape stewardship techniques to reduce greenhouse gas emissions and
increase soil or biomass carbon sequestration. These mitigation approaches to climate change present an
opportunity to supplement energy sector decarbonization and provide co-benefits in terms of ecosystem services
and landscape productivity. The biological engineering profession must be involved in the research and
implementation of these solutions—developing new tools to aid in decision-making, methods to optimize across
different objectives, and new messaging frameworks to assist in prioritizing among different options. Furthermore,
the biological engineering curriculum should be redesigned to reflect the needs of carbon-based landscape
management. While doing so, the biological engineering community has an opportunity to embed justice, equity,
diversity, and inclusion within both the classroom and the profession. Together these transformations will enhance
our capacity to use sustainable landscape management as an active tool to mitigate the risks of climate change.
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Background
Global climate change impacts all human systems and
landscapes [1], causing long-term changes of ecological
function [2] and an economic cost more than twice
current global gross domestic product [3]. While the pri-
mary way to prevent and slow these changes is to
decarbonize the energy supply by reducing fossil fuel en-
ergy sources [4, 5], landscape-management solutions
have a role to play and often deliver win-win successes
on multiple metrics, beyond just climate [6]. In the
United States their potential is equivalent to one-fifth of
current net annual emissions [7]. These Nature-based
Climate Solutions (NbCS) either harness the photosyn-
thetic power of ecosystems to store carbon in soils and
vegetation, or they reduce existing emissions of green-
house gases from agricultural and other managed land-
scapes. Soil carbon storage strategies include peatland
restoration, forest agriculture, residue retention and

cover cropping, and increased photosynthesis [8]. Emis-
sions reductions strategies in landscapes often focus on
non-CO2 greenhouse gases such as N2O (via nutrient
management [9]) and CH4 (through modified rice irriga-
tion [10–12] or changes in cattle management [13]).
Whole-farm and life-cycle or supply-chain approaches
extend these concerns to reduce fuel use or otherwise
limit CO2 emissions, though the variety of implementa-
tion strategies and paucity of data means that realistic
depictions of NbCS in life cycle assessments remain
challenging [14].
NbCS strategies provoke new ways of thinking

about land management [15], policy-making [16], eco-
nomic bookkeeping [17], and leadership [18], but in
doing so introduce potential issues that must be ad-
dressed. While there is a large body of evidence that
NbCS approaches work [19, 20], there is also consid-
erable uncertainty in the range of achievable seques-
tration or emissions reduction, in appropriate
management tools, and in generalizing findings from
one set of conditions to another [21, 22]. Thus,
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questions remain on how to measure and predict
land-atmosphere carbon exchange, soil carbon stor-
age, and reduced emissions. Many NbCS will bring
environmental co-benefits like biodiversity, sustainable
food production, and improved water quality [23].
However, others may bring harms such as increased
labor, fire risk, and unequitable societal impacts (e.g.,
environmental racism). There is also much to be
learned about resource management with, and from,
indigenous communities [24]; this insight includes fire
management, traditional agriculture, and ways of
knowledge.
Resolving the “wicked challenge” of multi-objective

landscape management that includes climate and other
co-benefits [25] will require new types of education for a
new workforce, and training for existing workers. The
biological engineering profession can lead this transition
[26], as it is both uses applied science (i.e., engineering)
and is an applied discipline (taking engineering concepts
to living systems), blending elements of ecological engin-
eering [27] with soil or landscape management and agri-
cultural engineering [28, 29]. Work in a systems
perspective at the interface of these disciplines is needed
for challenges from climate change to agriculture [30,
31] and the resultant obligation to create a productive,
resilient, and proactive “climate-smart agriculture” sys-
tem [32]. The critical engagement of researchers in edu-
cation regarding new metrics of what determines
successful landscape management (e.g., regenerative
agriculture, or sustainable intensification) is essential to
both guide effective solutions and clearly communicate
them to the public [33, 34]. Thus, in this essay, I bring
attention to NbCS in a biological engineering context,
highlighting research needs, new application areas,
methods of education, and attention to diversity, inclu-
sion, and equity.

Research, design, and education needs and new
directions
Overview and directions
To develop and implement sustainable NbCS strategies,
new engineering research is needed to build lasting and
nimble socio-technical change [35]. Research needs in-
clude (1) designing new measurement tools (e.g., fully
using artificial intelligence techniques, novel sensor de-
velopment, etc. [36, 37]), (2) providing application ex-
pertise on how to control and optimize landscape
performance, and (3) translating that knowledge into ac-
tion by landscape managers who need help prioritizing
conservation activities among other landscape benefits
(such as food provision). This research must be reflective
and iterative, willing to account for new innovations,
drivers of societal or geographical change, and user or
implementer needs [38]. Finally, these social and

research needs should invite pedagogical reflection: how
can these ideas be embedded into the classroom experi-
ence, and how can all students and learners be included?

Design new measurement tools and systems
Skills associated with biological engineering are needed
to optimize measurement platforms at all sizes and do-
mains to monitor landscape and management decisions
and to guide individual decision making. At the large
scale, to quantify and certify carbon capture or emission
reductions methods, innovative multi-scale measure-
ment platforms are needed [39]. Among many satellite
observations and tools [40] we now have daily, 1-m sat-
ellite imagery (e.g., from Planet Labs) that provides an
extraordinary, and under-utilized, opportunity to track
land cover changes, land use dynamics, and plant re-
sponse to weather or management [41, 42]. Application
areas include mapping crop yield [43, 44], stress detec-
tion [45], and guiding precision agriculture [46]. How-
ever, these measurement and monitoring systems must
be validated with technically challenging, on-the-ground
measurements that require tailored instrumentation for
each site. Popular research-scale approaches to better
constrain carbon cycle processes in real time include
eddy covariance [47, 48] and solar-induced chlorophyll
fluorescence [49, 50]. Better planning and advance mod-
eling can increase the information gained by the deploy-
ment of these systems [51], and so can networked
science [52–55].
Expertise is needed to reduce the time or technical

commitment to measurements and to inform farm
or landscape-level interventions. Slow, point-based
estimates of leaf area index, a critical parameter for
understanding landscape conditions, can be trans-
lated into estimates over larger spatial extents from
RGB images on UAVs [56] or satellite products [57],
or from models based on days after planting or de-
gree day [58]. Work is still needed for challenging
but essential measurements such as soil moisture or
rice field inundation that are difficult to remotely
sense due to canopy coverage and poor penetration
within the soil [59]. However, both measures are
critical for understanding the permanence of soil
carbon [60] and the rate of CH4 emissions from rice
fields [12]. At the farm scale, engineering skills are
needed for creative approaches to low-cost tools to
support field-level interventions. For example, new
and inexpensive redox-sensitive films may guide
water management in rice production or wetland or
marsh restoration [61, 62]. User-facing decision sup-
port tools can help weigh a suite of options across a
set of target metrics [63–65] and provide verification
of measurable environmental impacts [66].
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How to optimize the landscape across multiple services
What applications of biological engineering are there to
resolve the challenge of implementing sustainable
NbCS’s? A suite of new technologies is needed to se-
quester CO2 as soil organic carbon to enable both food
and climate security – these include advanced rock
weathering, agronomic interventions, and developing
high yielding crops [67] – and they all must be tuned to
their landscape and socio-economic setting. An agro-
nomic intervention with quickly growing research inter-
est and an open-ended solution is in the design and
maintenance of a site- and application-appropriate
microbiome. Whether through microbial or nutrient
amendment, or other care, a healthy microbiome has po-
tential to boost soil carbon conservation and raise crop
yields [68, 69]. New experiments and tools, as well as
fundamental knowledge on microbial communities and
plant-microbe interactions, are needed to capture the di-
versity of possible benefits from expanded understanding
of the microbiome [70–72].
Microbiome development and maintenance can sup-

port the larger material economy through the reuse of
animal waste or plant residue. The American Society of
Agricultural and Biological Engineers (ASABE) has en-
gaged members with the circular economy as a means to
transform food and agriculture systems, including to “re-
generate natural systems” [73, 74]. While circular sys-
tems advocacy still needs to put a greater emphasis on
biodiversity, this approach can boost soil carbon seques-
tration among a large range of ecosystem services [75,
76]. Circular economy methods on the landscape typic-
ally imply application of animal or plant waste products
back onto the field for enhanced organic matter and
field performance. The methods thus help reduce reli-
ance on energy-intensive extraction for field applications
of inorganic fertilizer while enhancing soil carbon inputs.
How to do this well, and in different socio-economic
contexts, is still challenging, and engineering design re-
search and systems thinking are needed to find creative
circular bioeconomy and bioproduct solutions [77, 78].

Translate ideas into action into action
Biological engineering expertise is needed in many areas
of translating research and design approaches into prac-
tical NbCS strategies. Expertise is needed to advise and
assess projects for effective climate finance of agricul-
tural emissions reductions [79] or the use of green
microfinance [80]. Land-based climate mitigation strat-
egies are already cost-effective in many cases (up to
40%), and additional potential exists if costs can be low-
ered through technical innovation [81]. Biological and
agricultural engineers can work to increase agricultural
input use efficiency to complement other sustainability
initiatives and regenerative practices in the food and

agriculture sector [82]. Land use management and con-
servation is necessarily iterative [83], and the engineering
disciplines work well in this setting – improving, testing,
and innovating towards optimal solutions.
Implementation of NbCS depends on many enabling

factors from states, communities, and actors, and in per-
ceived reliability [84]. In my group’s research assessing
the sustainability of different rice management tech-
niques, we have also seen the benefit of social networks,
as farmers can compare notes and encourage each other
toward more efficient implementation [64]. This finding
is consistent with other studies that demonstrate the
value of training, networking, and motivation on practice
implementation [85, 86]. Practitioners want to know—is
this problem really the biggest priority? Often, life cycle
assessments can help deliver that message in a more hol-
istic manner, grounding solutions within a quantifiable
framework. Fortunately, new developments in life cycle
assessments can improve representations of soil carbon
storage [87, 88], forest carbon cycling [89], and sustain-
able rice production practices [90]. Moreover, engineers
can work with designers to develop and improve man-
agement tools to better convey best options and alterna-
tives, with clear depictions of uncertainty, risk, cost, and
benefit along a variety of decision metrics.

Curricular and program changes
To train the workforce and advance research towards
sustainable NbCS implementation, new forms of educa-
tion are needed alongside curriculum revision. In
addition to embedding NbCS throughout the biological
engineering curriculum, we must also provide tools for
lifelong learners through cooperative extension, commu-
nity outreach, and other channels. Within a biological
engineering program, there are many ways to engage
with NbCS, particularly as these programs are often
taught in land-grant or similar universities with a trad-
ition of place-based research, access to field research sta-
tions and expertise. As biological engineering degree
programs have a variety of names and subject areas [91]
and integrate many competencies [92] focusing on living
systems [93], there is no one-size fits all solution for
bringing NbCS into the classroom. However, in all these
cases, coursework materials can be developed around
the landscape (or other living systems) and their role in
climate change solutions. While my home department is
“Biological and Agricultural Engineering”, I encourage
readers affiliated with Biomedical Engineering programs
to also consider these topics in the context of their cur-
riculum. Those issues could include the mental and
physical health benefits of being near nature [94], or the
potential impact of climate change on biomedical and
public health interventions and outcomes [95]. Similarly,
bioprocess engineering programs could continue work
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on higher-value products from traditional food and agri-
cultural waste streams [96].
Engaging students with classroom learning strategies

that mimic real-world problem-solving is one recom-
mendation from a recent review of biological engineer-
ing education [97]. With this need in mind, I am
working to develop a cross-campus undergraduate
honors course whose central project would be an outline
for Nature-based Climate Solutions strategy for my state,
Arkansas, assessing scientific potential and political-
economic opportunities. This project-oriented focus rec-
ognizes that localized and place-based environmental ex-
amples can enhance educational engagement and are
also practical, taking advantage of local student know-
ledge and creating potentially impactful societal out-
comes [98, 99]. In the course we would assess
opportunities in Arkansas’s varied landscapes, including
row crops, forestry, pasture, and urban areas. In each
landscape type there will be scientific uncertainties, pol-
itical and economic realities, and social expectations to
contend with. In most geographic places—i.e., around
any educational setting or university—there are a variety
of landscapes in close proximity where students may
have direct familiarity. An aim for the class is to motiv-
ate real change via letters on a state plan to the govern-
or’s office or for the campus to increase its carbon
neutrality efforts [100].
Curricular changes could enable NbCS education by

revising both mandatory course materials and modifying
elective course options. Recognizing the many skills
needed to generate and sustain NbCS approaches, em-
phasis can be expanded on areas such as ecosystem ecol-
ogy, plant ecophysiology, human decision making,
agricultural and resource economics, modeling, or re-
mote sensing that propel understanding of our land-
scapes and their spatio-temporal dynamics. The
importance of NbCS can be integrated into existing Bio-
logical Engineering topic areas, such as green storm-
water infrastructure, which can be designed to better
sequester carbon in addition to its primary, stormwater
retention and filtration roles [101, 102]. Methods
courses which teach appropriate tools (such as Geo-
graphic Information Systems; GIS) or the code of ethics
and the role of the engineer in society could use NbCS
as the motivating example. Similarly, carbon accounting
or the uncertainties associated with landscape change
could be included within engineering economics instruc-
tion. My home department, among others, has empha-
sized sustainable food, water, and energy (following their
well-studied ‘nexus’ [103, 104]); elevating carbon or cli-
mate to this list would help demonstrate its equal im-
portance in course and degree design.
Landscape carbon management and NbCS could then

be integrated into design and topic area courses,

encouraged for design projects from first to final year,
and curated to involve engagement with real clients and
stakeholders while also meeting professional expecta-
tions. Professors of cooperative extension could come
into the classroom as guest lecturers, demonstrating case
studies of successful interventions and behavior change
among landscape managers and agricultural producers
[105]. In turn students may be attracted to this profes-
sion, which is known to provide economic and agricul-
tural benefits to rural and other areas [106]. In the
classroom, a complex systems perspective could be ex-
plored [107], emphasizing the challenge of balancing
among different ecosystem services, trade-offs, and their
economics, and teaching different types of problem-
solving and presentation. In many cases these topics
would provide instruction towards the Fundamentals of
Engineering exam and eventual licensure. Capstone
courses designed around the contemporary and complex
challenges associated with NbCS could also be used to
meet ABET accreditation requirements and desired stu-
dent outcomes [108].
Beyond curricular change and shifts in higher educa-

tion strategies, there is more work that engineering soci-
eties can do to enhance research and implementation of
NbCS. NbCS needs are referenced only within “enhan-
cing photosynthesis for agricultural productivity” in a re-
cent discussion of emerging issues in biological
engineering [109], and deep discussions of the role of
biological engineering to play against climate change
were missing. However, there are strong foundations on
which to build: ASABE has a technical community on
“Natural Resources & Environmental Systems”, and the
Journal of Biological Engineering has “Ecological and en-
vironmental engineering” as a topic area. Together these
outlets can push for further engagement on NbCS
progress.

Justice, diversity, equity, and inclusion
Designing innovative NbCS strategies requires the cre-
ative involvement, knowledge, and lived experience of all
people [110]. All peoples and cultures have experienced
nature—and the management of landscapes—in different
ways. We need to incorporate perspectives on the land-
scape—and on perceived solutions—from indigenous
and other under-represented groups. There are land-
scape management and sustainability lessons to be
learned from women [111], indigenous peoples [112,
113], and historically marginalized racial groups [114].
These communities must be incorporated into imple-
mentation plans, ensuring fair access to incentive pro-
grams and feedback on the co-benefits and negative
effects of land management changes [115]. Diverse per-
spectives on land stewardship can also inform the class-
room environment, by encouraging different
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perspectives and methods of learning, by bringing in di-
verse voices and readings, and by supporting indigenous
communities on campus [116]. Training that includes
more representation in the classroom—via inclusive cur-
riculum design or other ways to hear diverse voices—
can also create a more inclusive environment [117, 118],
helping provide long-term benefits by diversifying the
workforce. There have been many calls to diversify pro-
fessions traditionally associated with landscape manage-
ment that lack diverse representation [119], and
intentionally remove obstacles that prevent full partici-
pation [120]. Implementing tested retention strategies
such as mentorship, inclusion in high impact academic
experiences, and re-training faculty on intentional inclu-
sion can also help create a diverse and representative fu-
ture workforce [121].

Conclusions and future perspectives
Mitigating climate change will alter our energy systems
and landscapes and will alter the trajectory of our built
and managed environments alike. Using our managed
landscapes to respond to climate change is an opportun-
ity to pursue alongside changes in the energy sector, but
we must act quickly to develop research agendas, work-
force training, and implementation strategies, as NbCS
are slower and less direct than energy sector
decarbonization approaches [122]. We will need the de-
velopment of new tools, new approaches, and new edu-
cation strategies. Like NbCS themselves, many of these
initiatives would have spin-off co-benefits, advancing
fundamental knowledge on landscape conservation prac-
tices, integration of other disciplines (from artificial
intelligence to geography or political economy) into bio-
logical engineering, and active learning in the
classrooms.
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