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Extracellular matrix dynamics: tracking 
in biological systems and their implications
Michael Hu, Zihan Ling and Xi Ren* 

Abstract 

The extracellular matrix (ECM) constitutes the main acellular microenvironment of cells in almost all tissues and 
organs. The ECM not only provides mechanical support, but also mediates numerous biochemical interactions to 
guide cell survival, proliferation, differentiation, and migration. Thus, better understanding the everchanging temporal 
and spatial shifts in ECM composition and structure – the ECM dynamics – will provide fundamental insight regard-
ing extracellular regulation of tissue homeostasis and how tissue states transition from one to another during diverse 
pathophysiological processes. This review outlines the mechanisms mediating ECM-cell interactions and highlights 
how changes in the ECM modulate tissue development and disease progression, using the lung as the primary model 
organ. We then discuss existing methodologies for revealing ECM compositional dynamics, with a particular focus on 
tracking newly synthesized ECM proteins. Finally, we discuss the ramifications ECM dynamics have on tissue engineer-
ing and how to implement spatial and temporal specific extracellular microenvironments into bioengineered tissues. 
Overall, this review communicates the current capabilities for studying native ECM dynamics and delineates new 
research directions in discovering and implementing ECM dynamics to push the frontier forward.
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Introduction
The extracellular matrix (ECM) describes the noncellu-
lar network of macromolecules that is present in almost 
all biological tissues. Primarily composed of fibrous pro-
teins and proteoglycans, the ECM functions to provide 
mechanical and biochemical support to cells within tis-
sues, and helps drive key cellular events such as differen-
tiation, migration, and proliferation [1]. The composition 
of ECM overall and how it varies in specific tissues and 
organs has been extensively reviewed [1–4]. However, 
few have focused on the changes in ECM composition 
over time: the transitional ECM differences between tis-
sue states or between healthy homeostasis to pathologi-
cal progression. These changes stem from the synthesis, 

modification, and degradation of ECM biomolecules, in 
particular the protein components of the ECM, and are 
collectively referred to as ECM dynamics. ECM dynam-
ics regulate cellular activities and affects tissue proper-
ties and functions; understanding these dynamic changes 
of the ECM is crucial to bettering our understanding of 
tissue pathophysiology and boosting our ability to engi-
neer functional biological systems. In this review, we use 
the lung as the primary model organ to highlight what is 
changing in the ECM, its significance to the surrounding 
cells, how to measure these changes, and the implications 
these changes have for tissue engineering.

The ECM and its dynamics
The ECM is generally composed of fibrous proteins for 
the major structural framework and heavily glycosylated 
proteoglycans for signaling and regulation purposes [1, 
5–7]. Various proteins, such as collagens and elastin, are 
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synthesized as monomers in cells, post-translationally 
modified in the Golgi, packaged and released via secre-
tory vesicles, and assembled into macromolecules in the 
extracellular space [8–13]. The resulting macromolecules 
commonly form fiber structures, such as elastic fibers 
- formed from elastin combining with glycoproteins like 
fibrillins and fibulins [14–16]- and fibrillar collagens like 
collagens I, II, III, V, and XI [17]. However, non-fibrous 
supramolecular structures are also assembled, as seen 
with the nonfibrillar collagen IV (lateral networks) and 
laminin (branched structures) [17–21]. These macromol-
ecules are then crosslinked to one another by enzymes 
such as lysyl oxidase (LOX) to achieve desired mechani-
cal properties and establish organ-specific tissue archi-
tectures [22–24]. For example, collagen IV and laminin 
are crosslinked to form the main architecture of the thin 
ECM surrounding cells, also known as basement mem-
branes, while the fibrous proteins form 3D networks in 
the interstitial spaces [19, 20, 25–28]. These structural 
proteins coordinate with each other to deliver distinct 
mechanical characteristics under different stress levels. 
Taking the lung parenchyma as an example: at low stress 
levels, elastic fibers are the main load-bearing compo-
nent, while at high stress levels the stiffer collagen fibers 
take over the load-bearing function, stiffening the tissue 
[4, 29, 30]. This 3D network also acts as a scaffold pro-
viding anchor points for other ECM proteins and cells 
to adhere to, allowing for transduction of extracellu-
lar mechanical forces such as stress and strain into sig-
nals for the cells to understand. Pulmonary models have 
demonstrated matrix stiffening mediating actin signaling 
to  promote myofibroblast differentiation [31–33], and 
mesenchymal stem cells are known to change their mor-
phology in response to the stiffness of the ECM that they 
are anchored to, transitioning their phenotypes from 
neuron-like, to myoblast-like, and to osteoblast-like with 
increasing matrix stiffness [34].

Proteoglycans, the other major component of the 
ECM, are each composed of a core protein with gly-
cosaminoglycans (GAGs) attached and can be classified 
into multiple subgroups. Each subgroup matches the 
GAG type attached to the said proteoglycan: heparan 
sulfate (HS), chondroitin sulfate (CS), dermatan sulfate 
(DS), and keratan sulfate (KS) [35]. Proteoglycans can 
be held together through their interaction with another 
special type of GAG, hyaluronic acid (HA) [7, 36, 37]. 
As the largest biomolecule in the ECM, HA serves as a 
framework that non-covalently binds to the core pro-
teins of proteoglycans, anchors these proteoglycans to 
the fibrous network, and together regulates ECM sign-
aling [35, 38]. Furthermore, many proteoglycans have 
the inherent ability to bind growth factors in order to 
regulate their stability and diffusion within the ECM 

and facilitate their interactions and signaling with cell 
surface receptors. For example, HS proteoglycans can 
facilitate fibroblast growth factor 2 (FGF2), hepatocyte 
growth factor (HGF), and transforming growth factor 
beta (TGF-β) signaling by immobilizing them via their 
heparin-binding domains [39–42]. Proteoglycan bind-
ing can also be inhibitory for the growth factor func-
tion. For example, decorin, a CS/DS proteoglycan, 
is reported to bind and inactivate TGF-β to prevent 
fibril assembly and regulate cell differentiation during 
the pseudoglandular stage of lung development [35, 
38, 43–45]. Proteoglycans play a significant role in tis-
sue health; the removal of these proteoglycans from 
a  decellularized lung ECM scaffold impairs the scaf-
fold’s ability to bind crucial ECM-associated growth 
factors, resulting in compromised ability to support 
cellular metabolism and growth [42].

While structural proteins and proteoglycans form 
the main structural foundation of the ECM, they only 
account for ~ 26% of ECM-associated genes; the rest of 
the matrisome – the global ECM and ECM-associated 
protein set – are associated with various regulatory func-
tions [46, 47]. Regulatory proteins such as ECM-modify-
ing enzymes (e.g., LOXs), cytokines, and growth factors, 
interact with and remodel the ECM through direct and 
indirect mechanisms. Together with the structural pro-
teins and proteoglycans, these ECM-associated proteins 
interface with cells and the ECM itself to reshape the 
extracellular microenvironment as needed. ECM-cell 
signaling takes place through many biological mecha-
nisms, such as cellular receptor signaling. To summarize, 
cell-surface receptors bind to the ECM and its associated 
biomolecules (growth factors, cytokines, etc.) to regulate 
key biological events such as cell adhesion, survival, and 
tissue morphogenesis [48, 49]. These receptors include 
membrane-embedded proteins such as integrins (acti-
vated by fibronectin, vitronectin, collagen, and laminin), 
growth factor receptors, discoidin domain receptors 
(activated by various types of collagens), and CD44 
(receptor for HA) [50–54]. These ECM-cell interactions 
are crucial to healthy tissue development. For example, 
newborn lungs from mutant mice without the a3 integrin 
subunit displayed decreased branching from the major 
bronchi and altered epithelial morphology at the termi-
nal respiratory branches from flattened to cuboidal [55]. 
Cell-surface receptors also engage in crosstalk with each 
other: integrins are well known for regulating growth 
factor receptors and vice versa [56]. Epidermal growth 
factor (EGF) receptors can be activated by integrins in 
absence of EGF ligand, and vascular endothelial growth 
factor (VEGF) can activate αVβ3, αVβ5, α5β1, and α2β1 
integrins via the VEGFR2 receptor, affecting processes 
such as cell adhesion and migration [57, 58]
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ECM-cell receptor signaling can be further regulated 
by proteolytic cleavage of matrix proteins during ECM 
remodeling, giving rise to peptide fragments, termed 
matricryptins, with newly revealed cryptic sites and bio-
activities for cellular receptor interactions [49, 59–61]. 
Proline-glycine-proline (PGP), a tripeptide matricryptin 
derived from collagen I, is thought to be chemotactic to 
neutrophils and promote inflammatory responses in lung 
injury models that ultimately lead to fibrotic transforma-
tion [59, 62]. Mechanical force can also reveal cryptic 
sites; for example, fibronectin contains cryptic sites that 
can be exposed by tension. These sites are self-associative 
in nature and allow fibronectin to self-assemble at sites of 
high tension [63]. Aberrant myofibroblasts are thought to 
utilize this mechanism and pull on the ECM to stiffen tis-
sues, resulting in fibrogenesis in organs such as the lungs 
[64].

All these ECM signals facilitate communication 
between different ECM components and between the 
ECM and cells to maintain proper tissue architecture and 
homeostasis. Spatially, the ECM can be divided into two 
categories: interstitial matrix and pericellular matrix [4, 
7, 65]. Interstitial matrix makes up the bulk of ECM and 
contains most ECM components (collagens, fibronec-
tins, proteoglycans) that are assembled into a GAG-rich 
matrix [1, 4, 66]. Pericellular matrix describes the ECM 
immediately surrounding cells, which possesses proper-
ties and compositions different from interstitial matrix 
and unique to the said cells; basement membranes can 
be considered a form of pericellular matrix unique to 
endothelial and epithelial cells and is composed of spe-
cific ECM components such as laminins, nidogens, per-
lecan, agrin, and collagen IV [7, 65, 67, 68]. In contrast, 
the pericellular matrix surrounding tendon cells is com-
posed of collagen VI, versican, and fibrillin-2 [69]. Both 
interstitial and pericellular ECM are constantly being 
remodeled, and their properties are determined by the 
combined action of ECM modulators that keep each 
other in check. For example, the crosslinking LOXs and 
LOX-like enzymes are counterbalanced by the proteo-
lytic activities mediated by matrix metalloproteinases 
(MMPs), which have an additional counterbalance with 
tissue inhibitors of metalloproteinases (TIMPs) [70–73]. 
These extracellular enzymes with opposing functions 
keep each other in balance and generate a matrix envi-
ronment that is conducive to local cell activities.

However, sometimes it is desirable for there to be 
changes in matrisomal composition. These compo-
sitional ECM dynamics can be temporal or spatial in 
nature. Temporal differences in ECM composition 
occurs between different stages of biological processes 
such as wound healing and tissue development. For 
example, in lung injury models induced by allergen, 

bleomycin, surgery, and naphthalene, matrix pro-
teins taking part in the inflammation stage of lung 
wound healing (MMP2, TIMP1) are distinct from 
those involved in the subsequent re-epithelization 
stage (MMP7, MMP14) [74–79]. Similarly, during 
lung organogenesis, the ECM composition undergoes 
dynamic changes between each developmental stage 
to support temporal specific events in tissue morpho-
genesis and cellular specification [80, 81]. The murine 
fetal lung ECM consists of more proteoglycans and 
GAGs compared to that of the adult lung, which corre-
lates with higher activity of ECM signaling for the rapid 
and massive changes in cellular phenotypes and tissue 
organization during embryonic lung development [81, 
82]. Compared to the adult counterparts, fetal human 
and murine lungs express higher level of MMP-2 and 
lower level of TIMP-3, correlating with decreased ECM 
remodeling as the lung transitions from development 
to adult homeostasis [81, 83]. Further, elastin produc-
tion is maximal during the terminal saccular stage of 
lung development, where elastin helps drive alveolar 
septation [81, 84].

Even within the same biological stage, there exists 
spatial differences in ECM composition across different 
organs, in the form of varying component ratios, organi-
zations, and distributions of ECM components, thereby 
creating extracellular microenvironments with organo-
typic biological and mechanical properties. For example, 
elastic tissues like the lung and arteries are generally com-
posed of collagen-and-elastin-rich matrix while the ECM 
of central neural systems are mostly GAG-rich structures 
[1, 6, 85–87]. Even within a particular organ, the com-
position varies spatially across different tissue compart-
ments depending on their architecture and function. The 
interstitial matrix of the lung parenchyma is rich in type 
I and III collagen and elastin for contraction purposes 
while the basement membrane between the alveoli and 
nearby capillaries is rich in laminin, HA, and proteogly-
cans to support and facilitate gas exchange [4, 30, 87–89]. 
During development, spatial patterning of matrisomal 
proteins in the extracellular space helps guide cell migra-
tion and differentiation, leading to the establishment of 
heterogeneous organ structures. For example, the locali-
zation of FGF10 ligands to be adjacent to the branching 
tips of the nascent airway is critical for proper branch-
ing morphogenesis of the respiratory tracts, the process 
by which bronchi and bronchioles are formed [90]. It 
has been suggested that this FGF10 patterning is main-
tained by the heparin sulfates (HS) proteoglycans in the 
ECM, which store and concentrate FGF10 to be near the 
branching tips (Fig. 1a) [91, 92]. Similarly, during the pro-
cess of secondary alveolar septation in lung alveologen-
esis, areas of high elastin content tend to form ring-like 
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structures on the alveolar epithelium that correspond to 
the tips of future septa (Fig. 1b) [93, 94].

ECM alterations are usually well-controlled processes 
to achieve desired outcomes in tissue state transition, 
followed by reestablishment of homeostasis, but this is 
not always the case. Due to repetitive injury or aging, the 
ECM dynamics enter a positive feedback loop that can 
be detrimental to tissue health, leading to diseases such 
as fibrosis and cancer. Fibrosis has long been character-
ized as the excessive accumulation of collagens and other 
fibrous ECM components (Fig. 1c), while cancer disrupts 
normal ECM composition and creates its own, malig-
nant extracellular environment [95, 96]. Furthermore, 
fibrotic ECM alone can induce profibrotic transforma-
tion of normal lung cells [97]. Existing tumors can release 
extracellular signaling molecules that look for and iden-
tify susceptible sites elsewhere in the body, and recruit 
tumor-associated cells (e.g., hematopoietic progenitor 
cells and macrophages) to remodel these sites’ ECM to 
facilitate metastasis [98–100]. In both cases, the ECM 
becomes imbalanced and continues to spiral even further.

Tracking ECM dynamics
Tracking and understanding ECM dynamics provides 
fundamental insights regarding how diverse ECM 

components function during tissue state transitions and 
help to reveal ECM signatures that correlate with tissue 
morphogenesis and pathogenesis. Mass spectrometry 
(MS) based proteomics is a popular approach to study the 
protein components of tissues, including the ECM. Con-
ventional MS detects proteins with probabilities that are 
proportional to their abundances. While this is effective 
when investigating highly abundant protein species such 
as structural fibrous ECM components (e.g., collagens) or 
capturing dramatic changes in ECM composition accu-
mulated over long time spans, MS proteomics falls short 
when the proteins of interest are in low abundance, hav-
ing a transient expression profile, or both [3, 101]. Such 
challenges are commonly encountered when analyzing 
ECM dynamics as the newly produced ECM proteins 
are usually in extremely low abundance compared to 
the bulk pre-existing ECM, and sufficient compositional 
changes may take weeks of accumulation before they can 
be reliably detected [102, 103]. As a result, proteins in 
low abundance or with fast-changing kinetics have a high 
probability to be neglected by conventional proteomic 
analysis.

This gap in understanding dynamic ECM changes 
necessitates technology developments that allow detec-
tion and tracking of low-abundance, transient protein 

Fig. 1  The dynamic ECM microenvironment plays key roles in lung organogenesis and pathogenesis. a During murine lung branching 
morphogenesis, highly sulfated heparin-sulfate proteoglycans (HSPGs) at the mesenchyme surrounding the branching tips act to bind and enrich 
FGF10 to enable effective activation of FGFR2 on the nearby epithelial cells, promoting epithelial branching towards the desired directions. b 
During the terminal saccular stage of lung development, the selective deposition of elastin around the existing alveoli drives the formation of 
new alveolar septa, a process termed as secondary septation. c During the progression of pulmonary fibrosis, excessive secretion, deposition, and 
abnormal arrangement of collagen leads to lung malfunction and compromised gas-exchange efficiency
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species within the organotypic extracellular environ-
ment. Metabolic labeling of newly synthesized proteins 
(NSPs) is an attractive strategy as it allows incorpora-
tion of chemoselective tags into new protein additions, 
including ECM NSPs, during either protein translation 
or post-translational modification, allowing selective pro-
teomic analysis of NSPs. Commonly used metabolic NSP 
labeling techniques include isotope labeling, bioorthogo-
nal non-canonical amino acid tagging (BONCAT), and 
glycosylation-enabled NSP labeling (Fig. 2).

Isotope labeling of proteins can be accomplished via 
a variety of methods [101, 104], and a commonly used 
technique is stable isotope labeling by amino acids in 
cell culture (SILAC). Briefly, SILAC feeds and incorpo-
rates isotope-labeled amino acids, such as arginine, leu-
cine, and lysine, into NSPs produced by cells (Fig.  2a) 
[105–107]. The resulting isotope-labeled NSP will display 
a signature mass shift compared to its non-labeled coun-
terpart in MS analysis, and thus facilitate NSP detection 
(Fig. 3a). However, SILAC has been reported to require a 
long labeling period (at least 5 days) to label the murine 

Fig. 2  Technologies for labeling NSPs. a SILAC incorporates isotopes-labeled amino acids, such as arginine, into NSPs. b BONCAT labels NSPs by 
replacing methionine residues with its azide-bearing analog, such as AHA. c Glycosylation-enabled labeling uses azide-bearing monosaccharide 
probes to tag glycosylated NSPs during post-translational glycosylation
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proteome in vivo and does not allow isolation of the iso-
tope-labeled NSPs [108–110]. Nonetheless, recent efforts 
have validated the feasibility of using SILAC to quantify 
ECM protein deposition by cells repopulating decellu-
larized human lung scaffold, where temporally specific 
matrisome changes were observed to correlate with cel-
lular proliferative activity, cell adhesion, and ECM regen-
eration [111]. Similarly, in a tissue-engineered pulmonary 
fibrosis model, SILAC facilitated capturing differen-
tial expression of matrisomal proteins  that underlined 
increased tissue density, stiffness, and ultimate force, as 
well as matrix-directed cellular responses in fibroblasts 
[112].

Bioorthogonal non-canonical amino acid tagging 
(BONCAT) operates by incorporating non-canonical 
amino acids (ncAAs) bearing chemoselective tags, such 
as azide-bearing methionine analog (L-azidohomoa-
lanine, AHA) and alkyne-bearing methionine analog 
(L-homopropargylglycine, HPG), into the newly syn-
thesized peptide chain during NSP translation (Fig. 2b) 
[113]. Some ncAAs, such as AHA and HPG, can be 
processed by endogenous aminoacyl tRNA synthetases 
(aaRSs) and utilized directly by cells for NSP produc-
tion. Other ncAAs, such as azidonorleucine (ANL), 

require mutant aaRSs to be attached to desired tRNAs 
and subsequently incorporated into NSPs. By control-
ling the tissue-specific expression of the needed mutant 
aaRSs, it is possible to track the spatial origin of NSPs 
using BONCAT, as only the proteins produced by the 
mutant-aaRS-expressing cells will be labeled [114–
116]. The resulting azide/alkyne-labeled NSPs enable 
effective and selective bioconjugation to desired affin-
ity probes bearing complementary tags via click chem-
istry, allowing for subsequent affinity purification for 
the labeled NSPs (Fig.  3b) [113, 117–119]. For this 
reason, BONCAT has exhibited impressive sensitiv-
ity and temporal resolution for NSP detection and has 
been reported to capture NSPs accumulated over as 
short as two hours [118]. In the last decade, BONCAT 
has mainly been used to study the dynamic synthesis 
of cellular proteins [114, 116, 120–122]. Only recently 
has BONCAT begun to be implemented for investigat-
ing the ECM, such as for visualizing ECM assembly and 
organization during chondrogenesis [123], for iden-
tifying NSP deposition by mesenchymal stem cells in 
hydrogels [124], and for revealing ECM compositional 
changes at different stages of mouse development [125, 
126]. An emerging trend is to combine BONCAT and 

Fig. 3  Strategies for proteomic identification of NSPs. a Azide-tagged NSPs labeled via bioorthogonal approaches, such as BONCAT and 
glycosylation-enabled labeling, can be conjugated to affinity tags (e.g. biotin) via the click chemistry, and affinity-purified free from pre-existing 
proteins to enable ultrasensitive proteomic detection using MS. b Isotope-tagged NSPs exhibit a specific molecular weight shift compared to their 
untagged native counterparts (for example, each.13C-Arg tag increases the molecular weight by 6 Da), facilitating the identification of MS peaks 
corresponding to the labeled NSPs
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SILAC to quantify proteins discovered via BONCAT. 
In this case, proteins are labeled with both ncAA and 
isotope labels; the ncAA labels allow for NSP enrich-
ment and thus improved detection sensitivity, while the 
isotope labels allow for comparative quantification [93, 
101, 109, 110].

Unlike SILAC and BONCAT, which directly label the 
amino acids, glycosylation-enabled labeling utilizes post-
translational glycosylation to metabolically label the gly-
cans attached to NSPs (Fig. 2c). Azide- or alkyne-bearing 
monosaccharide analogs of galactosamine and mannosa-
mine have been developed that specifically label glyco-
sylated NSPs bearing O-linked mucin-type glycans or 
terminal sialic acid respectively [127–132]. Like BON-
CAT, once the azide or alkyne tags are incorporated into 
NSPs via their glycans, subsequent bioconjugation can 
be performed for visualization or purification purposes 
(Fig. 3b) [133, 134]. Since glycosylation occurs mainly to 
membrane-associated and secreted proteins and all ECM 
proteins are originally secreted by resident cells [135], it 
will be interesting to examine whether glycosylation-ena-
bled NSP labeling has a labeling preference to matriso-
mal proteins as compared to SILAC or BONCAT. Future 
studies should focus on identifying, classifying, and 
quantifying which proteins are tagged via glycosylation-
enabled NSP labeling. Our recent study has validated the 
use of azido galactosamine analog to label the ECM-NSPs 
in a wide variety of tissues and organs (such as the lung, 
heart, liver, kidney, skin, and blood vessel) in vivo as well 
as during ex vivo lung culture [136]. This ex vivo labeling 
ability opens up the opportunity to label donor human 
tissues and thus perform more clinically relevant studies. 
Further focus on selective analysis of matrisomal NSPs 
can be achieved when combining proteomic analysis with 
selective extraction of ECM proteins via decellulariza-
tion to remove most cellular components. Moreover, 
glycosylation-enabled labeling can be and has been used 
to study glycan composition in ECM, i.e., ECM glycomics 
[37, 137–142].

These above-described metabolic labeling methods can 
be combined with MS to identify changes in ECM pro-
tein synthesis. While this review primarily focuses on 
ECM compositional dynamics, it is important to note 
that these methods are not limited to only studying com-
positional changes. BONCAT and glycosylation-enabled 
labeling allows fluorophore conjugation to ECM-NSPs to 
visualize and measure the new additions of ECM archi-
tecture in tissues [123, 124]. Furthermore, protein–pro-
tein interactions and protein topography (i.e., mapping 
a protein’s internal structure), topics that are crucial to 
understanding ECM assembly and architecture, can be 
studied by modifying BONCAT and using mutant tRNA 
to insert ncAAs onto pre-determined sites on a protein. 

The inserted ncAAs can then help identify or alter parts 
of the protein structure and its interaction with other 
proteins [114, 115, 143, 144]. We direct the readers to the 
following reviews for more information on site-specific 
ncAA labeling and its applications [114, 115, 143].

Implications of ECM dynamics for ECM engineering
Investigation of ECM dynamics hold implications for 
biomaterial and tissue engineering by increasing our 
understanding of native, organotypic ECM composi-
tions, processes, and interactions. Protein patterns dis-
covered through ECM dynamics studies can be recreated 
in tissue scaffolds to better support or guide cells. These 
changes may be spatial, temporal, or even spatiotempo-
ral in nature and would require different technologies to 
capture the nuances of each change. Here, we briefly go 
over the current states and limits of emerging technolo-
gies that would be useful for implementing these ECM 
changes in engineered tissue morphogenesis.

Spatial ECM patterns, differences, and architecture 
can be recreated via 3D bioprinting techniques. 3D bio-
printing is biofabrication method that allows for the 3D 
arrangement of cells and biomaterials in a layer-by-layer 
fashion and has been noted for replicating complex tissue 
geometries with high precision, such as microfibril mus-
cle structures, entangled vascular networks with oxygen 
exchange abilities, and neonatal scale whole-heart scaf-
folds [145–154]. However, these bioprints are generally 
homogenous in material and printed with composition-
ally simple bioinks, such as collagen and poly(ethylene 
glycol) diacrylate (PEGDA), which remain distant from 
fully recapitulating the complexity of the ECM composi-
tion found in native organs. This has not been unnoticed 
by the field and recent advances in technology develop-
ment are beginning to allow 3D bioprinting of multiple 
bioinks, enabling the embedment of multi-material pat-
terns in prints and bringing the resulting constructs 
closer to replicating spatial ECM heterogeneity [155–
158]. Decellularized ECM, from a variety of sources such 
as the heart, blood vessel, and airway mucosal tissues, has 
been used recently to generate bioinks with improved tis-
sue-specificity [159, 160]. However, the decellularization 
process often relies on harsh detergents and has been 
shown to strip important GAGs and their associated 
growth factors from the ECM of organs such as the lungs 
[42]; this gap will need to be addressed to enable better 
recapitulation of native ECM composition using decel-
lularized ECM bioinks. Investigation regarding ECM 
dynamics during native tissue morphogenesis holds the 
potential to discover new important components within 
the extracellular space, providing critical instruction for 
formulating more physiologically relevant bioinks for tis-
sue engineering [4, 159].
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Apart from bioink formulation, bioprinting also face 
spatial patterning limitations. Much of native ECM 3D 
structure remains not completely understood, and with-
out better understanding ECM structure, we are, in a 
sense, missing blueprints to print from. Common ECM 
components such as collagens and laminins have had 
their structures mapped out via techniques such as sec-
ond harmonic imaging and immunostaining [161–164], 
but many other ECM protein patterns remain elusive to 
us. Recent investigations are beginning to bridge these 
knowledge gaps: decellularization has been used to iso-
late ECM components with preserved, organ-specific 
composition and architecture [159, 162–164], various 
sensor array strategies have been developed for MS and 
RNA sequencing to discretely divide tissue samples into 
analyzable “voxels” and spatially track ECM proteomics 
and transcriptomics [165–167], and nascent matrices 
have been labeled to study their assembly and growth 
in hydrogels [123, 168]. However, ECM composition 
and structure are complex, and it is still unclear which 
proteins and what structures in the decellularized ECM 
bioinks result in the reported improved cellular support 
[159]. Further attention should be directed towards bet-
ter understanding these proteins and their matrix archi-
tectures. Additionally, out of the ECM patterns that we 
do know, some are too small to be printed; pulmonary 
capillaries are ~ 7  μm in diameter and basement mem-
branes are 50–100  nm thick, whereas most bioprinting 
techniques have resolutions in the tens of micrometers 
[169–171].

ECM composition is not only spatially specific, but 
also temporally specific. Data from ECM dynamics stud-
ies could be used to generate an ECM composition that 
is specific to a particular stage of organ development or 
pathological progression, allowing the engineered bio-
materials to model temporal snapshots of the tissue of 
interest. Stage-specific ECM signaling molecules can 
be introduced to tissue scaffolds via adjustments to the 
scaffold production chemistries or chemical linkage to 
existing scaffolds. For example, ECM scaffolds have been 
functionalized with growth factors such as TGF-β1 and 
FGF2 to better drive cell differentiation and support cell 
proliferation respectively [172, 173]. Unfortunately, these 
scaffolds and scaffolds created by most other ECM bio-
fabrication techniques face a common limitation in that 
they only capture the ECM composition of one particu-
lar stage instead of the evolving ECM microenvironment 
as is commonly seen in native biological processes. To 
address this bottleneck, there has been interest in scaf-
fold-incorporable, activable functional groups that can 
be engineered to respond to outside variables and change 
the scaffold’s properties, effectively allowing temporal 
control and even some spatial control over said scaffold 

properties. This has manifested in scaffolds responsive 
to multiple stimuli, with photostimulation being the 
most heavily investigated for tissue engineering pur-
poses [174]. Light has been used to control biochemical 
cue presentation and mechanical properties in scaffolds 
through various photochemical strategies such as pho-
tocaging, radical polymerization, and crosslink degrada-
tion. Photocaging involves adding photosensitive groups 
to mask the bioactivities of the target biomolecule. After 
these masked biomolecules are incorporated into scaf-
folds, light can be shined on them to cleave off the pho-
tosensitive group and restore biomolecule functionality 
[175]. This has been utilized to spatiotemporally con-
trol growth factor localization and cell migration [176]. 
Radical polymerization involves chemistry that allows 
UV light to generate more radicals for polymerization, 
increasing the density and stiffness of the scaffold in loca-
tions exposed to UV light. A common example of this is 
methacrylate-based polymerization, which is currently 
popular in tissue engineering and has been utilized to 
guide cell differentiation within scaffolds [177]. In con-
trast, scaffolds can also be made to be photodegradable 
by making crucial scaffold elements such as crosslinkers 
photodegradable; this has been utilized to spatiotem-
porally degrade locations in scaffolds to give room for 
organoids to develop into and form structures [178, 179]. 
Apart from light, scaffolds responsive to other stimuli 
such as ultrasound, magnetic fields, and electric signals 
have been developed and are actively researched. We rec-
ommend the following review for a more in depth look 
at photo-responsive, ultrasound-responsive, magnetically 
responsive, and electrically responsive tissue scaffolds 
[174].

Concluding remarks
The ECM is a crucial component of all tissues not only 
as a structural support, but also as a signaling system 
that communicates environmental cues to cells and 
influence a wide variety of cellular activities. As tis-
sues change due to development, growth, or disease, 
the ECM is also being modified to both drive and 
accommodate said changes. Effective ECM engineer-
ing is thus critical for recapitulating the dynamic, 
evolving extracellular microenvironment necessary 
for engineered tissue morphogenesis. However, such 
efforts are hindered by our limited understanding of 
the  ECM dynamics accompanying native biological 
processes. Much protein profiling has been done to 
the matrisome, but many current discovery strategies 
are unable to detect low-abundance, transient protein 
species. To combat this, new strategies are focusing on 
the ECM fraction that undergoes active changes such 
as new ECM synthesis. SILAC has been used to study 
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ECM-NSPs, but its application is limited by its inabil-
ity to isolate the NSPs from the pre-existing protein 
background. This challenge is being addressed by the 
BONCAT technology, which is just beginning to focus 
on ECM-NSPs, and we look forward to the discover-
ies that will follow. Glycosylation-enabled labeling has 
been in literature used to study new ECM accumulation 
and has recently been demonstrated to work in mul-
tiple organs in  vivo and ex  vivo; efforts to incorporate 
proteomics with glycosylation-enabled labeling should 
bear new findings for ECM dynamics. Additionally, just 
as SILAC and BONCAT have been combined to create 
a methodology that allows for BONCAT’s purification 
and SILAC’s quantification steps, glycosylation-enabled 
labeling could be combine with SILAC to deliver robust 
quantitative assessment of glycosylated NSPs that is 
highly prevalent in the matrisome. These research 
directions will uncover previously unknown ECM pro-
teins that are associated with key developmental or 
pathological events and map out such event-specific 
ECM microenvironments spatially and temporally. 
Apart from protein composition, ECM dynamics stud-
ies focused on glycomics, protein–protein interaction, 
and protein topography would shed further light on 
additional ECM properties such as 3D structure and 
biochemical gradients. Extracellular vesicles embed-
ded in ECM have recently been tied to ECM-cell inter-
actions [180–184], and Tenascin-R, a key brain ECM 
protein, has been observed being endocytosed and 
resurfacing later, essentially being “recycled” during 
matrix remodeling [185]. These discoveries bring in 
additional layers of complexity in understanding how 
the evolving extracellular microenvironment mediates 
pathophysiological processes. Knowledge gained from 
studying these phenomena can then be acted upon via 
engineered strategies such as 3D bioprinting and ECM 
functionalization, creating biomimetic ECM conditions 
to guide cell behaviors and functions.
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