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Abstract 

Background Epithelial-mesenchymal plasticity (EMP) involves bidirectional transitions between epithelial, mesen-
chymal and multiple intermediary hybrid epithelial/mesenchymal phenotypes. While the process of epithelial-mes-
enchymal transition (EMT) and its associated transcription factors are well-characterised, the transcription factors that 
promote mesenchymal-epithelial transition (MET) and stabilise hybrid E/M phenotypes are less well understood.

Results Here, we analyse multiple publicly-available transcriptomic datasets at bulk and single-cell level and pinpoint 
ELF3 as a factor that is strongly associated with an epithelial phenotype and is inhibited during EMT. Using mecha-
nism-based mathematical modelling, we also show that ELF3 inhibits the progression of EMT. This behaviour was also 
observed in the presence of an EMT inducing factor WT1. Our model predicts that the MET induction capacity of ELF3 
is stronger than that of KLF4, but weaker than that of GRHL2. Finally, we show that ELF3 levels correlates with worse 
patient survival in a subset of solid tumour types.

Conclusion ELF3 is shown to be inhibited during EMT progression and is also found to inhibit the progression of 
complete EMT suggesting that ELF3 may be able to counteract EMT induction, including in the presence of EMT-
inducing factors, such as WT1. The analysis of patient survival data indicates that the prognostic capacity of ELF3 is 
specific to cell-of-origin or lineage.
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Introduction
Phenotypic plasticity – the ability of cancer cells to 
reversibly change their phenotypes to adapt to changing 
environments – is crucial for cancer cell survival. It is a 
hallmark of metastasizing cancer cells that enables them 
to alter their cell–cell adhesion and migration traits, 
evade the immune system, and resist targeted therapies 
[1, 2]. Given the importance of phenotypic plasticity as 
a critical regulator of metastasis and therapy resistance, 
there is a crucial need to decode the dynamics of pheno-
typic plasticity in cancer.

Epithelial-mesenchymal transition (EMT) and its 
reverse—mesenchymal-epithelial transition (MET) – 
constitute a key axis of phenotypic plasticity, through 
bidirectional transitions between epithelial, mesenchy-
mal, and one or more hybrid epithelial/mesenchymal 
(E/M) phenotype(s) [3, 4]. Once tacitly assumed to be a 
binary process, now EMT is conceptualized as a spec-
trum of cell states, with many manifestations of the 
highly plastic and heterogeneous hybrid E/M pheno-
types [5–8]. Many EMT-inducing transcription factors 
(EMT-TFs), such as ZEB1/2, SNAI1/2, and TWIST have 
been well-characterised [9–11], but TFs that can stabi-
lize hybrid E/M phenotypes or induce MET are less well 
characterized. Most of the MET-TFs identified to date 
– e.g. GRHL1/2, OVOL1/2 and KLF4 – induce MET by 
forming mutually inhibitory feedback loops with EMT-
TFs [12–19]. Similarly, while time-course transcriptomic 
bulk and single-cell data on EMT has been now exten-
sively collected, the dynamics of MET remains less well-
studied [8, 20–23]. Given the proposed roles of MET in 
metastatic colonization and therapeutic response, a bet-
ter understanding of MET and its regulators is needed.

Among the potential candidate transcription factors 
that may promote MET, the transcription factor E74-like 
factor 3 (ELF3) belongs to the E26 transformation-spe-
cific (ETS) family of transcription factors. It is strongly 
expressed in epithelial tissues, such as the digestive tract, 
bladder, and lungs, where it plays key roles in differen-
tiation and homeostasis [24]. It has also been shown to 
inhibit EMT in multiple cancer types. For instance, in 
bladder cancer cells, overexpression of ELF3 reduced 
invasion and expression of mesenchymal markers [25]. 
Similarly, ELF3 correlated with an epithelial pheno-
type in ovarian cancer cells, and its overexpression in 
SKOV3 cells reduced invasion and led to a downregula-
tion of mesenchymal markers and an increase in epithe-
lial markers [26], reminiscent of observations made in 
lung cancer cells [27]. In colorectal cancer, knockdown of 
ELF3 in HCT116 cells induced ZEB1 upregulation. ELF3 
expression was found to antagonize ZEB1 expression by 
inhibiting the Wnt and RAS oncogenic signalling path-
ways [28]. Consistent reports in non-transformed mouse 

mammary gland epithelial cell line (NMuMG) showed 
that ELF3 correlated strongly with E-cadherin (Cdh1) 
expression and led to activation of Grhl3 [29], thereby 
playing an important role as gatekeeper of an epithelial 
lineage. Together, these studies suggest that ELF3 may be 
a putative MET-TF.

At a molecular level, ELF3 is inhibited by both the 
SNAI family members SNAI1 (SNAIL) and SNAI2 
(SLUG) [30, 31], both of which can induce EMT to vary-
ing degrees [32, 33]. ELF3, in turn, can repress upregula-
tion of ZEB1/2 by ETS1 in breast cancer [34], head and 
neck squamous carcinoma [35] and in normal bile duct 
epithelial cells [24]. ESE1 and ETS1 are dominantly pre-
sent in luminal and basal-like subtypes of breast cancer 
cells, and reciprocally regulate each other, thus impacting 
the EMT status of these cells [34]. Moreover, similar to 
ZEB1 [36], ELF3 can self-activate [37].

Here, we utilize the experimental observations dis-
cussed above, along with multiple transcriptomic data 
sets to develop a mechanism-based mathematical model 
to delineate the impact of ELF3 on epithelial-mesenchy-
mal plasticity. Our model predicts that ELF3 can delay or 
prevent the onset of EMT; consequently, its overexpres-
sion can induce a partial or complete MET. Analysis of 
publicly- available in  vitro transcriptomics data, includ-
ing that from the Cancer Cell Line Encyclopedia (CCLE), 
and The Cancer Genome Atlas (TCGA) revealed that 
ELF3 is negatively correlated with mesenchymal factors 
and positively correlated with epithelial factors. Further, 
analysis of time-course transcriptomic data shows that 
ELF3 levels decrease upon EMT induction, which fur-
ther supports the hypothesis that ELF3 acts as a putative 
MET-TF. Finally, ELF3 levels are associated with cancer 
patient survival in a lineage- and cancer-specific man-
ner, highlighting the clinical relevance of ELF3 in specific 
cancer types.

Results
ELF3 is associated with an epithelial phenotype
We first investigated the association between ELF3 
expression levels and both epithelial and mesenchymal 
programs across cancer cell lines. In the CCLE cohort, 
we quantified the correlation coefficient for each indi-
vidual gene with epithelial and mesenchymal scores using 
single-sample gene expression enrichment (ssGSEA) [38] 
(Fig.  1A). As expected, the mesenchymal genes VIM, 
ZEB1, SNAI1 and SNAI2 were positively correlated with 
mesenchymal ssGSEA scores and negatively correlated 
with epithelial scores. Conversely, the canonical epithelial 
genes CDH1, GRHL2 and OVOL2 showed a strong posi-
tive correlation with ssGSEA-based epithelial scores and 
negative correlation with ssGSEA-based mesenchymal 
scores. ELF3 was present among the epithelial factors 
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(Fig. 1A), reminiscent of its previously-reported positive 
correlation with Cdh1 and negative correlation with Vim 
[16, 29]. Next, we examined the correlation of ELF3 with 
these scores in the CCLE cohort in a cancer type-specific 
manner (Fig. 1B). We observed that in a majority of can-
cer types, including breast cancer, prostate cancer and 
bladder cancer, ELF3 correlated positively with epithelial 
scores and negatively with mesenchymal scores. These 
trends were consistent in TCGA cancer types as well 
(Fig. 1C), further suggesting that ELF3 correlates with an 
epithelial phenotype.

We next tabulated ELF3 expression levels with respect 
to the median epithelial ssGSEA scores in a given cancer 
type. We observed that an increase in ELF3 expression 
levels was concordant with that in the corresponding 
median epithelial scores (Fig. 1D). Conversely, a decrease 
in ELF3 levels coincided with increase in EMT scores 
(Fig S1A), thereby highlighting that ELF3 expression 
levels are higher in epithelial cancer types (PAAD: pan-
creatic adenocarcinoma, STAD: stomach adenocarci-
noma, READ: rectum adenocarcinoma, PRAD: prostate 

adenocarcinoma, LUAD: lung adenocarcinoma) when 
compared to mesenchymally-derived cancer types 
(SARC: sarcoma, LGG: low grade glioma, GBM: glio-
blastoma) (Fig. 1D). We next compared the methylation 
status of ELF3 in comparison to TCGA samples. We 
observed that the methylation status of ELF3 correlated 
negatively with its expression, and the methylation was 
usually higher in mesenchymal cancer types (Fig S1B). 
Together, these analyses suggest that ELF3 strongly cor-
relates with an epithelial state across cancers.

Next, we asked whether ELF3 levels are downregulated 
during EMT, using publicly- available transcriptomics 
datasets. We first examined changes in ELF3 expression 
levels in response to silencing of GRHL2 in OVCA4209 
cells (GSE118407) which led to induction of EMT [39] 
and reduction in ELF3 levels (Fig.  1E, i). Similarly, in 
TGFβ-induced EMT in airway epithelial cells [40] ELF3 
levels were downregulated (Fig. 1E, ii; GSE61220). Con-
sistent trends were observed in MCF-7 cells that were 
forced to undergo EMT by the overexpression of SNAIL 
[41] (GSE58252; Fig.  1E,iii), and in mouse mammary 

Fig. 1 ELF3 correlates with an epithelial phenotype. A Scatterplot showing the correlation coefficients of individual genes with epithelial and 
mesenchymal scores across the CCLE cohort. Mesenchymal genes VIM, ZEB1, SNAI1 and SNAI2 are represented in blue and epithelial genes GRHL2, 
OVOL2, KLF4 and CDH1 are represented in orange. ELF3 is represented in red. B Tissue specific correlations of ELF3 with epithelial and mesenchymal 
scores in the CCLE cohort when grouped by tissue of origin. C Correlations of ELF3 with epithelial and mesenchymal scores across different TCGA 
cancer types. D Boxplot showing ELF3 expression levels across different cancer types in TCGA. Cancer types are ordered by increasing median 
epithelial scores. E Changes in ELF3 expression during EMT and/or MET induction across GEO datasets. I GSE118407 ii) GSE61220 iii) GSE58252 iv) 
GSE59922. *: p < 0.05 (Students’ t-test)
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EpRas cells undergoing a TGFβ-driven EMT (GSE59922; 
Fig.  1E, iv) [42]. Together, these observations indicate 
that downregulation of ELF3 is a consistent marker of 
EMT.

ELF3 is inhibited during EMT induction
We next investigated temporal changes in ELF3 expres-
sion levels in time-course transcriptomic datasets. A549 
lung adenocarcinoma cells treated with TGFβ to undergo 
EMT (GSE17708; Fig.  2A) [43] showed a progressive 
decrease in ELF3 levels at later time-points of induction. 
ELF3 expression was also strongly negatively correlated 
with the enrichment of the Hallmark EMT signature 
(r = -0.91, p < 0.001). Next, we interrogated ELF3 levels 
in LNCaP prostate cancer cells along the EMT trajec-
tory upon SNAIL induction and a subsequent MET over 
20 days after withdrawal of SNAIL induction [20]. ELF3 
levels were reduced during EMT progression and re-
expressed during MET induction (GSE80042; Fig.  2B). 
SNAIL- and TGFβ-induced EMT in MCF10A breast 
epithelial [44] also led to reduction in ELF3, irrespective 
of the mode of EMT induction (GSE89152; Fig. 2C). We 
also analysed ELF3 expression in single-cell RNA-seq 
data in samples treated with TGFβ for a period of seven 
days to undergo EMT followed by three days of recov-
ery for cells to undergo MET [8]. Across multiple cell 
lines – A549 (left), DU145 (center) and OVCA420 (right) 

– ELF3 expression levels are inhibited with the onset 
of EMT, but a recovery in ELF3 expression is observed 
as they undergo MET (GSE147405, Fig.  2D). Together, 
these analyses suggest that ELF3 is inhibited in a revers-
ible manner during induction of EMT across multiple 
contexts.

ELF3 can prevent induction of EMT
Next, we examined the role of ELF3 in modulating 
EMT dynamics. We analyzed the interaction dynam-
ics between ELF3 and a core EMT regulatory circuit 
(denoted by black dotted rectangle in Fig.  3A) com-
prised of five core factors: three EMT-inducing tran-
scription factors (EMT-TFs)—ZEB1/2, SNAIL, and 
SLUG—and two EMT-inhibiting factors: the micro-
RNA miR-200 family [45] and KLF4, a transcription 
factor that correlates with the epithelial phenotype [46, 
47]. First, we plotted a bifurcation diagram to track the 
levels of ZEB1/2 mRNA (as a readout of EMT pheno-
type) in response to an external EMT-inducing signal 
I_ext (Fig.  3B). With an increase in I_ext levels, cells 
switched from an epithelial state (low levels of ZEB1/2 
mRNA) to a hybrid E/M phenotype (moderate levels 
of ZEB1/2 mRNA) and, finally, to a mesenchymal state 
(high levels of ZEB1/2 mRNA). In the absence of ELF3 
(curve with green solid line and black dashed line), the 
switch from an epithelial to mesenchymal phenotype 

Fig. 2 Analysis of ELF3 levels during induction of EMT and/or MET. A Scatterplot of ssGSEA scores for the “Hallmark EMT” pathway with ELF3 
expression levels at different time points of EMT induction (GSE17708). Spearman’s correlation coefficient and corresponding p-value is given. B 
Scatterplot and trajectory of samples in terms of ssGSEA scores of Hallmark EMT with ELF3 expression in EMT induction via SNAIL over expression 
(5 days) and subsequent induction of MET over a 20-day period (GSE80042). C Same as B) but for treatment with TGFβ (red, orange profiles) and 
SNAIL induction (blue profile) over a 6-day time period (GSE89152). D Single-cell data of ELF3 levels in TGFβ treated A549 (left), DU145 (center) and 
OVCA420 (right) over a 7 day period (EMT) followed by TGFβ withdrawal (MET) for the next 3 days (GSE147405)
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occurred at a much lower strength of I_ext than when 
compared to the network that contained ELF3 (curve 
with blue solid line and red dashed line) (indicated 
using red arrows) (Fig. 3B). In addition, in the presence 
of ELF3, the region of I_ext for which the hybrid E/M 

state existed was larger when compared to the core net-
work (dotted black arrows), indicating that ELF3 can 
stabilize a hybrid E/M state.

We further mapped the temporal response for a fixed 
value of I_ext signal. We noted a transition from an 

Fig. 3 ELF3 inhibits EMT induction. A Schematic representation of ELF3 coupled with an EMT regulatory network (dotted rectangle) consisting 
of miR-200, ZEB1, SNAIL, SLUG and KLF4. Green arrows denote activation, and red bars indicate inhibition. Solid arrows represent transcriptional 
regulation; dotted lines represent microRNA-mediated regulation. B Bifurcation diagrams for ZEB1/2 mRNA levels in response to an external signal 
(I_ext) levels for the coupled EMT–ELF3 circuit (solid blue and dotted red curve) and the core EMT circuit (solid green and dotted black curve). 
Black arrows indicate the region of the hybrid E/M state and red arrows indicate a switch from an epithelial phenotype. C Temporal dynamics of 
ZEB1/2 mRNA levels in a cell starting in an epithelial phenotype when exposed to a high level of an external EMT signal (I_ext = 100,000 molecules) 
(green-shaded region) for the circuits shown in panel E. D Schematic representation of the ELF3 network coupled with WT1. Green arrows denote 
activation, red bars indicate inhibition. E Bifurcation diagrams for ZEB1/2 mRNA levels in response to an external signal (I_ext) levels for the coupled 
WT1 and coupled ELF3 network (solid pink and dotted black curve), WT1 coupled with the core EMT circuit (no ELF3) (solid yellow and dotted red 
curve), ELF3 coupled with the core EMT circuit (noWT1) (solid blue and dotted red curve) and core EMT circuit (no ELF3, no WT1) (solid green and 
dotted black curve). Solid lines indicate the region of the hybrid state; arrows indicate the switch from epithelial phenotype. F Temporal dynamics 
of ZEB1/2 mRNA levels in a cell starting in an epithelial phenotype when exposed to a high level of an external EMT signal (I_ext = 100,000 
molecules) (orange-shaded region) for WT1 and ELF3 coupled with the core EMT network (pink curve), WT1 coupled with the core EMT circuit (no 
ELF3) (yellow curve), ELF3 coupled with the core EMT circuit (no WT1) (blue curve) and core EMT circuit (no ELF3; no WT1: green curve). G Phase 
diagrams for WT1 coupled with an ELF3 network driven by an external signal (l_ext) for varying strength of activation from WT1 to SNAIL. H Same as 
G, but for varying threshold levels along of WT1 to activate SNAIL. I) Same as G, but for varying strength of inhibition of ZEB by ELF3. In G-I, different 
coloured regions show varied phases (combination of co-existing phenotypes)
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epithelial state first to a hybrid E/M state and then to a 
mesenchymal state in response to I_ext. However, in 
the presence of ELF3, this transition was more grad-
ual and relatively slower as compared to the absence of 
ELF3 (blue curve vs. red curve in Fig. 3C). Consistently, 
the steady-state value of ZEB1/2 mRNA levels seen in 
the presence of ELF3 was relatively lower, due to ELF3-
mediated inhibition of ZEB1/2. This trend can also be 
corroborated by reduced ZEB1/2 levels in the bifurcation 
diagram (blue curve lies below green curve at all values 
of I_ext in Fig. 3B).

We next estimated the extent to which ELF3 impacted 
EMT dynamics depending on the strength of its inter-
actions with the EMT circuit. When the strength of 
repression of ZEB1/2 mRNA by ELF3 was reduced, we 
observed an expansion of the {M} region (a mesenchy-
mal phenotype) accompanied by a shrinking of the {E} 
(only epithelial) and {H} (only hybrid E/M) regions (Fig 
S2A). Conversely, when the strength of ELF3 self-activa-
tion was increased or the repression of SLUG on ELF3 
was decreased, it resulted in expansion of the {E} and 
{H} regions and a reduction of the {M} region (Fig S2B-
C). No major qualitative changes were observed in net-
work dynamics in the above-mentioned cases. To further 
evaluate the impact of other kinetic parameters on our 
model predictions, we performed sensitivity analysis by 
varying the numerical values of the input kinetic parame-
ters by ± 10% one by one and captured the changes in the 
range of the I_ext values for the existence of the hybrid 
E/M state in the bifurcation diagram. Except for a few 
parameters, most of which did not influence the interac-
tions of ELF3 with the core EMT circuit (except threshold 
value of ZEB1/2 repression), this change did not extend 
beyond 5–10% (Fig S2D). Importantly, an approximately 
35% percent decrease in the region of hybrid E/M phe-
notypes was estimated when ELF3 was not considered 
in the network. Overall, this analysis indicates that the 
behavior of ELF3 in its ability to delay or prevent EMT 
induction is robust to small parametric variations.

Given the proposed role of ELF3 in safeguarding an epi-
thelial phenotype, we analysed whether ELF3 can prevent 
EMT induction when an additional factor is added to the 
abovementioned regulatory network. As an example of 
an additional EMT inducing factor, we focused on Wilms 
Tumour (WT1). WT1 can transcriptionally repress Cdh1 
and activate Snail in epicardial cells, where its knock-
down reduced the frequency of cardio-vascular pro-
genitor cells and its derivatives [48]. Similarly, in NSCLC 
(non-small cell lung cancer) and prostate cancer, WT1 
inhibits Cdh1 and promotes invasion [49, 50]. WT1 levels 
were found to be higher in cancer cells relative to adja-
cent, non-tumor tissue, while CDH1 levels were lower in 
the cancer cells as compared to the cancer-adjacent tissue 

[49, 51]. Similarly, in breast cancer, WT1-positive tumors 
were found to be more mesenchymal, and overexpression 
of WT1 in breast epithelial cells, HBL100, led to upregu-
lation of mesenchymal markers, such as Vimentin (Vim) 
and Tenascin C (Tnc) [52]. Together, these observations 
highlight WT1 as a potent EMT-inducer. At a molecular 
level, WT1 is self-inhibitory [53], while promoting the 
expression of SNAIL [48] and inhibiting the expression of 
SLUG [54].

Based on these experimental data, we expanded 
our network model to incorporate these interac-
tions (Fig.  3D). Next, we calculated the bifurcation 
diagram of ZEB1/2 mRNA levels in response to an 
external EMT-inducing signal (I_ext), for four differ-
ent circuits: core network (no ELF3, no WT1: WT1-/
ELF3-), core network + ELF3 (WT1-/ELF3 +), core 
network + ELF3 + WT1 (WT1 + /ELF3 +), core net-
work + WT1 (WT1 + /ELF3-) (Fig.  3E). The first two 
bifurcation diagrams (WT1-/ELF3-, WT-/ELF3 + – 
shown in green solid and black dotted curve, and blue 
solid and red dotted curve respectively) are the same as 
we calculated earlier (Fig. 3B), showing that the presence 
of ELF3 required more I_ext to force cells out of an epi-
thelial phenotype. In scenarios of WT1-/ELF3 + (blue 
solid and red dashed curve), and WT1-/ELF3- (solid 
green and black dashed curve), the switch from an epi-
thelial to mesenchymal phenotype occurred at a much 
higher strength of I_ext than when compared to the net-
work which contained WT1, either in presence (solid 
purple and black dashed curve) or absence (solid yellow 
with red dashed curve) of ELF3 (WT1 + /ELF3-, WT1 + /
ELF3 +) (Fig. 3E). Further, in the presence of WT1 (indi-
cated by solid black arrow), the region of I_ext for which 
the hybrid E/M state existed shrunk when compared to 
the network containing ELF3 but not WT1 (indicated 
by dotted black arrow), further indicating that ELF3 can 
inhibit WT1-induced EMT.

We next mapped the temporal responses of these four 
circuits for a fixed value of I_ext signal. Among these four 
circuits, we found steady-state values of ZEB1/2 mRNA 
levels to be at a minimum in the presence of ELF3 and 
absence of WT1 (WT1 + /ELF3-), and to be at a maxi-
mum in the presence of WT1 and absence of ELF3 
(ELF3 + /WT1-) (Fig.  3F), thus supporting the ability of 
ELF3 to inhibit WT1-driven EMT.

Further, we asked how specific interactions in the reg-
ulatory network considered here influence the ability of 
ELF3 to impact EMT dynamics. Increasing the strength 
of WT1-induced SNAIL activation – by either increas-
ing the corresponding fold-change parameter (Fig.  3G) 
or by reducing the threshold levels of WT1 needed to 
activate SNAIL (Fig.  3H) – the region corresponding 
to a mesenchymal phenotype {M} expanded while that 
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corresponding to an epithelial phenotype {E} decreased. 
These trends indicate that a stronger activation of SNAIL 
by WT1 can counteract the role of ELF3 as an EMT 
inhibitor. Conversely, an increase in the strength of ELF3-
mediated ZEB1/2 inhibition leads to an expansion of the 
{E} region (only epithelial phenotype) accompanied by a 
shrinking of the {M} (only mesenchymal) and {H} (only 
hybrid E/M) regions (Fig. 3I). Thus, ELF3 and WT1 can 
have opposite roles in enabling EMT progression.

ELF3 is predicted to act as an MET inducer
To further determine the role of ELF3 in EMT dynam-
ics, we expanded the network to incorporate GRHL2, a 
potent MET-TF that forms a mutually inhibitory loop 
with ZEB1 and can activate ELF3 [55–58] (Fig S3A). We 

simulated the dynamics of this network across an ensem-
ble of parameter values and initial conditions, through 
RACIPE [59] and collated all the steady states obtained. 
In this ensemble of steady states, both ELF3 values and 
EMT scores (= ZEB1 – miR-200) showed a bimodal 
distribution (Fig S3B). Principal Component Analysis 
(PCA) reveals two clusters along the PC1 (which explains 
53.41% variance), one of which has low EMT scores and 
high ELF3, while the other has high EMT scores and 
low ELF3 levels (Fig. 4A, i-ii). These results suggest that 
across the parameter sets considered (each of which 
can be thought of as representing an individual cell in a 
heterogeneous population), this network can recapitu-
late E-M heterogeneity. Projecting SLUG levels on the 
PCA plot revealed that SLUG expression was higher in 

Fig. 4 ELF3 as a MET inducer. A PCA scatter plot of all steady states of RACIPE colored by (i) EMT score (= ZEB – miR200), ii) SLUG levels iii) ELF3 
levels and iv) KLF4 levels. B Scatterplot of EMT scores and ELF3 levels across steady state solutions obtained from RACIPE.  Spearman correlation 
coefficient and p-value are mentioned. C Fraction of steady state solutions resulting in Epithelial phenotype in control, 20-fold and 100-fold over 
expression of ELF3. * represents a statistically significant difference in the fraction of cases in the epithelial phenotype (Students’ t-test; p < 0.05). 
D Volcano plots showing correlation of ELF3 and KLF4 levels with ssGSEA epithelial and mesenchymal scores in a meta-analysis of breast cancer 
datasets. Each dot represents a dataset. R <—0.3, p < 0.05 or R > 0.3, p < 0.05 are counted as statistically significant cases.  Nneg denotes number of 
datasets for which a negative correlation (blue dots) is observed,  Npos denotes number of datasets for which a positive correlation (red dots) is 
observed between the two corresponding expression levels or ssGSEA scores
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mesenchymal and hybrid E/M phenotypes (Fig.  4A, iii). 
This trend is in concordance with earlier experimental 
observations that associate SLUG with varying degrees 
of EMT [33, 60, 61]. Finally, we projected the levels of 
GRHL2, miR-200, ZEB1 and KLF4 individually on the 
PCA plot. While GRHL2 expression largely mimicked 
that of miR-200 or ELF3, ZEB1 expression resembled 
that of an EMT score (Fig S3C). However, KLF4 patterns 
did not completely overlap with other epithelial factors, 
GRHL2 and ELF3; KLF4 was also high in hybrid E/M 
phenotypes. This difference indicates a stronger concord-
ance between GRHL2 and ELF3 in associating with an 
epithelial state (Fig. 4A, iv). A similar difference was also 
observed in the CCLE cohort scatter plots for the corre-
lation of individual genes with epithelial and mesenchy-
mal scores, where GRHL2 and ELF3 behaved similarly as 
potential inhibitors of EMT, but KLF4 did not show any 
significant association with mesenchymal score (Fig. 1A).

Based on these observations, we used the bimodally-
distributed and inversely-correlated EMT scores and 
ELF3 expression levels to quantify the in silico popula-
tion distribution of epithelial and mesenchymal pheno-
types. For the network shown here, approximately 54% of 
cells can be classified as epithelial while 46% cells can be 
binned as mesenchymal (Fig. 4B). Amongst this popula-
tion, approximately 71% of the epithelial cells had high 
levels of ELF3 while only 12% of mesenchymal cells were 
high in ELF3 expression. This clearly demonstrates that 
high ELF3 expression is predominantly associated with 
an epithelial phenotype. Next, we determined the effect 
of ELF3 overexpression on the system by simulations 
where we overexpressed ELF3 by 20-fold or by 100-fold. 
These results showed a dose-dependent and statistically 
reliable increase in the proportion of cells exhibiting an 
epithelial state (Fig. 4C), supporting the notion that ELF3 
is an MET inducer. We next compared the MET-inducing 
capabilities of ELF3 with that of GRHL2 and KLF4 (Fig 
S3D). GRHL2 overexpression resulted in the highest epi-
thelial fraction and the lowest mesenchymal fraction. 
Following GRHL2, ELF3 was found to be the next most 
potent inducer, followed by KLF4 as the weakest MET 
inducer (Fig S3G-H).

To further interrogate this trend, we compared 
the correlation of ELF3 and KLF4 scores with epi-
thelial (= miR-200 + GRHL2) and mesenchymal 
(= ZEB + SNAIL + SLUG) factors individually, based 
on our simulation data. Again, ELF3 showed stronger 
correlations as compared to KLF4 (Fig S3E-F). These in 
silico trends were also recapitulated in single-cell RNA-
seq data for A549 and DU145 with TGFβ treatment [8] 
where ELF3 shows stronger trends compared to KLF4 
in terms of its correlation with “Hallmark EMT” scores 
(A549: r =—0.92 for ELF3 vs. r =—0.51 for KLF4; 

DU145: r =—0.6 for ELF3 vs. r =—0.03 for KLF4) and 
with 76-gene signature (76GS)-based scoring of EMT in 
which higher values indicate an epithelial behavior [62] 
(A549: r = 0.92 for ELF3 vs. r = 0.45 for KLF4; DU145: 
r = 0.48 for ELF3 vs. r = 0.21 for KLF4) (Fig S4A-B). 
Finally, in meta-analysis across multiple transcriptomic 
datasets belonging to breast cancer, ovarian cancer and 
bladder cancer (Table S1), we investigated the correlation 
of ELF3, GRHL2 and KLF4 with epithelial and mesen-
chymal gene sets. Among the 27 datasets in breast can-
cer where ELF3 correlated significantly (p < 0.05, r > 0.3 
or r <—0.3) with the epithelial signature, the correlation 
was positive in 25 datasets. Conversely, among 25 breast 
cancer datasets where ELF3 correlated significantly with 
the mesenchymal signature, the correlation was nega-
tive in 20 datasets (Fig. 4D). While GRHL2 showed simi-
lar trends as to ELF3, KLF4, on the other hand, did not 
show such strong trends, across the three cancer types 
investigated here (Fig. 4D, S4A-B). Together, these results 
propose ELF3 as a putative MET-inducer, albeit with 
potentially weaker MET-inducing capacity than GRHL2.

Correlation of ELF3 with patient survival
The role of ELF3 as a regulator of epithelial plasticity led 
us to query whether ELF3 is associated with clinical out-
comes in cancer. To do this, we analyzed a series of gene 
expression data sets across solid tumors. In breast can-
cer, high ELF3 levels correlated with worse patient out-
comes in terms of overall survival, relapse-free survival 
and metastasis-free survival (Fig. 5A, S5A-C) (GSE3494, 
GSE9893, GSE4922, GSE65308 and GSE48408), reminis-
cent of observations that ELF3 can act as an independent 
prognostic marker for poor survival in hormone recep-
tor positive (ERα + , PR +) HER2 + breast cancer patients 
[63, 64]. Similar trends have been observed in prostate 
cancer [65] and non-small cell lung cancer [66]. However, 
the trend was reversed in colorectal cancer, where high 
ELF3 levels correlated with better patient prognosis in 
terms of overall survival, relapse-free survival and metas-
tasis-free survival (GSE16125, GSE39582, GSE28814 and 
GSE28722) (Fig. 5B, S5D-F), similar to reports in ovarian 
[26] and bladder cancer [25]. Thus, ELF3 appears to asso-
ciate with patient survival in a cancer-specific manner.

Given the mutually antagonistic relationship between 
WT1 and ELF3 in mediating EMT, we asked whether 
these factors demonstrated inverse trends in clinical 
data and correlated with patient outcomes. In breast 
cancer data sets, high WT1 levels correlated with 
improved relapse-free survival and overall survival (Fig 
S6A-B, GSE9893). However, this trend was reversed in 
other cancer types in which high WT1 associated with 
worse patient outcomes—colorectal cancer (relapse 
free survival: Fig S6C-D; GSE17536, GSE14333), 
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lung cancer (overall survival: Fig S6E-F, GSE50081, 
GSE3141; relapse free survival: Fig S6G, GSE31210), 
ovarian cancer (overall survival: Fig S6H, GSE73614) 
and pancreatic cancer (overall survival: Fig S6I, TCGA-
PAAD). Thus, in breast cancer, higher ELF3 or lower 
WT1 levels associated with worse outcomes, while in 
colorectal and ovarian cancer, lower ELF3 or higher 
WT1 levels had worse prognosis, reminiscent of the 

antagonistic role of ELF3 and WT1 in mediating phe-
notypic plasticity.

The differences observed in terms of tissue-specific 
association of ELF3 levels with patient survival may 
arise due to different coupling of ELF3 with EMT and/or 
other axes of plasticity. To gain further insights into this 
context-specific behavior, we focused on ER + (estrogen 
receptor positive) breast cancer. Earlier work, including 

Fig. 5 Cancer type-specific correlation of ELF3 with patient survival. A Higher ELF3 levels correlate with worse patient outcomes in breast cancer 
samples (i) overall survival (GSE3494), ii) relapse-free survival (GSE4922), and iii) metastasis-free survival (GSE48408) B In colorectal cancer samples, 
lower ELF3 levels correlate with worse patient outcomes: i) overall survival (GSE16125), ii) relapse-free survival (GSE28814), and iii) metastasis-free 
survival (GSE28814), showing lower. C i) A gene regulatory network coupling ELF3 with the EMT core network (miR-200, ZEB1, SLUG) and Estrogen 
Receptor isoforms (ERα66, ERα36) in the context of ER + breast cancer. Red hammers represent inhibitory links and green arrows represent 
activation links; ii) Heatmap of steady state solutions upon simulation of the GRN in i); iii) Percentage of steady state solutions resulting in each 
of the phenotype pairs: Epithelial and Resistant (Epi-Res), Epithelial and Sensitive (Epi-Sen), Hybrid and Resistant (Hyb-Res), Hybrid and Sensitive 
(Hyb-Sen), and Mesenchymal and Resistant (Mes-Res) in control, 20-fold up or downregulation of ELF3; * represents a statistically significant 
difference in the fraction of cases that end up in the epithelial phenotype (Students t-test; p-val < 0.05)
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ours, has shown that in ER + breast cancer, EMT and 
tamoxifen resistance can promote each other [67–70]. 
With this in mind, we investigated how ELF3 may influ-
ence the EMT-tamoxifen resistance interaction. Our 
mechanism-based model for coupling EMT factors 
(miR-200, ZEB, SLUG) with two isoforms of ER (ERα66 
and ERα36) had predicted that while the predominant 
phenotypes are either epithelial/tamoxifen-sensitive or 
mesenchymal/tamoxifen-resistant, there are also other 
states that can be observed, including epithelial/tamox-
ifen-resistant, hybrid (E/M)/tamoxifen-resistant and 
hybrid(E/M)/tamoxifen-sensitive [67]. Thus, we incorpo-
rated experimentally-identified connections of ELF3 with 
ERα66 and ERα36 into our coupled EMT-ELF3 network 
and simulated the dynamics of this ER + breast cancer-
specific network using RACIPE [59]. In the ER + breast 
cancer context, ELF3 can repress the transcriptional 
function of ERα66 [71], similar to the role of its family 
member ELF5, which can suppress ERα66 and its down-
stream targets, thus mediating tamoxifen resistance 
in luminal breast cancer cells [72]. Conversely, ELF3 is 
known to be inhibited by ERα66 in MCF7 and ZR-75.1 
cells [73], thereby potentially forming a mutually inhibi-
tory loop (Fig. 5C, i).

Simulation of this gene regulatory network (Fig.  5C, 
ii) using RACIPE suggests that it can enable an epithe-
lial-like, tamoxifen-sensitive state characterized by high 
levels of miR-200 and ERα66; low levels of SLUG, ZEB1 
and ERα36 and a mesenchymal-like, tamoxifen-resistant 
state characterized by low levels of miR-200 and ERα66; 
high levels of SLUG, ZEB1 and ERα36. We also observed 
that a subset of the epithelial cluster, with high expres-
sion of miR-200 and ZEB1 is associated with high expres-
sion of ELF3, which is consistent with the role of ELF3 
in promoting an epithelial-like phenotype. However, this 
cluster had a significantly lower expression of ERα66 
and a higher expression of ERα36 (Fig. 5C, ii). As ERα66 
is the target of anti-estrogen drugs, such as tamoxifen, 
the loss or downregulation of ERα66 is often associated 
with a more resistant phenotype. Conversely, upregula-
tion ERα36 is associated with a tamoxifen-resistant phe-
notype [74]. The association of ELF3 with this epithelial 
phenotype that also exhibits a more resistant phenotype 
may be one of the key contributing factors that explain 
the relationship between ELF3 and worse survival in 
breast cancer. To further substantiate the role of ELF3, we 
mimicked ELF3 overexpression in silico and found that 
it increased the frequency of an epithelial/ tamoxifen-
resistant phenotype comprised of high levels of miR-200 
and ERα36 and low levels of ZEB1 and ERα66, while that 
of epithelial/tamoxifen-sensitive phenotype decreased. 
Conversely, downregulating ELF3 showed opposite 
trends (Fig.  5C, iii). While additional experimental data 

supporting this hypothesis is needed to validate the 
importance of these relationships in tamoxifen resist-
ance, the observed upregulation of another ETS family 
member, ELF5, in tamoxifen-resistant MCF7 cells [72, 
75] and tamoxifen-resistant brain metastases [76], as well 
as differential expression of ELF3 in tamoxifen-treated vs. 
control groups [77], lends credence to this hypothesis.

Discussion
We propose ELF3 as a putative MET-TF, based on tran-
scriptomic data analysis showcasing a strong association 
of ELF3 with an epithelial phenotype as seen in TCGA 
samples and CCLE cohort. Moreover, in multiple tran-
scriptomic datasets analyzed, ELF3 expression was 
reduced with induction of EMT and rescued upon MET 
(Figs. 1, 2). These observations led us to evaluate the role 
of ELF3 through a mechanism-based dynamical mod-
eling approach. Model simulations suggested that the 
presence of ELF3 inhibited a complete EMT progression 
(Fig. 3). Upon comparing the MET induction strength of 
ELF3 and KLF4, we observed ELF3 to be a stronger MET 
inducer than KLF4 (Fig.  4). These observations are in 
concordance with experimental data showing that silenc-
ing of ELF3 in NMuMG cells led to retention of a mes-
enchymal phenotype even when TGFβ was withdrawn, 
resulting in impaired MET [78]. Similarly, knockdown 
of ELF3 in biliary tract cancer cells resulted in upregula-
tion of mesenchymal markers such as ZEB1/2, VIM and 
TWIST1 accompanied by the downregulation of KRT19 
[79]. Conversely, ELF3 over-expression in SKOV3 cells 
led to an inhibition of EMT [80]. Further, in gastric can-
cer, an antagonistic relation between ZEB1 and ELF3 
was observed through their downstream targets, such as 
IRF6 [81]. In circulating tumor cells and in patient tumor 
biopsies, too [28, 82], expression levels of ELF3 and ZEB1 
were anti-correlated. Thus, similar to ELF5 [83–85], ELF3 
may serve as an epithelial gatekeeper.

Besides being a potential epithelial gatekeeper, ELF3 
is also involved in maintaining cancer cell stemness. In 
high-grade serous ovarian cancer (HGSOC), ELF3 forms 
a positive feedback loop with LGR4, which is involved 
in stem-cell renewal. Knockdown of ELF3 reduced tum-
orsphere formation [86]. However, in bladder urothelial 
carcinoma, overexpressing ELF3 repressed tumor-sphere 
formation despite antagonizing EMT [87]. Hence, the 
interplay between ELF3, EMT and stemness appears to 
be context-specific, reminiscent of recent observations 
associating various stages of EMT with enhanced tumor-
initiation potential in many cancer types [5, 88–90]. 
Such context-specific associations may underlie lineage-
restricted roles of ELF3 as a tumor suppressor or an 
oncogene, depending on cancer cell lineage and/or differ-
entiation status [91].
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In addition to stemness, the role of ELF3 in conferring 
therapy resistance has been investigated. ELF3 has been 
reported to be upregulated in NSCLC cells resistant to 
the PARP inhibitor, olaparib [92]. Further, in NSCLC 
cells, treatment with auranofin reduced ELF3 levels and 
induced cell death [93]. Similarly, ELF3 overexpression in 
ovarian cancer cells reduced their sensitivity to cisplatin 
[94]. Future investigations should interrogate the coupled 
dynamics of ELF3, EMT and resistance to specific thera-
pies, similar to our observations that ELF3 is associated 
with an epithelial and tamoxifen-resistant cell-state.

Our analysis also revealed that while ELF3 may show 
stronger association with an epithelial state when com-
pared with KLF4, but its effects in inducing MET were 
found to be weaker than GRHL2. GRHL2 is a pioneer-
ing transcription factor that can bind to closed chromatin 
and initiate its opening [95, 96]. Although our mecha-
nism-based mathematical model does not incorporate 
epigenetic interactions, the ability of GRHL2 to influ-
ence chromatin-level reprogramming further elevates 
its potency as a strong MET inducer [39]. GRHL2 has 
also been reported to be lineage-specific driver of repro-
grammed estrogen signaling and an enabler of endocrine 
resistance in ER + breast cancer [97, 98]. While GRHL2 
overexpression was sufficient to induce MET in mesen-
chymal MDA-MB-231 breast cancer cells, it failed to do 
so in RD sarcoma cells [13]. Further analysis of EMT/
MET inducing transcription factors should thus con-
sider tissue lineage as a crucial axis, because of varying 
potency of these factors in facilitating lineage-restricted 
phenotypic plasticity. This argument is further strength-
ened by tissue-specific survival trends seen for ELF3 
expression levels across cancer types (Fig. 5). Our current 
model is able to explain survival trends in breast cancer, 
but not in colorectal cancer, thus highlighting different 
possible coupling of ELF3 with EMT and/or other axes 
of plasticity, and the interplay of these axes of plasticity in 
determining patient outcome.

Materials and methods
Mathematical modeling
A system of coupled ordinary differential equations were 
employed to understand the dynamics of the ELF3 cou-
pled EMT circuit comprising of miR-200, SNAIL, ZEB, 
SLUG and KLF4 (Fig.3A). The following generic chemical 
rate equation describes the level of a protein, mRNA or 
micro-RNA (X):

where  gX represents the basal rate of production, tran-
scriptional/translational/post-translational regulations is 
represented by the terms multiplied by  gX. – one or more 

(1)
dX

dt
= gXH

S(A,A0, n, �)− kXX

shifted Hills function ( HS(A,A0, n, �) ) that describe the 
interactions among the species in the system. The deg-
radation of species (X) is assumed to follow first-order 
kinetics and thus defined by the term  kXX. The complete 
set of equations and parameters are presented in Supple-
mentary Information (SI) section ‘Mathematical model 
formulation’. Bifurcation diagrams were drawn in MAT-
LAB (Math-Works Inc.) using the continuation software 
package MATCONT [99].

RACIPE (random network simulation)
Random Circuit Perturbation (RACIPE) is a simulation 
framework that extensively explore the possible multista-
ble properties of a given gene regulatory network [100]. 
Based on the gene regulatory network topology, x cou-
pled ordinary differential equations (ODEs) are simulated 
to obtain the multistable properties of the gene regula-
tory network (x is the number of nodes/genes in the net-
work). The parameters for the set of coupled ordinary 
differential equations are sampled randomly from pre-
defined ranges that ensures a robust sampling of a large 
parameter space that can represent the overall dynamical 
properties of the gene regulatory network. The program 
samples 10,000 sets of parameters and for each param-
eter set, RACIPE initialises the system with a random 
set of initial conditions (n = 100) for each node in the 
network. The parameterised set of ODEs are then solved 
using the Eulers method to obtain one or many steady 
states that represent the attractors that are enabled by 
each parameter set. The steady state expression values 
are then z-normalised for principal component analysis 
(PCA) and hierarchical clustering analysis. The perturba-
tion analysis was done by performing RACIPE analysis 
on a gene regulatory network by either over expressing 
(OE) or down expressing (DE) a specified node by x-fold 
(i.e. the production rate of that particular gene is increase 
by x-folds and the steady state values are computed for 
the set of coupled ODEs). The Z-score normalisation 
of these perturbation data was done with respect to the 
control case where none of the production rates were 
altered. The proportion of phenotypes in each case were 
then computed over three replicates of in-silico perturba-
tions to assess for statistical significance.

Gene expression datasets
Gene expression datasets were downloaded using the 
GEOquery R Bioconductor package [101]. The data-
sets were pre-processed for each sample and gene-wise 
expression data was obtained from probe-wise expres-
sion matrix using R (version 4.0.0).

To calculate Epithelial and/or mesenchymal scores 
for bulk RNA seq data, we used the ssGSEA functional-
ity to estimate the activity of either the epithelial and/or 
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the mesenchymal set of genes for each sample in the cor-
responding datasets. The ssGSEA scores are computed 
to estimate the collective activity of a gene set based on 
their expression values. The epithelial and mesenchymal 
gene lists were obtained from [38]. The Hallmark EMT 
gene set was obtained from MSigDB [102].

For the single cell RNA seq dataset, GSE147405 [8], 
imputation of gene expression values was performed 
using MAGIC [103] before plotting the expression lev-
els of ELF3, KLF4 and GRHL2. Imputed values were also 
used to calculate the activity of the gene signatures such 
as the Hallmark EMT signature using AUCell [104]. We 
computed the Spearman correlation coefficients and 
used the corresponding p-values to gauge the strength 
of correlations for all correlation analysis. For statistical 
comparison between discrete groups, we used a two-
tailed Student’s t-test under the assumption of unequal 
variances and computed significance.

The methylation data for TCGA samples (Fig S1) were 
downloaded from the UCSC Xena Browser and plotted 
as the median methylation value for a given cancer type.

EMT score calculation: 76GS and KS
The KS and 76GS scores were calculated as previously 
described [62]. The KS score was calculated by compar-
ing the cumulative distribution function-based scores of 
epithelial (E) and mesenchymal (M) signatures identified 
separately for cell lines and for tumors. It lies in a scale 
of [-1, 1] where positive scores indicate a mesenchymal 
state, while negative ones denote an epithelial one.

76GS scores are calculated based on weighted gene 
expression values of a list of 76 genes known to be associ-
ated with an epithelial state. The higher the 76GS score, 
the more epithelial a sample is. The 76GS scores have no 
pre-defined range, unlike KS score, and can take both 
positive and negative values.

Kaplan–Meier analysis
Kaplan–Meier analysis for respective datasets was per-
formed using ProgGene [105]. The samples were sepa-
rated based on median levels of gene expression. The 
number of samples showing high and low expression lev-
els of ELF3 and WT1 are given in the SI section on Sur-
vival Analysis.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13036- 023- 00333-z.

Additional file 1: Mathematical model formulation. Fig S1. ELF3 levels 
in TCGA. A) ELF3 expression levels in TCGA cancer samples ordered by 
low KS score to high KS score. B) Scatter plot for ELF3 expression and its 
methylation status in TCGA cancer types. Each dot (cancer type) colored 
by KS score. The higher the KS score, the more mesenchymal a sample 

is. Colorbar is given to the right; higher scores are denoted by red. Fig 
S2. ELF3 delays onset of EMT. (A) Phase diagrams for the ELF3 network 
driven by an external signal (l_ext) for varying strength of interactions 
along the ELF3-ZEB axis (B) Phase diagrams for the ELF3 network driven 
by an external signal (l_ext) for varying strength of ELF3 self-activation. 
(C) Phase diagrams for the ELF3 network driven by an external signal 
(l_ext) for varying strength of interactions along the Slug-ELF3 axis (D) 
Sensitivity analysis of parameters for the ELF3 coupled EMT circuit (Fig 2E) 
indicating percent change in the I_ext interval for which the hybrid E/M 
state exists. The red dotted line indicates the percent change in the stable 
hybrid region in the absence of ELF3 (core network) when compared 
to the coupled network. Figure S3. ELF3 is an inducer of MET. (A) Gene 
regulatory network showing the regulation between epithelial and mes-
enchymal genes. Green arrows indicate activatory links and Red hammers 
indicate inhibitory links. (B) Kernel density estimate plots of EMT score 
(ZEB – miR200) (top panel) and ELF3 z-normalized expression (bottom 
panel). The red vertical line shows the approximate position of the minima 
of the largely bimodal distributions. PCA scatter plot of all steady states 
of RACIPE colored by (i) the EMT score defined as ZEB – miR200, (ii) SLUG 
expression (iii) ELF3 expression and (iv) KLF4 expression. (C) PCA scatter 
plot of all steady states of RACIPE colored by GRHL2 Expression (leftmost 
panel), miR200 expression (center panel) and ZEB expression (rightmost 
panel). (D) Scatterplot of EMT scores and ELF3 levels across steady state 
solutions obtained from RACIPE. Red lines indicate the position of minima 
in the bimodal distributions of EMT scores and ELF3 levels. Spearman 
correlation. coefficient and p-value are mentioned. (E) Scatterplot of 
Epithelial scores (GRHL2 + miR200) and Mesenchymal scores (ZEB + 
SNAIL +SLUG) with ELF3 levels of steady state solutions from RACIPE. The 
spearman correlation coefficient and the corresponding p-values have 
been mentioned. (F) Scatterplot of Epithelial scores (GRHL2 + miR200) 
and Mesenchymal scores (ZEB + SNAIL +SLUG) with KLF4 levels of steady 
state solutions from RACIPE. The spearman correlation coefficient and the 
corresponding p-values have been mentioned. (G) Fraction of steady state 
solutions resulting in Epithelial phenotype in control, 20-fold and 100-fold 
over expression of ELF3. * represents a statistically significant difference 
in the fraction of cases in the epithelial phenotype (Students’ t-test; p < 
0.05). (H) Fraction of steady state solutions resulting in the Epithelial (left 
panel) and Mesenchymal (right panel) phenotypes in control, 20-fold over 
expression of ELF3, GRHL2 and KLF4. *represents a statistically significant 
difference (Students’ t-test; p < 0.05). Fig S4. ELF3 shows stronger trends 
as compared to KLF4 with an epithelial behavior. Scatter plots showing 
correlations of imputed ELF3 and KLF4 expression with 76GS EMT score 
(the higher the 76GS score, the more epithelial the sample) in two cancer 
cell lines A) A549 (lung cancer) and B) DU145 (prostate cancer) when 
treated with TGFβ (GSE147405). Spearman correlation coefficient and the 
corresponding p-values have been mentioned. Imputed gene expression 
values were calculated using the MAGIC algorithm for different cell lines 
separately. C) Volcano plots showing correlation of GRHL2 expression 
levels with ssGSEA epithelial and mesenchymal scores in a meta-analysis 
of breast cancer datasets. Each dot represents a dataset. R < - 0.3, p< 0.05 
or R > 0.3, p < 0.05 are counted as statistically significant cases. Nneg 
denotes number of datasets for which a negative correlation (blue dots) is 
observed, Npos denotes number of datasets for which a positive correla-
tion (red dots) is observed between the two corresponding expression 
levels or ssGSEA scores. D) Same as C) but for bladder cancer. E) Same as 
C) but for prostate cancer. Panels D and E show results for KLF4, ELF3 and 
GRHL2. Fig S5. ELF3 correlates with patient survival in a cancer-specific 
manner. Trends in breast cancer samples. (A) overall survival (GSE9893) 
(B) relapse-free survival (GSE4922) (C) metastasis-free survival (GSE6532). 
Trends in colorectal cancer samples. (D) overall survival (GSE39582) (E) 
relapse-free survival (GSE395824) (F) metastasis-free survival (GSE28722). 
Fig S6. WT1 correlates with patient survival in a cancer-specific manner. 
(A) Overall survival in Breast cancer sample (GSE9893). (B) Relapse free 
survival in breast cancer sample (GSE9893). (C) (D) Relapse free survival in 
colorectal cancer samples (GSE17536, GSE14333) (E) (F) Overall survival in 
lung cancer samples (GSE50081, GSE314) (G) Relapse free survival in lung 
cancer sample (GSE31210) (H) Overall survival in ovarian cancer sample 
(GSE73614) (I) Overall survival in pancreatic cancer sample (TCGA-PAAD)

Additional file 2: Table S1. 
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