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Abstract 

The freeze‑thaw (F/T) method is commonly employed during the processing and handling of drug substances to 
enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, 
and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing 
hydrogels successfully prevents the need for toxic cross‑linking agents; moreover, their use promotes a concentrated 
product and better stability in emulsions. However, the use of F/T in these applications is limited by their charac‑
teristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the 
optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles 
that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary 
the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the 
formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present 
review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechani‑
cal, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on 
their formulation properties, the method and variables used, as well as challenges and opportunities in developing. 
Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying 
the systematic methodology of quality by design.
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Introduction
The cross-linking of polymers alters their physical prop-
erties, allowing different applications at the macro-, 
micro-, and even nanomolecular levels. The linking of 
polymer chains through chemical bonds or physical 
interactions has enabled the development of numer-
ous functional materials, including thermosets, rubbers, 
and hydrogels [1]. Methods for chemical cross-linking of 
polymers are classified into cross-linking during polym-
erization and subsequent cross-linking of polymer chains 
and are generally promoted by the addition of catalysts 
and/or cross-linking agents that form covalent bonds. 
Physical cross-linking is done using interactions other 
than covalent bonding, such as hydrogen bonding or 
ionic interaction, and they can reversibly dissociate and 
recombine under specific stimuli such as heating/cooling 
[2]. Although chemical cross-linking is a very versatile 
method to create hydrogels with good mechanical stabil-
ity, the cross-linking agents are often toxic compounds 
and cause unwanted reactions to the hydrogel matrix’s 
bioactive substances. Such adverse effects can be avoided 
using cross-linked gels by physical methods [3].

The freeze-thaw (F/T) method is applied in the phar-
maceutical field to produce polymeric matrices through 
consecutive F/T cycles. During freezing, the solvent 
crystallizes, concentrating the polymer chains in solvent 
regions and promoting zones of physical unions that 
remain when thawed. In this way, the self-assembly of 
polymers is promoted, mainly through hydrogen bond-
ing interactions, and without the requirement of chemi-
cal cross-linking agents [4]. Therefore, the F/T method is 
simple, environmentally friendly, and easily scalable.

The pharmaceutical applications of F/T include the 
synthesis of hydrogels, emulsions, nanosystems, and 
films, with the primary objective of transporting drugs. 
Although it also has applications in tissue engineering, 
agriculture, cosmetics, wastewater treatment, and others 
[5]. A material widely used in this method is poly(vinyl 
alcohol) (PVA), a synthetic polymer with abundant 
hydroxyl groups, low toxicity, biodegradable, cytocom-
patible, and low price. Its applications are limited by its 
intrinsic characteristics, such as porosity, swelling capac-
ity, flexibility, and drug loading, which depend on the 
type and proportion of polymers and the F/T conditions. 
However, PVA is also biocompatible with other biopoly-
mers with different characteristics, such as cellulose, chi-
tosan, gelatin, casein, and others, which enables various 
applications to the matrix resulting from the coupling 
[5–7]. The aim of the study is to review and discuss differ-
ent studies related to the impact and effects of the freeze-
thaw (F/T) process on the physical, mechanical, and 
chemical properties of diverse pharmaceutical applica-
tions, with an emphasis on their formulation properties, 

the method and variables used, as well as challenges and 
opportunities in developing. The study aims to provide 
an understanding of how the F/T method is employed in 
the processing and handling of polymers to enhance their 
chemical and physical stability, improve formulation sta-
bility, and increase drug concentration in pharmaceutical 
applications. The study also aims to highlight the chal-
lenges and opportunities in optimizing the F/T condi-
tions and variables to ensure safety and efficacy in the 
use of this method. Finally, the study aims to explore the 
experimental approach for choosing the standard vari-
ables studied in the F/T method applying the systematic 
methodology of quality by design.

Fundaments of freeze/thaw
Background
Seminal investigations on the F/T method were first 
reported by Peppas in 1975 [8], resulting from experi-
ments focused on unveiling the potential influence of the 
crystalline state of polymers on the properties of diverse 
crystalline materials. Peppas observed by infrared spec-
troscopy that the heating processes caused a change 
in the intensity of the band of infrared spectroscopy at 
1141  cm−1, a normal mode associated with the symmetri-
cal C-C stretch in PVA [9]. This observation allowed him 
to elucidate that heating the polymer directly modified 
its degree of crystallinity. It was later demonstrated that 
the crystalline fraction of PVA does not allow water per-
meation in the resulting materials, while amorphous and 
semi-crystalline phases are susceptible to swelling [10]. 
Although the method was developed initially to perform 
structural observations of PVA under different condi-
tions and to avoid heating, this technique allowed tuning 
the properties of highly organized polymeric materials by 
applying the F/T under specific times and temperatures. 
Thus offering a convenient post-synthetic method to 
obtain different crystallinities and pore sizes for the same 
polymer [11, 12].

These studies on PVA were contemporary to independ-
ent research directed at finding new chemical cross-
linking processes that would yield materials with robust 
physicochemical properties without using toxic agents 
[13]. Thus, Peppas’ theory of controlling the physical 
properties of materials through the control of crystal-
line states was eventually extrapolated to other polymers 
and blends of polymers, leading to the popularization of 
the F/T technique. The implications of various modifica-
tions in the method conditions (cycle lengths, tempera-
tures, and polymer concentration) have been reported 
for different systems. Here we will emphasize the use of 
this technique in elaborating materials with pharmaceu-
tical applications. Nevertheless, F/T is used mainly to 
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reinforce the mechanical properties of the materials to be 
obtained due to the crystallization process [14, 15].

The scientifical and technical basis
The F/T process, illustrated in Fig. 1, occurs due to freez-
ing the water contained within the polymer dispersion 
during exposure to low temperatures (-35  °C to -20  °C), 
expelling the polymer chains assembled in high-con-
centration regions. Close contact among these chains 
promotes the crystallization process and the formation 
of hydrogen bonds that act as cross-linking points [16, 
17]. While the F/T cycles continue, the residual molecu-
lar chains are successively included in the concentrated 
bonding zones. These interactions remain intact during 
thawing, creating a non-degradable three-dimensional 
polymer network [18].

According to the literature, the initial polymer concen-
tration and the number of F/T cycles influence the crys-
tallinity, compressive and tensile modulus, and size and 
morphology of the resulting pores [19]. Initially, increas-
ing the polymer concentration results in higher nascent 
crystallinity and added stability after swelling. However, 
a too-high crystallinity damages elasticity and makes the 
gels more brittle [20]. Consequently, modulating the ini-
tial concentration is also a determining factor. Although 
this methodology was primarily utilized for hydrogels, its 
usefulness with other polar solvents has also been dem-
onstrated [21].

The freezing process involves different molecular 
stages, as shown in Fig. 2; this phase transition is divided 
into four successive stages: supersaturation/supercool-
ing, nucleation, crystal growth, and recrystallization [22, 

Fig. 1 Schematic representation of the freeze‑thaw process

Fig. 2 Typical freeze‑thaw time‑temperature curve
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23]. The formation of water crystals is the most critical 
step, as it will determine the morphology and stability 
of the three-dimensional pore structure of the resulting 
material. Their formation occurs when the liquid phase 
exceeds equilibrium conditions and is supersaturated or 
supercooled; this is easily achieved by reducing the tem-
perature below the melting point and/or by increasing 
the solute concentration in the solution above the satura-
tion point [23].

In the case of polymeric solutions, the polymer itself 
serves as the starting point for the nucleation phenom-
enon by acting as a catalyst; nucleation is dependent 
on the system components and their concentration, as 
well as the holding temperature, cooling rate, and shear 
forces. At this stage, the temperature remains constant 
because the molecules release heat when they change 
their organization from a liquid to a crystalline structure; 
this represents the latent heat of crystallization [24, 25]. 
The crystal growth rate depends on the magnitude of 
saturation or cooling of the system, i.e., the rate at which 
latent heat is removed from the liquid-solid boundary 
[26]. The water crystals continue growing until the ther-
modynamic equilibrium state is reached. Simultaneously, 
the polymer (initially dissolved in the aqueous phase) 
moves to the solid-liquid boundary, increasing its con-
centration in the aqueous phase [27, 28].

The rising polymer concentration leads to a progressive 
melting point reduction during the whole crystallization 
phase. In the end, the system is formed by two separate 
phases: the crystals and the hyper-concentrated non-fro-
zen solution of the polymer [29]. The composition of the 
solution and its physicochemical properties can be dras-
tically different from the initial ones, including poten-
tial changes in pH, ionic strengths, osmotic pressure, or 
viscosity, depending on the nature of the polymer [30]. 
Hydrogen bond formation occurs with this variation in 
properties stabilizing the gel, emulsion, or nanoparticles 
obtained [31].

The size and number of crystals that subsequently 
determine the pores’ morphology depend on the nuclea-
tion and growth rate of the crystals [32]. The faster the 
cooling rate, the higher the nucleation rate becomes 
compared to the crystal growth rate, yielding increased 
nucleation points and giving rise to many tiny crys-
tals [32]. On the contrary, if the cooling ramp is slow, 
the nucleation rate is lower than the growth rate, giving 
rise to a few large crystals. Subsequent recrystallization 
occurs by splitting or bonding the preformed crystals due 
to changes in the temperature or humidity of the system. 
Then the materials must be kept in temperature-con-
trolled systems, usually below -18 °C [33].

Several strategies have been developed to maintain 
the stability of the three-dimensional structure, such 

as modulating the chemical composition of the mix-
ture, precisely controlling cooling times and rates, and 
employing additives that serve as cryoprotectants such as 
polysaccharides, polyols, and proteins [22]. Although it 
has been exposed that the thawing phase also influences 
the final structure of the materials, it is evident that the 
freezing step is decisive. Since very few studies describe 
the influence of the thawing process, this is an opportu-
nity to improve the manufacturing of materials obtained 
by this technique.

Method conditions
In the F/T process, the most critical parameters are (i) the 
number of cycles and their duration, which vary depend-
ing on the targeted material and its chemical composi-
tion, but generally range between 3 and 10 cycles; (ii) the 
freezing rate: as already mentioned, the freezing speed 
influences the shape and size of the water crystals and 
consequently the pore size and the formation of cross-
linking; (iii) the thawing rate must be controlled to avoid 
overheating and conducted below the melting point so 
as not to melt the polymer network; (iv) the medium in 
which the process is carried out should help to maintain 
hydration and avoiding osmotic stress while being com-
patible with the raw materials by not intervening in their 
structure and properties, and finally (v) the materials 
must be stored at a temperature below the freezing point 
to help their preservation. These parameters and their 
influence on the final materials are listed in Table 1.

Special considerations of the freeze‑thaw method 
for emulsions
Emulsions are two-phase systems composed of two 
immiscible liquids where one phase is dispersed as glob-
ules in the other continuous phase. Due to their ther-
modynamic instability, emulsifying agents are added 
to ensure stability [42]. These agents form a thin layer 
around the globules of the dispersed phase to prevent 
coalescence and separation. Pharmaceutical emulsions 
consist of mixtures of an aqueous phase and a phase 
comprising oils or waxes, serving as carriers for oil-sol-
uble drugs. F/T processes can cause destabilization in 
emulsions, leading to coalescence, flocculation, breaking, 
and creaming [43]. To mitigate these effects, it is neces-
sary to avoid solution saturation during freezing, which 
can dehydrate the interfacial surfactants and alter their 
properties. For example if salts are added in high concen-
trations can eliminate any dielectric repulsion between 
droplets and promote their merging [44, 45]. During 
freezing, the volume fraction of the dispersed phase 
increases, and the droplets are subjected to stress from 
the expanding ice phase. If emulsion droplets are trapped 
and concentrated between growing ice crystals, their 
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stability relies on the integrity of the membrane separat-
ing them. The type of lipid can influence the transmission 
of forces produced by ice to the membrane, highlighting 
its role in emulsion stability [46].

Special considerations of the freeze‑thaw method 
for nanosystems
F/T can cause stress to the colloidal suspension of nan-
oparticles, particularly during the freezing and dehy-
dration stages. The cryoconcentrated phase that forms 
during freezing can induce aggregation and melting of 
the nanoparticles, while ice crystallization can cause 
mechanical stress and destabilization [47, 48]. To protect 
these fragile systems, special excipients such as cryo-
protectants and lipoprotectants are added prior to F/T. 
These excipients not only protect the nanoparticles from 
freezing and drying stress but also increase their stability 
during storage [49]. The F/T of nanoparticles is a com-
plex process that requires careful consideration of both 
the formulation and process conditions. The success of 
F/T is influenced by many factors, such as the composi-
tion of the nanoparticles (e.g., type of polymer, concen-
tration and type of surfactant, concentration and type of 
cryoprotectants and lipoprotectants, interaction between 
cryoprotectants and nanoparticles, surface modification 
of nanoparticles), and the conditions applied during F/T. 
Factors such as freezing rate, annealing, pressure, tem-
perature, and duration of each process step can affect the 
stability of the nanoparticles during and after F/T [50, 
51]. Thorough investigation and optimization of these 
parameters are necessary to achieve successful F/T of 
nanoparticles.

Advantages and disadvantages
Among the main advantages of the F/T method are the 
simplicity and efficiency of the process because it does 
not involve sophisticated laboratory equipment and is 
easily scalable and highly reproducible. These character-
istics make it economically viable, which is fundamental 

to guarantee its widespread use in pharmaceutical and 
medical applications [52]. The resulting materials are 
homogeneous, an essential characteristic for develop-
ing appropriate mechanical properties and the biologi-
cal performance for which they were intended [53]. The 
method allows tailoring the polymer to obtain desired 
properties such as swelling, degradation rate, mechanical 
resistance, and porosity of the final product to reach spe-
cific pharmaceutical applications [54].

However, there are still several areas of opportunity 
to improve the applicability of this process for obtain-
ing pharmaceutical materials. Some of its disadvantages 
come from the difficulty of correctly homogenizing the 
initial polymeric solution, which produces areas with a 
greater amount of water that will cause an inhomogene-
ous pore formation resulting in compromised mechani-
cal properties by points of failure or cracks [55]. In this 
regard, if the water crystals formation is uncontrolled, 
they can form abrupt sharp edges that can break the 
polymeric network irreversibly, damaging the mechani-
cal properties [56, 57]. The rate and duration of the cycles 
can also reduce the stability of the material because they 
directly affect the physicochemical properties of the 
material if they are not adequately controlled [58, 59]. All 
these difficulties in the pharmaceutical field make it chal-
lenging to tailor polymers by the F/T technique without 
degrading the molecules added as active ingredients and 
other biological components such as cells, enzymes, or 
genes that could be part of the formulation [55, 60].

Impact and effects on physical and chemical 
properties
It has been reported that the hydrogels’ structure and 
characteristics, like mechanical properties, stability, or 
porosity, depend on the effect of specific parameters such 
as the polymer’s molecular weight, concentration, and 
F/T conditions (e.g., number of cycles and temperature). 
Here, we discuss the effect of the F/T process and the 

Table 1 Traditional method conditions

Factor Effect Specification Reference

Freezing rate and temperature It influences mechanical stress, pores size, and sharp edges 12 h, room temperature until ‑80° C [11, 12]

Cycles (time and length) It affects thermal stability and crystallinity degree Between 3 and 10 [34–36]

Thawing rate and temperature It impacts three‑dimensional network stability ‑80 °C to 4 °C, in 20 min [31]

Medium It determines suitable physicochemical properties Water, ethanol, methanol, DMSO, acetone [10, 37]

Solute concentration It exerts a direct influence on the rate of transition phases Saturated solution [25, 38]

Additives They provide structure stabilization Polysaccharides, polyols, and proteins [39, 40]

Solute nature It influences mechanical properties and chemical functionality Polymers, oils, proteins, and nanoparticles [16, 22]

pH changes It affects swelling and mechanical properties non‑ionic [30, 38, 41]
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number of cycles on the physicochemical properties of 
hydrogels.

Mechanical properties
The mechanical properties of materials for tissue engi-
neering or pharmaceutical purposes play a crucial role 
in the desired application. The elasticity module val-
ues vary in function of the organ of interest and could 
modify the release rate of drugs or bioactive molecules 
in delivery platforms. In this context, some researchers 
have demonstrated that the number of F/T cycles and 
the temperature highly affect the mechanical properties 
[58, 61]. Specifically, Lozinsky et al. experiments revealed 
that rapid freezing in the polymer solution triggers the 
cracking of the PVA hydrogel [61]. Furthermore, the 
authors reported that hydrogels exposed to several F/T 
cycles (about 45 cycles) increased the number of crystal-
linity domains, increasing the mechanical strength and 
decreasing the swelling ratio.

Similarly, Gupta et  al. reported that the percent-
age of crystallinity varies depending on the number of 
F/T cycles; however, they found that 15 and 45 cycles 
presented the same crystallinity percentage at 16% of 
PVA [58]. Thus, the increase in PVA concentration also 
increased the formation of stable crystalline regions, 
which benefit chain folding. Interestingly, this behavior 
could be suppressed at lower F/T cycles inhibiting the 
chain folding. The repeat F/T cycles promote the chains’ 
polymer alignment in the liquid microphase (unfrozen), 
triggering the formation of intermolecular aggregations.

On the other hand, slow thawing combinate with a 
slow cooling rate produces a higher modulus of elastic-
ity in hydrogels [62]. Kim et al. analyzed the stiffness of 
PVA hydrogels created through the F/T technique to 
evaluate this parameter’s effect on stem cell differentia-
tion [63]. The authors developed a PVA hydrogel frozen 
gradually in the solution along the longitudinal direction 
from the bottom to the top using liquid nitrogen  (LN2). 
Besides other remarkable results, the authors reported 
that the crystallinity of PVA hydrogel increased with 
lower freezing temperatures and longer freezing times, 
providing enhanced mechanical properties. Furthermore, 
the compressive modulus varied from 1.47 ± 0.32 kPa to 
23.99 ± 3.60 kPa, from top to bottom. This stiffness gradi-
ent is intimately related to the crystallinity gradient cre-
ated by the freezing time and temperature differences 
during the freezing process.

Similarly, a glycol-chitosan-catechol hydrogel was pre-
pared by F/T under varying procedure conditions [19]. 
The authors evaluated the catechol cross-linking chemis-
try at room temperature and cryo-conditions (in the F/T 
process) and reported a dramatic increment in storage 
modulus value in the F/T cryogels (3–sixfold) compared 

to the room-temperature hydrogels. Furthermore, their 
results demonstrated that the frozen state accelerated 
hydrogel gelation.

In 2017, Hong obtained hydrogels of PVA and acid 
tannic (TA) by three cycles of F/T conditions, observ-
ing a loss of transparency compared with hydrogels pre-
pared by other methods. This characteristic is related to 
the binding of molecules derived from the F/T process 
[64]. The authors also reported that the hydrogel hard-
ness increased as TA augmented. Similarly, using poly-
saccharides (such as xanthan gum or salecan) combined 
with PVA allowed the obtention of hydrogels with a wide 
range of applications. However, these polysaccharides 
decreased the compressive strength and the compressive 
modulus [65, 66].

Porosity
Well-organized architectures, large surface areas, and 
tunable pore sizes characterize porous materials. These 
properties could enhance the success of biomaterials due 
to the necessity of porosity for the interaction between 
cells and biological environments [67–69]. In the case 
of controlled drug delivery structures, incrementing the 
surface area gives more reactive sites per material surface 
unit, which permits obtaining a more efficient system 
[70, 71].

The porosity characteristics (such as pore size and dis-
tributions) could be controlled by F/T conditions (cooling 
rate, cycle times, cryoconcentration, etc.) [19, 34, 72]. For 
instance, incrementing polymer concentrations results 
in smaller pores or thicker walls [62, 73]. In the freezing 
procedure, the ice crystals act as a porogen in the hydro-
gel formation, providing porosity [63]. Furthermore, the 
abundant hydroxyl groups in polymers employed for this 
purpose, such as PVA, chitin, hyaluronan, and hemicel-
lulose, stimulate the physical cross-linking derived from 
the process [59, 74]. On the other hand, the thawing 
process promotes the interactions between the remain-
ing polymers, provoking the formation of networks in 
the hydrogel [62, 75]. Additionally, the number of cycles 
could also impact the morphology due to an increment in 
the cycles leading to more defined pores.

Recently, Figueroa-Pizano et  al. reported that chi-
tosan-PVA hydrogels treated at lower freezing tem-
peratures (such as -80  °C) presented smaller pores 
than those treated at higher temperatures (-4 °C) [34]. 
Their results suggested that the solvents employed and 
the polymer concentration are parameters that could 
modify the pore structure and porosity percentage, 
e.g., higher chitosan concentrations produce a more 
porous network and broader pores. The increase in the 
number of F/T cycles causes a high hydrogen bonding 
formation between PVA polymer chains and chitosan, 
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which enhances the cross-linking degree in the hydro-
gels and crystallization of PVA chains [59].

Some authors have prepared hydrogels using the 
F/T method and other cross-linking techniques, such 
as photo-cross-linking and chemical cross-linking, 
to evaluate the changes in materials’ properties. The 
material’s structure could be reduced by increasing the 
photo- and ionic-cross-linking derived from the pres-
ence of components such as kappa-carrageenan [76].

Swelling capacity
The evaluation of water content in hydrogels for phar-
maceutical applications is a requirement, especially 
for those that serve as wound dressings, because they 
provide a local moist environment and enhance the 
nutrients, drugs, or protein permeation into the target 
site [77, 78]. The hydrogel swelling is directly related 
to porosity and pore size. The polymer’s relation and 
solvent concentration are determinants in the swelling 
ability, besides the properties of the polymer (hydro-
philicity). For example, it was reported that an incre-
ment of TA concentration in a TA/PVA hydrogel 
decreased swelling properties, which is also related to 
microporosity [64]. Similarly, higher concentrations 
of hydroxyapatite trigger a lower equilibrium swelling 
ratio in hydrogels developed for bone regeneration due 
to the decrement in the amorphous region volume [62, 
79].

Some researchers showed that the swelling capacity 
decreases when the number of F/T cycles increases. 
This behavior is attributed to the fact that the incre-
ment in cycles increases the crystallinity in gels, 
restricting the movement of the polymer chains and 
suppressing the swelling ratio. Then, the number of 
F/T cycles and the orientation of these processes could 
change the swelling kinetics of materials.

In 2018, a notable study evaluated the influence 
effect of stretching within the formation of F/T cycles 
on the hydrogel properties [74]. The orientation allows 
the polymer chains to form uniaxial alignments, which 
increases the swelling capacity compared to those 
without orientation. This behavior could be interest-
ing for drug delivery science due to its direct impacts 
on the hydrogel release capacity; higher swelling capa-
bility allows the quick release of the drug or molecule 
inside the hydrogel.

The different properties and characteristics obtained 
in hydrogels by modifying parameters in the F//T pro-
cess allow for obtaining a wide range of applications 
for these materials, making this technique versatile 
and effective in pharmaceutical applications.

Structural implications of the freeze‑thaw process 
in emulsions and nanosystems
During freezing, the formation of ice crystals can cause 
the nanoparticles or oils drops in emulsions to aggregate 
or agglomerate, which can lead to an increase in particle 
size. Upon thawing of the sample, the ice crystals melt 
and the resulting liquid can cause the nanoparticles/
drops to re-disperse [80, 81]. However, if aggregation or 
agglomeration during freezing is significant, the nano-
particles may not completely re-disperse, resulting in a 
permanent increase in particle size [49].

On the other hand, freeze-thaw cycles can also induce 
changes in the morphology and size distribution of nano-
particles, especially for some types of polymers and sur-
factants. For example, freeze-thawing can induce the 
formation of new crystalline structures or modify the 
morphology of nanoparticles, leading to changes in par-
ticle size [82, 83].

It is important to note that the effect of freeze-thaw 
cycles on nanoparticle size can depend on several fac-
tors, such as the specific properties of the nanoparticles 
and the freeze-thaw conditions, such as freezing rate and 
temperature. Therefore, the impact of freeze-thaw cycles 
on nanoparticle size must be carefully evaluated for each 
specific system [84].

Pharmaceutical applications of freeze‑thaw
Hydrogels
Hydrogels are three-dimensional polymers produced by 
chemical and/or physical reactions that cause “tie points” 
formed by covalent or ionic bonds, strong entangle-
ments, crystallites, or hydrogen bonds [30]. The effects 
of gel properties and swelling deterioration are minor 
in non-ionic hydrogels [30]. The F/T method in hydro-
gels has been used as a physical cross-linking strategy, 
which makes it possible to replace chemical cross-linking 
agents since the latter could cause adverse effects, such 
as undesirable reactions with other components (if any). 
The solutions of polymers, such as PVA, become gels 
upon repetitive F/T cycles due to phase separation and 
crystallization [30]. This sol-gel transition produces a 
thermoreversible gel, a matrix of a physically cross-linked 
polymer containing uncrosslinked polymer, and water 
[52]. Hassan and Peppas [85] studied freeze-thawed PVA 
hydrogels’ structure and morphology by repeating cycles 
of 8 h of freezing at -20 °C and 4 h of thawing at 25 °C. 
The authors found that an increase in the PVA molecu-
lar weight resulted in crystals of higher lamellar thick-
ness and a broadening of the crystal size distribution due 
to the rise in PVA chain length. The crystallization was 
more pronounced for more loosely cross-linked samples. 
On the other side, PVA has also been mixed with other 
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polymers. For instance, Figueroa-Pizano et al. developed 
a PVA-chitosan hydrogel by the F/T method [34]. The 
presence of chitosan content increases pore size based 
on SEM micrographs and the swelling ratio. The increase 
in the number of F/T cycles causes the hydrogen bond-
ing between PVA polymer chains and chitosan, which 
enhances the cross-linking degree in the hydrogels and 
crystallization of PVA chains, as was observed by Moradi 
et al. [86]. The F/T method has also been used as a strat-
egy for preparing aerogels. Huang et  al. [87] prepared 
functional aerogels from cellulose nanofibrils and carbon 
nanotubes, constructing aerogel pore walls with suitable 
mechanical properties by cycling F/T to cross-linking the 
cellulose nanofibrils and carbon nanotubes. The aerogels 
exhibited tunable densities, high specific surface area, 
and appropriate conductivity, and they are easily recy-
clable due to the absence of chemical cross-linking. The 
aerogel was frozen at -45 ºC for 30 min, thawed at 25 ºC 
for 30 min, and cycled this process thrice.

Other polymers that have been used for the develop-
ment of hydrogels based on the F/T method, alone or in 
combination with PVA, are carboxymethyl cellulose [88], 
locust bean gum [89], kappa-carrageenan [90], among 
others.

The evaluation of the syneresis of hydrogels is another 
area where the F/T has been applied. The syneresis test is 
a primary method for evaluating the ability of hydrogels 
to resist undesirable physical changes upon repeated F/T. 
Overall, the syneresis values of the gel samples increased 
with the number of F/T cycles, especially during the first 
cycles. Wang et al. [91] found that the syneresis values for 
the kappa–carrageenan gels incorporating a composite of 
cinnamon essential oil-hydroxypropyl–β–cyclodextrin 
were significantly lower than those for the pure kappa-
carrageenan gel during the five F/T cycles. The results 
indicated that the composite significantly enhanced the 
F/T stability of the kappa–carrageenan gel because it 
binds to a portion of the free water present in the pure 
gel, hindering its transfer from the gel network and the 
formation of ice crystals during freezing. Consequently, 
less water was released from the gel network upon 
thawing.

Emulsions
F/T is utilized in emulsions for the production of highly 
concentrated emulsions, stability evaluation, morphol-
ogy characterization, mass transfer within emulsions, 
formation and dissociation of hydrate in emulsion sys-
tems, preparation of composite fiber with porous shell 
structure, thermal storage material, and demulsification 
of W/O emulsions [92].

A study by Rojas et al. [93] demonstrated that, in dou-
ble emulsions W1/O/W2, freezing the oil phase (O) 

preserves stability. At the same time, subsequent thaw-
ing triggers the coalescence of the droplets of the inter-
nal aqueous phase (W1) with the external aqueous phase 
(W2), termed external coalescence. This study obtained 
temperature-sensitive bulk W1/O/W2 double emulsions 
that potentially allow denaturation components such as 
chemical penetration enhancers may be stored within the 
oil and continuous (W2) phases without modification of 
the composition in the interior droplets (W1), chosen to 
minimize protein instability during storage [94].

In the same way, most simple O/W emulsions are 
destabilized after F/T because of the crystallization of 
the oil and water in the respective phases through coales-
cence or partial coalescence. Ice crystals can destabilize 
emulsions by flocculating oil droplets, increasing ionic 
strength, and changing the pH in the unfrozen aqueous 
phase. Fat crystals can penetrate neighboring oil drop-
lets during freezing, which causes partial coalescence in 
the O/W emulsion that collapses to form larger droplets, 
which appear in the separated oil when the emulsions are 
thawed [95]. These emulsion stability studies were ana-
lyzed by Cornacchia and Roos [96] using DSC, gravita-
tional separation, and particle size analysis during four 
F/T cycles. The emulsions were stable when only lipid 
crystallization occurred. DSC data indicated that lipid 
crystallization in emulsions containing hydrogenated 
palm kernel oil caused destabilization at low sucrose con-
centrations before water crystallization. The emulsions 
were stable if the dispersed oil phase crystallized after 
the dispersing water phase (such as emulsions contain-
ing sunflower oil), exhibiting that during F/T cycling, the 
crystallization temperature of the dispersed lipid phase 
plays a crucial role in the stability of oil-in-water emul-
sions stabilized by dairy proteins.

Nanosystems
Freezing is the critical stress for products stored as fro-
zen liquids or lyophilized substances [97]. The F/T 
method has been used to evaluate the stability of differ-
ent nanosystems. For example, nanoparticles based on 
siRNA often suffer from aggregation and loss of function 
during storage [98]. An alternative method for preserv-
ing the dispersibility of nanoparticles is to freeze the sus-
pension. However, freezing a suspension of nanoparticles 
is also accompanied by nanoparticles concentration and 
their consequent aggregation. Furthermore, thawing a 
frozen suspension could be unfavorable for preserving 
nanoparticle dispersity. These aggregation pathways due 
to freezing can be interrupted by adding adequate and 
appropriate substances to the suspension [99]. For exam-
ple, PVP has been reported to exert marked inhibition 
of aggregation of silica nanoparticles during F/T, where 
the freezing was in  LN2, and the thawing was at 60 ºC for 
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30 min [100]. In the case of aluminum oxide nanoparti-
cles, the addition of potassium phosphate, sodium citrate 
buffers, or stabilizers such as PVA or gelatin A/B reduces 
the increased nanoparticle size after being subjected to 3 
cycles of F/T, frozen at -1 ºC/min to -50 ºC and thawed 
at 1 ºC/min to 10 ºC with 90 min in both stages. There-
fore, the authors identified that the fundamental formula-
tion principles to preserve inorganic nanoparticles upon 
freezing are maintaining the pH during freezing and add-
ing a suitable stabilizer [97].

Lee et  al. [101] developed polycaprolactone nano-
capsules (with eugenol as a model drug), which were 
subjected to F/T cycles in the presence and absence of 
cyclodextrins. The nanocapsules without β-cyclodextrin 
were remarkably aggregated at all freezing temperatures; 
however, no significant particle aggregation occurred 
in the nanocapsules with cyclodextrins. Therefore, the 
β-cyclodextrin was considered a cryoprotectant resulting 
from the retarded particle aggregation during the freez-
ing process.

It has been observed that in gold nanoparticles, a 
higher thawing temperature (from 4 ºC to 60 ºC) resulted 
in 10–20% better dispersibility of the nanoparticles, 
whereas the freezing temperature (-20 ºC in the freezer 
or -197 ºC in  LN2) had no significant effect. Correspond-
ingly, the increase in aggregation index value due to F/T 
was generally more significant than that due to freeze-
drying [99]. However, the F/T method is short and quick 
compared to freeze-drying and hence can be employed as 
a pre-test to screen the type and concentration of cryo-
protectants used in freeze-drying. F/T study is based on 
the principle that if an excipient cannot protect the nan-
oparticles during the first step of freezing in the lyophi-
lization, it is not likely to be an effective cryoprotectant 
[102].

In this context, Noga et  al. [103] studied the effect of 
F/T (-50 ºC/10 ºC) and freeze-drying on the particle size 
of hydroxyethyl starch (HES)- and PEG-coated poly-
plexes. PEG-coated polyplexes exhibited a significant 
increase in particle size up to 3000 nm after 3 F/T cycles. 
Meanwhile, HES-decorated polyplexes revealed higher 
stability, as the increase in particle size is lower (only up 
to 500 nm after 3 F/T cycles). The addition of cryopro-
tective excipients markedly reduced the tendency toward 
particle clustering. All lyophilized polyplexes exposed 
a good cake appearance after the freeze-drying process 
with short reconstitution times in water (< 3 s).

Likewise, products based on proteins can be exposed 
to the stress of F/T transition during production, purifi-
cation, storage, transport, and delivery to patients. It can 
cause the formation of subvisible particles. The evalua-
tion of the aggregation of nanoparticles after being sub-
jected to F/T cycles should be considered during their 

development since it appears to play a role in microparti-
cle formation in protein formulations [104].

On the other hand, nanoparticle coating can also be 
affected by F/T cycles. For example, when gold nanopar-
ticles are protected with a lipid bilayer and subsequently 
treated by F/T (-20 ºC at least 1 h and room temperature 
with shaking or sonicating, respectively), the F/T process 
induces fusion or fission of lipid bilayers tethered on the 
nanoparticles. UV-VIS spectra and transmission electron 
microscopy experiments revealed that the disruption of 
lipid bilayer structures on the nanoparticles led to the 
fusion or aggregation of nanoparticles [105].

In addition to being a method utilized to evaluate the 
effect on the aggregation, stability, or disruption of lipid 
coatings on nanoparticles, the F/T process has also been 
employed to fabricate nanosystems, especially in supra-
molecular complexes of cyclodextrins and liposomes. 
Maestrelli et  al. [106] investigated cyclodextrins compl-
exation and entrapment in liposomes to develop an effec-
tive topical formulation of ketoprofen. The encapsulation 
efficiency increased with increasing the cyclodextrins 
complex concentration. However, an opposite behavior 
was observed for frozen and thawed liposomes, probably 
due to the freezing phase required by such a preparation 
method, which reduced the complex solubility due to 
the drug precipitation arising during the freezing cycle. 
Likewise, these liposomes exhibited a less regular mor-
phology due to the “traumatic” preparation method, as 
indicated by the researchers. The authors state that the 
cycles of F/T give rise to the rupture of the phospholipid 
bilayer, which can be reconstituted in an untidy lamellar 
structure.

Conversely, Tao et  al. [107] prepared inclusion com-
plexes of thymol and thyme oil with β-cyclodextrins 
using F/T and kneading processes. The authors reported 
that the F/T procedure produced higher entrapment effi-
ciency than kneading, indicating its potent efficacy. Zhao 
and Lu [108] also observed this encapsulation efficiency 
increase when encapsulating recombinant human growth 
hormone in liposomes using a modified F/T process 
where three to four cycles of F/T generated higher encap-
sulation percentages.

Finally, Elorza et  al. [109] prepared 5-fluorouracil-
loaded liposomes by reverse-phase evaporation and F/T 
extrusion in  LN2 and warm water (50  °C). The authors 
found that liposomes prepared by reverse-phase evapo-
ration were more heterogeneous in vesicle size than 
those obtained by F/T extrusion. Even the reproducibil-
ity of the results was adequate for liposomes obtained by 
F/T and somewhat poorer for reverse-phase liposomes. 
Moreover, the phospholipid recoveries were above 90% 
and around 50% for F/T and reverse-phase liposomes, 
respectively.
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Other applications
The polymeric films obtained by F/T share the same 
synthesis principle as hydrogels, with modifications in 
the method that gives rise to thin matrices with high 
tensile strength and low water absorption capacity, 
which favors their application in the administration 
of drugs. Maneewattanapinyo et  al. [110, 111] stud-
ied drug delivery in gelatin/PVA films loaded with 5% 
by weight lidocaine/aspirin and lidocaine/diclofenac, 
developed by the F/T method. The authors mixed the 
drugs in the polymer solution and obtained the trans-
dermal patch by freezing for 8 h at -20 °C and thawing 
for 4  h at 25  °C for 10 cycles. The obtained film pre-
sented good stability during the 3-month study period 
when kept at 4  °C or room temperature, and polymer 
blending by F/T provided controlled drug release.

Due to their potential applications, several research 
groups have investigated the effect of the F/T pro-
cess on the mechanical properties of films. François 
and Daraio prepared films from scleroglucan (Scl) 
hydrogels and glycerol as a plasticizer for applica-
tion in drug delivery. The authors performed a dry-
ing method at room temperature and a cyclical F/T 
process. Films prepared through F/T exhibited a sig-
nificant increase in tensile strength and decreased 
swelling (directly related to the number of F/T cycles) 
compared to films air-dried alone. Augmented cross-
linking points per hydrogen bond can explain these 
physical differences with increasing F/T cycles [112]. 
On the other hand, PVA films have been prepared by 
water evaporation from the F/T-cycled gel. The maxi-
mum stress for the film fabricated with 10 F/T cycles 
was two times greater (46.2 MPa) than for a PVA film 
without F/T cycles (22.3  MPa). Furthermore, when 
the film was annealed at 130  °C, the maximum stress 
increased (181 MPa) compared to PVA films prepared 
with cross-linking chemical additives. The unannealed 
F/T cyclized film consisted of many small crystallites 
that act as a cross-linking point, but the annealed film 
comprised larger crystallites [113]. Another PVA-based 
film was obtained by removing water from a hydrogel 
using F/T cycles. Tensile strength and Young’s modu-
lus increased, and elongation at break decreased when 
increasing F/T cycles. The tensile strength and Young’s 
modulus of PVA films increased up to 255  MPa after 
seven cycles [114]. The F/T method also allows for 
improved stability of films. Li et  al. [115] developed 
polysaccharide-based sodium alginate (SA) and hyalu-
ronic acid (HA) films and demonstrated that SA/HA 
film swelling and solubility decreased by half during the 
F/T period and that the material had the potential to 
overcome the poor water vapor barrier problems tradi-
tionally experienced with these films. Scanning electron 

microscopy revealed that the cross sections of the films 
are uniform and compact after two F/T treatments.

The stability of drugs, antibodies, or viral vectors has 
been another application of the F/T method. An exam-
ple of this is the evaluation made by Bee et al. [116], in 
which the authors evaluated the influence of F/T cycles 
on the stability of adeno-associated viruses (AAV) sero-
types, taking as a starting point the increase in the num-
ber of clinical studies evaluating different AAV serotypes 
as vectors for gene therapy. The researchers exposed 
AAV8 and AAV9 at low and high concentrations to five 
F/T cycles. The quality attributes of AAV8 and AAV9 
remained within acceptable ranges, and the potency and 
concentration were unchanged within method variability. 
There was a minor increase in non-encapsulated DNA 
released from AAV8 after F/T in a phosphate-buffered 
saline formulation (PBS). The DNA release during F/T 
was minimized in a formulation with a low buffer con-
centration not detected in a sucrose formulation.

Storing drug substances at subzero temperatures miti-
gates potential risks associated with liquid storage, such 
as degradation and shipping stress, making it the best 
solution for long-term storage. F/T studies can provide 
valuable knowledge on the molecule even when per-
formed from an early formulation image. An example 
of the above is monoclonal antibodies, therapeutic sub-
stances that are important to be in a stable form through-
out the production process and during storage. A study 
conducted by Rayfield et al. [117] provided a scale-down 
qualification of freeze methods using several contain-
ers of varying size, subjected to five temperature con-
trol points (-20, -40, -70, and -135 ºC) and three thawing 
methods (controlled rate, uncontrolled rate with agita-
tion, uncontrolled rate without agitation) on four types 
of monoclonal antibodies type IgG. The data obtained 
in this study demonstrated no impact on drug substance 
quality after undergoing the typical F/T cycle process 
for the variables evaluated. However, Kordulewska et al. 
[118] assessed the effects of storage duration and mul-
tiple F/T cycles on cytokine stability on serum samples 
stored at 4 ºC for 1–7 and 30 days and underwent multi-
ple F/T cycles. The eight examined cytokines presented 
significant degradation after 4 days of sample storage at 
4 ºC. They were affected by freezing at -20 ºC and thaw-
ing, and IL-1 and IL-8 exhibited significant concentration 
decrease after two F/T cycles. It has also been deter-
mined that cytokines in serum samples after multiple F/T 
cycles had better stability when stored at -80 ºC than at 
-20 ºC.

The construction of polymeric scaffolds for cell growth 
has been performed by the F/T method. Sanchez-Car-
dona et  al. [119] prepared chitosan/gelatin/PVA scaf-
folds by F/T cycles followed by lyophilization for tissue 
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engineering applications. They obtained three-dimen-
sional lattice scaffolds with porosity higher than 80%, 
with heterogeneous pore sizes ranging from 0.6- 265 μm. 
The scaffoldings had a maximum swelling capacity 
greater than 600% and a controllable degradation rate, 
retaining their three-dimensional network structure after 
28 days in PBS. The F/T technique positively influenced 
pore formation and scaffold size, and these features have 
an essential effect on nutrient diffusion, adhesion, and 
cell viability.

The synthesis of porous foams by F/T is also being 
widely explored, due to the potential applications that 
they may have, such as thermal insulation, gas adsorp-
tion, selective absorption of liquids for environmental 
remediation, and biotechnological applications [120]. 
Cellulose nanofibril foams are porous materials with 
exceptional mechanical properties resulting from the 
high strength-to-weight ratio of nanofibrils. Antonini 
et  al. [120] developed an optimized manufacturing pro-
cess for highly porous cellulose foams based on the F/T 
technique controlled at ambient pressure and obtained 
foams with ultra-high porosity (99.4%), a density of 
10  mg/cm3, and liquid absorption capacity of 100 L/kg. 
Similarly, the use of microfibrillated cellulose has also 
been explored for the manufacture of foams employing 
the F/T method, which allows the production of mechan-
ically stable and lightweight porous structures under low-
cost environmental drying conditions [121]. Compared 
to other dense materials, foams have the advantages of 
being lightweight in structure, with a higher surface-to-
weight ratio, and permeable to fluids and/or gases.

As described above, applying the F/T method on poly-
mer solutions involves forming ice crystals that promote 
the development of phases rich in polymers, where inter-
actions between polymer chains are promoted (Fig.  3). 
During the F/T cycles, crystalline and amorphous zones 
are formed. It has been observed that the amorphous 
degree decreases when the polymer blend is subjected 
to more F/T cycles. This property and suitable polymers 
give rise to different polymeric matrices with potential 
pharmaceutical applications, such as hydrogels, nanosys-
tems, foams, and films.

Optimization of freeze/thaw conditions 
under the QbD approach
The quality of pharmaceutical products is entirely 
related to guaranteeing safety and efficacy in their 
use. From this, regulatory agencies worldwide have 
designed norms and standards to evaluate drug qual-
ity thoroughly. Unfortunately, gaps still lead to incon-
sistencies in meeting all requirements [122]. Quality 
by Design (QbD) is a pharmaceutical development 
approach widely used in the global pharmaceutical 

industry, focused on the generation of scientifically 
based knowledge that allows the detection of the pri-
mary sources of variation affecting the quality of the 
final product [123]. QbD as a systematic drug develop-
ment process allows generating a robust product based 
on risk analysis, where, through statistical tools such as 
Design of Experiments (DoE), response surface meth-
odology (RSM), regression models, and optimization 
techniques, the major sources of variation in the manu-
facturing process and formulation that determine the 
quality behavior are known [124, 125]. Almost at the 
final phase of QbD, a design space is defined, which is 
a region of operability where the effect of Critical Pro-
cess Parameters (CPPs) and Critical Material Attrib-
utes (CMAs) on Critical Quality Attributes (CQAs) is 
detected and controlled, leading these variables to a 
state of consistency, reproducibility, and compliance 
with pre-established specifications [125, 126]. The CPPs 
and CMAs, evaluated as independent variables or fac-
tors, are fixed from the knowledge of the process and 
based on risk analysis to being deliberately manipulated 
at different levels of experimentation. At the same time, 
the CQAs are studied as a response or dependent vari-
able. CQAs describe the functional quality of the prod-
uct and are commonly determined following regulatory 
standards and/or set in a Quality Target Product Profile 

Fig. 3 Freeze‑thaw method is applied to polymeric solutions to 
develop matrices with potential pharmaceutical applications
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(QTPP), in which its criticality is determined based on 
the direct or indirect influence on the safety and effi-
cacy of the product, and the severity of harm to the 
patients [126, 127].

A typical F/T process is usually employed during the 
processing and handling of drug substances and/or drug 
products to obtain dosage forms or enhance chemical 
and physical stability. However, the products are sub-
jected to different steps or cycles that involve high physi-
cal stress that could change properties associated with 
quality attributes [128]. Then, product resistance to this 
stress must be studied to detect F/T susceptibility timely. 
After, DoE in a multivariate study, with multiple pro-
cess parameters that are varied simultaneously, has been 
applied to understand how the process performs, what 
factors are critical, and what models are suitable to opti-
mize response variables. The application of the DoE and 
QbD approach in the F/T process focuses on the impact 
analysis of process variables on chemical and/or physical 
stability. Most reported studies were mainly carried out 
to establish indicators of quality during the manufacture 
in this sense for several drug products such as proteins 
[129–131], nanosuspensions [132], and self-micro emul-
sifying delivery systems [133]. For instance, to evaluate 
the stability of formulations of monoclonal antibodies 
and nanopharmaceuticals through experimental designs, 
it has generated multivariate analysis models that allow 
predicting the impact on CQAs of cryoprotectants and 
stabilizing agents in the formulations (as examples of 
CMAs). Together with evaluating the cycles of F/T by 
sequential cycling between 5 to -40  °C, optimizing the 
concentration of excipients, the number of cycles, freeze 
temperatures, and the duration of the F/T stages studied 
as factors or CPPs [134]. In contrast, changes in purity, 
subvisible particles, homogeneity, pH, osmolality, parti-
cle size, aggregates, Z potential, oxidation, glycosylation, 
conformation, and potency have been evaluated as tar-
get product quality attributes or CQAs [132, 134, 135]. 
A complete QbD approach that includes clearly defined 
phases has been applied mainly in the development of 
biopharmaceuticals [135–137], in which the initial risk 
assessment for the formulation is carried out through a 
cause-and-effect analysis of all theoretical parameters 
supposed to have an impact on quality attributes, set as 
response variables during the lyophilization or F/T pro-
cess [128].

Recently, the effect of F/T process variables on induced 
cross-linked hydrogels has been evaluated with this 
approach to optimize polymeric systems used for wound 
dressing and tissue engineering, whose rheological and 
mechanical properties were analyzed as CQAs [138, 139]. 
On the other hand, the impact of the mentioned criti-
cal parameters has also been studied with this statistical 

approach in other areas, such as foods, where similar 
CPPs and response variables have been set up [140, 141].

In the establishment of CPPs, it is crucial to keep in 
mind all the stages that are involved in the F/T unit oper-
ation when it is executed in the obtaining of pharmaceu-
tical products so that, based on risk analysis, it identifies 
the variables that have the most significant impact on 
the quality attributes of the final product or the result-
ing intermediate product. Fabrication at the industrial or 
pilot scales involves vessels configured with cooling skids 
that circulate heat transfer fluid (HTF) through the ves-
sel’s jacket and internal coils. For freezing, HTF tempera-
tures are typically maintained between -55 and -45  °C, 
pumping the liquefied bulk at a modest flow rate (1 L/
min), with thaw cycles that occur between 9 and 12 h, for 
tanks between 200 and 300 L [128, 142]. Generally, dur-
ing the F/T process, CCPs such as the steps’ duration, the 
medium’s volume, HTF temperature, and the number 
of cycles are frequently fixed. Table 2 summarizes some 
CPPs, CMAs, and CQAs studied and analyzed for F/T 
processes.

Conclusions
In conclusion, the freeze-thaw (F/T) method is a valu-
able tool in the processing and handling of polymers 
to enhance their chemical and physical stability and 
improve formulation stability in pharmaceutical applica-
tions. However, the success of the F/T method depends 
on the process conditions, chosen polymers, tempera-
ture, time, and the number of cycles, which require opti-
mization before using this method. The optimization of 
these conditions and variables is essential to ensure that 
the final product meets the required quality attributes, 
including stability, efficacy, and safety.

The F/T method has been used in a wide range of 
pharmaceutical applications, including hydrogels, emul-
sions, and nanosystems, among others. In hydrogels, 
for example, F/T has been used to prevent the need for 
toxic cross-linking agents and to promote a concentrated 
product and better stability in emulsions. However, the 
use of F/T in these applications is limited by their char-
acteristics, such as porosity, flexibility, swelling capacity, 
drug loading, and drug release capacity, which depend on 
the optimization of process conditions and the kind and 
ratio of polymers, temperature, time, and the number of 
cycles.

Changes in the process variables, such as freezing 
conditions (temperature of freezing and the number of 
cycles), can alter the mechanical, chemical, drug load-
ing, and release capacity or physical stability of phar-
maceutical applications. For example, increasing the 
number of freezing cycles decreases the swelling degree 
and increases the tensile strength of hydrogels, and 
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nanoparticle coating can also be affected. Therefore, it 
is crucial to optimize these process variables to obtain 
the desired quality attributes and prevent unexpected 
changes in the product’s properties.

The systematic methodology of quality by design (QbD) 
is an experimental approach that allows the detection of 
primary variation sources that affect the final product’s 
quality. The use of design of experiments (DoE), a tool of 
QbD, has been applied to understand the critical factors 
and what models are suitable to optimize response vari-
ables. However, further studies are necessary to generate 
scientific knowledge that detects the primary sources of 
variation affecting the final product’s quality.

Future studies could focus on the QbD pharmaceutical 
development approach to obtain more information about 
the F/T method’s optimization. In addition, the use of 
new polymers, combinations of polymers, and different 
processing conditions could also be explored to enhance 
the properties of pharmaceutical applications processed 
with F/T. Moreover, other techniques such as cryomilling 
and cryogrinding can be used in combination with F/T to 
optimize the properties of pharmaceutical applications.

Overall, the present review provides insights into the 
impact and effects of the F/T process on the physical, 
mechanical, and chemical properties of diverse phar-
maceutical applications and highlights the importance 
of optimizing F/T conditions and variables for safe and 
effective use in the pharmaceutical industry. The F/T 
method can contribute to the development of new drug 
products with improved stability and efficacy, and its 
optimization can reduce the need for toxic cross-link-
ing agents and improve the efficiency of drug delivery 
systems.
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