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Abstract 

The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully 
reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ 
and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. 
On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential 
to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising 
tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-
chip devices have been developed and implemented to study the most common primary cancers and their meta-
static sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap 
between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
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Background
Cancer is the main disease burden worldwide. An esti-
mated 26.3% increase in incident cancer cases and a 
20.9% one in cancer deaths have occurred since 2010. 
Significant growth is expected in the next two decades 
[1]. Prevention actions need to be defined and imple-
mented, especially in low-to-middle-income coun-
tries [2]. However, much effort is constantly deployed 
to find successful therapeutic solutions to this 

widespread disease [3–5]. Notwithstanding, the lack of 
models reproducing the in vivo cancer physiology rep-
resents one of the main problems in the development 
of anti-cancer therapeutic strategies. Indeed, the limits 
of the currently used in  vitro and in  vivo models for 
tumor studies hampered the thorough understanding 
of its behavior and the underlying molecular mecha-
nisms [6]. Cancer two-dimensional (2D) in vitro mod-
els are routinely used due to their easy application, low 
cost, and well-established procedures to perform can-
cer studies. However, their main limitation relies on 
the impossibility of correctly reproducing the three-
dimensional (3D) structure of the human tumor niche, 
the complex interactions between tumor cells, and the 
associated stromal cells in the tumor microenviron-
ment (TME) [7–9]. More sophisticated 3D in  vitro 
models (e.g., spheroids, organoids) have been devel-
oped to address the need for a 3D physiological struc-
ture. However, these models still miss some important 
features, such as the presence of a flow and mechanical 
cues, like the shear stress [10–12]. Conversely, in vivo 
animal models offer a better resource to overcome the 
limits of the 2D models. They allow the assessment 
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of tumor growth and the response to drug treatments 
[13, 14]. Nevertheless, it is recognized that these 
models fail to recapitulate the specific human TME 
[15]. Flourishing literature highlighted the important 
role of the TME in supporting and influencing tumor 
behavior, thus becoming an essential component in 
deciphering the pathways related to tumor develop-
ment and progression [16]. In this scenario, organ-on-
chip (OoC) platforms are emerging as innovative and 
advanced 3D approaches. Indeed, they usually host 
multiple cell types in a more in vivo-like microenviron-
ment [17–19]. In the last years, cancer-on-chip (CoC) 
platforms have been developed with the purpose to 
emulate the relevant physiological characteristics of 
the TME in  vitro while controlling the mechanical 
stimulus, the flow, and the rate of chemical release at 
the cellular scale [20].

This review summarizes the important characteris-
tics of CoC technology and application, focusing on the 
main impacting primary cancers and their usual meta-
static sites.

Insight into carcinogenesis, metastatic cascade, 
and the role of tumor microenvironment
Carcinogenesis and the metastatic cascade
Carcinogenesis is a complex process by which normal 
cells undergo genetic and epigenetic alterations lead-
ing to the development of cancer. These changes enable 
the cancer cells to evade regulatory mechanisms, invade 
surrounding tissues, and potentially spread to distant 
organs through metastasis [21]. The metastatic cascade 
is a complex and dynamic process involving a series of 
steps through which tumor cells disseminate from the 
primary tumor site to distant organs (Fig. 1) [22]. Intra-
vasation is a critical step in the metastatic cascade, where 
cancer cells invade and cross endothelial barriers or lym-
phatic vessels to enter the circulatory system. This pro-
cess involves changes in tumor cell adhesion molecules, 
cytoskeletal rearrangements, and the secretion of pro-
teolytic enzymes that degrade the extracellular matrix. 
Subsequently, extravasation occurs, whereby tumor cells 
exit the bloodstream, adhere to the endothelial cells, 
migrate through the vessel walls, and establish secondary 

Fig. 1 The carcinogenesis and the metastatic cascade. The carcinogenesis and the metastatic cascade are complex processes that comprise 
the mechanisms associated with the primary tumor and its colonization of other organs (metastasis). The first phase is the primary tumor growth 
(1) followed by the generation of new capillary blood vessels (2), a crucial step for tumor progression and invasion. Once the cancer cells undergo 
the epithelial-to-mesenchymal transition (EMT), they acquire the metastatic phenotype (3), which allows the cells to move and enter the blood 
vessels through intravasation (4) and leave them (extravasation, 5) when they reach distant organs, the metastatic sites (6)
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tumors in new tissue environments [23]. This highlights 
the importance of a deeper understanding of the molec-
ular and cellular mechanisms underlying each stage of 
the metastatic cascade to develop effective therapeutic 
strategies.

Tumor microenvironment
The TME is a complex and dynamic environment recog-
nized to have a pivotal role in tumor initiation and pro-
gression [24]. Stromal cells (e.g., fibroblasts, endothelial 
cells, lymphatic vascular network, pericytes), immune 
cells from the adaptative and innate immunity (e.g., T 
and B lymphocytes, tumor-associated macrophages, 
natural killer cells), and extracellular matrix (ECM) com-
ponents establish a bi-directional and complex cross-talk 
with tumor cells. This leads to the regulation of several 
cellular processes that promote tumor cell proliferation, 
invasion, and metastatization [16, 25].

Cancer-associated immune cells are recruited in the 
tumor niche in response to several chemokines and 
cytokines released from tumor cells, such as CCL2, IL-8, 
CXCL12, and CCL5. Consequently, an aberrant inflam-
matory response is triggered, and a strong immunosup-
pressive niche is induced [26, 27]. Indeed, the infiltration, 
density, or type of tumor-infiltrated immune cells is 
reported to have a prognostic value for several cancers 
[28–31].

Among the stromal components, cancer-associated 
fibroblasts (CAFs) represent one of the most predomi-
nant cell populations within the TME. They constitute a 
heterogeneous group of cells originating from different 
sources, such as tissue-resident fibroblasts, stellate cells, 
bone marrow mesenchymal stem cells, and pericytes [16, 
32]. During tumorigenesis, fibroblasts are recruited to 
the tumor site due to the release of factors from neoplas-
tic cells within the TME, such as fibroblast growth fac-
tors (FGF) and platelet-derived growth factors (PDGF) 
[33, 34]. Once CAFs are recruited and activated in the 
tumor site, an intensive mutual relationship is established 
between them and tumor cells. Extracellular components 
are secreted from CAFs modifying the surrounding TME 
and influencing the tumor cell behavior. CAFs release 
various metalloproteinases (e.g., MMP2, MMP9) influ-
encing the remodeling of the ECM; growth factors, and 
cytokines are also let out such as CCL7, the transforming 
growth factor beta (TGFβ) and the stromal cell-derived 
factor 1 (SDF-1). These molecules promote tumor prolif-
eration, spreading, and aggressiveness [35, 36]. CAFs are 
linked to high chemoresistance and a poor prognosis in 
many solid tumors [37–40].

Among the different cell types populating the TME, 
endothelial cells (ECs) also play a pivotal role in tumor 
progression and metastasis. Indeed, they respond to 

pro-angiogenic signals mainly released by tumor cells 
and in turn secrete several molecules that promote 
the sprouting of new blood vessels [41]. Through this 
process, namely angiogenesis, ECs provide oxygen 
and nutrients to the growing tumor, enabling its sur-
vival and expansion [42]. Furthermore, ECs actively 
regulate the recruitment and activation of the immune 
cells within the TME, while also contributing to tumor 
immunosuppression through the secretion of inflam-
matory cytokines, and angiogenic factors and exert-
ing antigen-presenting functions [41, 43]. Notably, the 
tumor ECs have been shown to exhibit distinct molecu-
lar characteristics, including the upregulation of adhe-
sion molecules and enhanced permeability, enhancing 
tumor cell adhesion on the ECs and dissemination to 
distant organs [44].

The ECM represents an essential component of the 
TME, which provides structural support to tumor 
cells, by creating a complex network of proteins (e.g., 
collagens, fibronectin) able to influence tumor growth 
and invasion [45]. Indeed, the different ECM com-
ponents interact with the tumor cells, fostering pro-
survival and pro-proliferation signals to cancer cells 
through the action of integrins, ECM transmembrane 
proteins, which act as mechanotransducers, thereby 
deeply influencing tumor cell behavior [46]. Moreover, 
the increased tissue stiffness, derived from a dense and 
abundant tumor ECM, promotes the development of a 
physical barrier that could hamper the diffusion of anti-
cancer drugs and essential nutrients and oxygen, fos-
tering the establishment of a hypoxic environment [45, 
47]. These mechanisms further increase the malignant 
behavior of tumor cells, due to the activation of several 
pathways involved in tumor cell proliferation, plasticity, 
and invasion [45, 47].

In the last years, increasing attention has been 
focused on tumor extracellular vesicles (EVs), as criti-
cal mediators of cell-to-cell communication within 
the TME [48]. These small membrane-bound vesi-
cles, released by both tumor cells and stromal cells, 
transport proteins, nucleic acids, lipids, and several 
signaling molecules to neighboring or distant cells, 
promoting cell proliferation, angiogenesis, immune 
escape, and metastasis [49]. Furthermore, EVs are 
employed by sensitive cells to transfer drug resist-
ance to chemosensitive cells, by delivering multi-drug 
resistance proteins [50, 51].

In such a scenario, great efforts are focused on devel-
oping advanced culture models, such as organ-on-chips 
(specifically, cancer-on-chips). The main goal is to repro-
duce the key in  vivo TME interactions, provide a deep 
understanding of the underlying molecular pathways, 
and identify new targeted therapeutic strategies [17, 52].
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Organ‑on‑chip technology: microengineering joins 
biology
Definition and key characteristics
An organ-on-chip “is a fit-purpose fabricated micro-
fluidic-based device, containing living engineered 
organ substructures in a controlled micro- or nanoen-
vironment, that recapitulate one or more aspects of 
the dynamics, functionalities and (patho)physiological 
response of an organ in  vivo, in real-time monitoring 
mode” [53]. Indeed, these tiny devices host living cells in 
microchambers perfused thanks to the presence of hol-
low microchannels. The “chip” word derives from the 
adaptation of the photolithographic techniques used in 
the computer microchips, which allow features at micro 
and nanoscale. These small dimensions permit obtain-
ing highly controlled environments that resemble those 
of human cells [54]. Three key features characterize this 
technology [55]:

1. the organization of the cells in an in  vivo-like 
arrangement;

2. the choice to culture multiple cell types to better rep-
licate the human conditions;

3. the implementation of biochemical and biophysical 
stimuli to resemble the organs’ or tissues’ functions.

OoCs’ environment
The micro- and nanoenvironments are responsible for 
the precise tuning of the fluids inside the OoCs’ chan-
nels as well as for the spatiotemporal control of gradients 
(e.g., chemical or nutrients). These peculiar character-
istics are one of the major contributions to the success 
of OoC technology. Indeed, OoCs allow replicating and 
controlling of similar-human physiological cues, such as 
perfusion (laminar, pulsatile, and interstitial flow), physi-
cal forces (compression and tension), fluid shear stress, 
cyclic strain, and biochemical gradients of specific com-
pounds [56]. Laminar flow is present in small vessels of 
organs and tissues and has a pivotal role in reproducing 
their physiology and pathophysiology. In the microfluidic 
systems, luminal fluid shear stress is controlled allowing 
the study of their role in different biological peculiari-
ties, such as the reorganization of the actin cytoskeleton 
[57], the translocation of proteins [58], and the modula-
tion of angiogenesis [59]. Studies were also performed 
to assess how capillary laminar fluid flow can impact 
the metastatic cells in their cycle progression, motility, 
and phenotypic changes [60, 61]. Laminar flow is usually 
generated using gravity-driven devices, pressure regula-
tors, and syringe pumps [62]. Pulsatile flow is applied to 
microfluidic systems that aim to reproduce the human 

vessels and the pulsatile blood flow [63, 64]. Reproduc-
ing the physiological nature of the human vascular sys-
tem is important when the connection between organs 
is established [65] and when studying the properties of 
endothelial cells in normal or diseased conditions [66]. 
This type of flow is typically actuated thanks to peristaltic 
pumps (also embedded in the chips [67]), syringes, and 
pneumatic pumps [62]. Interstitial flow happens inside 
or around a 3D ECM and has important effects on dif-
ferent aspects of cells’ functions, like their motility [68]. 
This type of flow has a role in the cancer cells’ metasta-
sis and how they access and shape other environments 
[69]. Hydrostatic pressure-driven flow is the most used 
to reproduce this kind of flow [62]. Compression is a 
physical cue indispensable for many tissues and organs, 
such as the skin and heart. Pressure devices have been 
implemented with microfluidic devices to reproduce the 
compressive stimuli and help in the formation of specific 
tissue and organ [70]. Vacuum and syringe pumps are 
also applied to reproduce the cyclic strain that specific 
organs experience in the human body [62]. Connective 
tissue and lungs are just an example where this stimulus 
is necessary [71]. Organ and tissue microarchitectures 
(physiological or not) are simulated in the organ-on-
chips thanks to the use of ECM coatings or hydrogels in 
which cells are seeded to resemble the human biological 
3D structures [72, 73]. Indeed, organ-on-chips integrate 
with or enhance other 3D models, such as those based 
on scaffolds (hydrogels, porous scaffolds) [74–76] and on 
cells (spheroids, organoids) [77, 78]. Table 1 provides an 
overview of the main characteristics of these 3D systems 
[79, 80]. ECM-like hydrogels work as a 3D cell culture 
framework when inside an OoC. They provide mechani-
cal support thanks to their porosity, water retention, and 
stiffness [81]. Natural (e.g., collagen, fibrin) and synthetic 
(e.g., poly(ethylene glycol), polyacrylamide) hydrogels 
are both used in combination with OoCs [82, 83]. Natu-
ral hydrogels have different cell binding sites and growth 
factors that influence cellular behaviors. However, they 
usually show poor mechanical properties. On the other 
side, synthetic hydrogels’ mechanical and chemical prop-
erties can be easily tuned, but they lack bioactive mol-
ecules to support specific cell functions [81]. Another 
scaffold technology used in the OoC application is that 
obtained with electrospun fibers. Specific electrospin-
ning techniques have been developed to introduce the 
polymeric fibers at micro- or nanometric scale inside 
organ-on-chip models [84] to have adequate support 
for cell growth [85]. Spheroids and organoids are the 
most common cell-based options to obtain the cell-ECM 
interactions needed in the OoCs [79]. Spheroids are the 
simplest 3D culture method coming from the spontane-
ous aggregation of differentiated cells, while organoids 
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have a specific development process starting from either 
embryonic stem cells, induced pluripotent stem cells, or 
adult stem cells [79, 80]. The replica of the physiological 
micro- and nanoenvironments comprises also the tissue 
interfaces and endothelialized vascular channels [86, 87]. 
The implementation of these last biological features in 
the OoCs can also be achieved through the implementa-
tion of the 3D structures described above [88, 89].

OoCs’ technology
The production of these microsystems mainly relies on 
silicon rubber polydimethylsiloxane (PDMS), an easy-
to-use material that paved the way for the application of 
OoC technology by many research groups. PDMS char-
acteristics, such as high gas permeability, optical trans-
parency, and high flexibility, make it suitable for cell 
culture. Microfabrication techniques (photolithography, 
soft lithography, and replica molding) are easily applied 
to PDMS to generate patterns and structures relevant to 
physiological conditions (Fig. 2A and B) [54, 56]. Indeed, 
OoCs’ features shapes and sizes (e.g., hollow channels) on 
the scale of nm or μm are obtained thanks to photo- and 
soft lithography. Such dimensions are in the same range 
as those sensed by the living cells in the human body [56]. 
Other techniques are also employed to produce OoCs 
with the use of different materials. Bioprinting is one 
of the most promising fabrication approaches, where a 
cell-laden bioink is printed with supporting materials to 
construct functional tissues and organs [90, 91]. Differ-
ent bioprinting methods are available, from the simplest 
nozzle-based approaches to the most sophisticated opti-
cal-based techniques (Fig. 2C) [92, 93]. Notwithstanding 
the production methods, OoCs can be more biologically 
functional thanks to the introduction of micro- and bio-
sensors. Some examples are the transepithelial/endothe-
lial resistance (TEER) sensors for analyzing barrier model 

integrity [94], multielectrode arrays to monitor neuronal 
networks and cardiac tissues [95, 96], and optochemical 
sensors to study cell metabolism [97]. Various OoCs were 
produced in the last years, starting from those replicating 
the key physiological functional units of whole human 
organs or tissues, such as the lung [98, 99], liver [100, 
101], gut [102, 103], heart [104, 105], skin [106, 107], kid-
ney [108], muscle [109, 110] and the blood–brain barrier 
[111, 112]. OoCs mimicked also diseased and pathologic 
conditions like acute SARS-CoV-2 [113, 114], asthma 
[115], ischemia [116, 117], cardiac fibrosis [118, 119], 
inflammatory bowel disease (IBD) [120], fatty liver dis-
ease (FLD) [121, 122], diabetes [123, 124], Alzheimer’s 
disease [125] and CoC platforms, recapitulating specific 
primary tumors with their metastatic site.

Cancer‑on‑chip to study primary tumors 
and the associated metastatic sites
In recent years, there has been a significant advancement 
in the development of various models of cancer-on-chip 
(CoC) systems, which aim to closely resemble the pri-
mary and metastatic tumor microenvironment (TME) 
in an in  vivo-like manner. These models have primarily 
focused on studying specific stages of carcinogenesis, 
ranging from tumor growth to the metastatic process. 
Among these models, microfluidic systems have been 
demonstrated to be able to mimic the in vivo tumor con-
ditions than traditional 2D systems [126, 127].

CoC and the primary tumor
The role of extracellular vesicles (EVs) in influencing 
primary tumor behavior and growth is of great interest. 
To investigate their release within a solid tumor model, 
researchers have developed an intriguing organ-on-chip 
platform called EV microbioreactors (EVμBRs) [128]. 
The EVμBRs have demonstrated the ability to replicate 

Table 1 General description of 3D scaffold- and cell-based models [79, 80] that can be combined with organ-on-chips

3D Model Description Pros Cons

Spheroids Multiple cells are forced to form an aggregate thanks to cell–
cell attachment-driven force

Simple
High throughput
Co-culture of different cells
Scalable

A limited number of cell types
No control over cells arrangement
Missing perfusion

Organoids 3D structure derived from pluripotent stem cells, adult stem 
cells, and somatic cells that self-organize to mimic the structural 
and basic function of organs and tissues

Mimic the development 
stages of a specific organ/
tissue
Co-culture of different cells
Relevant physiological 
structure and function

Missing standardization protocols
Long development process
No control over cells arrangement
Missing perfusion

Scaffolds/Hydrogel Natural or synthetic polymers that constitute a matrix or sup-
port for cell culture

Simple
Standardized protocols
Gradients of nutrients 
and chemical substances
Co-culture of different cells

Specific molds can be required 
for scaffold/hydrogel construction
Not full replication of in vivo ECM
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cellular physiology and heterogeneity, providing a valu-
able in  vitro tool for investigating the implications of 
EVs in tumor behavior. Tumor angiogenesis, the forma-
tion of new blood vessels in the TME, is another impor-
tant process in carcinogenesis. Microfluidic devices have 
been employed to gain deeper insights into this complex 
mechanism, enabling the study of early stages of tumor 
growth and the development of the tumor microvascu-
lar network [129, 130]. Noteworthy, the spread of tumor 
cells is closely associated with a phenomenon called 

epithelial-to-mesenchymal transition (EMT), in which 
epithelial cells undergo changes and acquire a more 
mesenchymal phenotype. In one study, researchers gen-
erated an EMT index using tumor-derived EVs isolated 
in a microfluidic chip to evaluate metastatic risk [131]. 
Other factors involved in promoting EMT have been 
investigated using organ-on-chip systems, including the 
influence of mechanical stimuli such as flow-induced 
hydrodynamic shear stress and the role of hypoxia, in 
more reliable in vivo conditions [132–134].

Fig. 2 The two main microfabrication techniques used to generate organs-on-chip. a Photolithography is the core microfabrication 
technique used to transfer micro- and nanoscale patterns to photosensitive materials by optical radiation. A silicon wafer is used as support 
for the photo-sensitive material, which is generally called photoresist. After its application on the wafer’s surface, the wafer is spin-coated to obtain 
a thin uniform film of the photoresist, which is then brought in contact with a photomask that reproduces the desired pattern. The photoresist 
crosslink in the parts exposed to high-intensity ultraviolet (UV) light; while the covered photoresist is removed by a chemical agent. The negative 
design of the mask is now reproduced on the silicon master. b Soft lithography allows the fabrication of elastomeric molds using a replica molding 
technique. The PDMS is cast against the bas-relief pattern of the silicon master photoresist. After a thermal phase, the resulting substrate is peeled 
off showing the 3D pattern of the original master. The microfluidic device is then generated by creating the needed features, e.g., the inlets, 
and by bonding it to a PDMS or glass slab. c 3D bioprinting constructs microfluidic devices using a fast and automated process. In the bioprinting 
nozzle-based approach, the bioink is extruded through a nozzle moved by a computer-controlled arm to create 3D shapes. Superior resolutions are 
obtained using optical-based approaches where laser exposure solidifies the bioink through a crosslinking reaction
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CoC and the metastatic process
Recently, increasing interest has been in deciphering 
the mechanisms underlying the metastatic process and 
investigating the specific organs where tumor cells pre-
fer to metastasize. Several multi-organ microfluidic chips 
were developed to investigate metastatic events. In a 
pilot study using a metastasis-on-a-chip, it was observed 
that primary colorectal cancer cells tend to preferen-
tially metastasize to the lung and liver constructs when 
fluidically linked to them, consistent with observations 
in humans [135]. Similar results were obtained when 
studying lung cancer metastasis using a multi-organs-on-
a-chip, considering the liver, lung, and brain as potential 
metastatic sites [136]. After the settlement of metastatic 
cells in these organs, specific factors associated with cel-
lular damage were released. These findings align with the 
“seed and soil” theory, which suggests that tumor cells 
(the “seed”) can colonize and establish secondary tumors 
in specific organs or tissues (the “soil”) [137]. The prefer-
ence of tumor cells for specific organs or tissues is influ-
enced by the molecular characteristics of the cells and 
the microenvironmental factors of the target site, such as 
extracellular matrix composition, immune cell presence, 
and molecular signaling molecules [138].

CoC for the most common cancers
The aforementioned examples highlight the ability of 
these innovative microfluidic devices to recapitulate cru-
cial aspects of different tumor processes, including devel-
opment, growth, and metastasis and their applicability to 
better elucidate these processes. A deeper understanding 
of tumor cell characteristics and the microenvironments 
within CoCs holds the potential to provide valuable 
insights into the factors that either promote or hinder 
metastatic spread. This knowledge can contribute to the 
development of more effective strategies for the treat-
ment of metastatic diseases.

A comprehensive review was undertaken to exam-
ine CoC models developed for the most common can-
cers worldwide, such as breast, lung, pancreas, colon, 
and liver [139, 140]. This review critically discusses the 
strengths and limitations of these CoC platforms, while 
also exploring their potential future applications in 
advancing our understanding of tumor mechanisms.

Breast cancer
Framework
In 2020, 2.3 million women were diagnosed with breast 
cancer and more than half a million died globally [141]. 
Breast cancer develops both in the duct and in the lobule 
of the glandular tissue of the breast. The treatment of pri-
mary breast cancer can be highly effective, but there are 
difficulties with the metastasis sites [141]. Indeed, breast 

cancer tends to metastasize in the brain, lungs, bones, 
and liver, leading to the death of many patients [142]. 
There are several breast cancer subtypes among which 
triple-negative breast cancer is the most challenging to 
treat. Intensive efforts are focused on developing new 
treatments for this tumor type as well as patient-specific 
therapeutic applications.

CoCs to study the breast primary tumor
In a study, triple-negative breast cancer cell lines were 
cultured in an organ-on-chip platform based on the 
standard 384-well plate. The goal was to test breast can-
cer therapies [143]. Characterization in terms of seeding 
densities, ECM composition, and biochemical conditions 
was performed for three distinct breast-cancer cell lines. 
These cells were exposed to a series of anticancer agents 
(paclitaxel, olaparib, and cisplatin) and compared to 2D 
models treated with the same drugs. The executed tests 
showed a different behavior between 2D and organ-on-
chip models. Especially, the response to cisplatin was 
more like the physiological one in the cell lines treated 
inside the organ-on-chips. This result was confirmed 
using primary tumor cells. Therefore, this technology 
could be a promising tool for personalized medicine and/
or could help in the selection of suitable therapies. A lot 
was done to understand the mechanisms of tumor cell 
invasiveness and aggressiveness. For example, acidifica-
tion of the primary tumor environment is considered 
one of the causes that induce an invasive behavior in cells 
[144]. The TME acidification and its possible neutraliza-
tion using  CaCO3 nanoparticles  (nanoCaCO3) were the 
main core of a study using a bifurcated chip, with the 
experimental and control conditions on the same cancer-
on-chip [144]. Moreover, hydrostatic pressure was highly 
controlled so to generate physiological flow inside the 
channels. Indeed, it was shown that tumor growth and 
migration were inhibited thanks to a constant buffering 
of  nanoCaCO3 (Fig.  3A).  NanoCaCO3 particles induced 
tumor cell reprogramming by altering the TME pH. Cou-
pling this methodology with drugs that are effective in an 
acid environment can open the door to new therapeutic 
strategies.

Breast CoCs for the metastatic behavior
Important aspects of breast cancer metastasis are intra-
vasation and extravasation events. Intravasation refers to 
tumor cells entering the blood circulation, while extrava-
sation refers to tumor cells exiting from the bloodstream 
and creating a new colony. The interactions between 
metastatic tumor cells and the blood vasculature were 
studied in an engineered 3D vasculature. This structure 
was generated through rapid multilayer microfabrication, 
where subpopulations of triple-negative breast cancer 
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cells were seeded surrounded by osteoblasts, bone mar-
row-derived mesenchymal stem cells, or lung fibroblasts 
[147]. Experiments were performed mimicking the lung 
or the bone microenvironment. The obtained results 

highlighted that the osteoblasts play a crucial role in 
the selective extravasation of bone MDA-231, a specific 
breast tumor subpopulation. Therefore, this technology 
proved to be useful in the investigation of organotrophic 

Fig. 3 Examples of breast cancer-on-chips. a Bifurcated chip to study a possible solution for the acidification of the primary tumor environment. 
(i) Design of the microfluidic device: the upper chambers are loaded with  CaCO3 nanoparticles able to neutralize the acidification of the TME. 
(ii) Chip setup. Pipette tips are used to feed the upper and lower chambers, while the middle channel (which ensures the separation 
between the control and experimental compartments) is connected to a syringe pump. Adapted from [144] with permissions from Scientific 
Reports. b Organ-on-chip model to analyze the tissue-specific breast cancer extravasation. (i) Schematic illustration of the extravasation chip 
with the Side 2 view highlighted. (ii) Z-stack projection images of Side 2 view showing HUVEC-C endothelial monolayers (green), extravasated 
(arrowhead), and associated (arrow) human breast cancer cells (MDA-MB-231, red) into the lung, liver, or breast microenvironments. Adapted 
from [145] with permissions from Biotechnology & Bioengineering. c Miniaturized bone-on-a-chip to study breast cancer bone metastasis. (i) 
Schematic of the simultaneous-growth-and-dialysis mechanism. Low-molecular-weight nutrients and metabolic waste move continuously 
through the dialysis membrane. While large bone matrix-building proteins accumulate in the bottom chamber contributing to the spontaneous 
formation of the osteoblastic tissue. (ii) Exploded view of the bone-on-a-chip. (iii) Injected inks highlight the central circular area of the assembled 
chip. Dialysis occurs in this space. Adapted from [146] with permissions from Small
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metastasis and a helpful tool in identifying targets and 
treatment strategies to benefit patients. Another study 
was performed by developing two novel cancer-on-chips 
to analyze the tissue-specific breast cancer invasion/
chemotaxis and extravasation [145]. Liver, lung, and 
breast microenvironments were mimicked to distin-
guish invasion/chemotaxis toward these different tissues. 
It was observed that metastatic breast cancer cells tend 
to invade the lung and liver more than the breast tissue. 
Moreover, the lung-specific metastatic cell subpopula-
tion had a higher invasion behavior in the lung micro-
environment than other metastatic cell subpopulations, 
like the bone one. Finally, an extravasation model was 
implemented, which comprised also an intact endothe-
lial monolayer. It was shown that metastatic breast can-
cer cells are prone to cross the endothelial barrier when 
the lung microenvironment is simulated (Fig. 3B). These 
results could help to improve cancer diagnosis and select 
the best therapeutic option. Other factors can play an 
important role in breast cancer metastasis. For example, 
a study analyzed the role of the sympathetic nervous sys-
tem (SNS) in the modulation of breast cancer metastasis 
[148]. In this research, a human metastasis-on-chip plat-
form was developed to reproduce the effect of sympa-
thetic activation on the dynamic crosstalk between bone 
tropic breast cancer cells and osteoclasts. It was shown 
that bone tropic breast cancer cells received synergistic 
inputs from neurons and osteoclasts. The osteoclasts 
increased pro-inflammatory cytokines that are important 
for the progression of breast cancer bone metastasis and 
osteoclastogenesis. This finding proved the importance 
of correctly reproducing the interactions of the specific 
metastatic microenvironment. Moreover, this microflu-
idic model allowed stopping communications among the 
three different compartments, bone tropic breast cancer 
cells, sympathetic neurons, and osteoclasts. In particu-
lar, the above-described effects on breast cancer bone 
metastasis and osteoclasts were not present when the 
interaction between bone and neuron compartment was 
interrupted, even if the levels of the studied pro-inflam-
matory cytokines remained quite stable. Bone metastasis 
generated by metastatic breast cancer cells was also stud-
ied using a miniaturized bone-on-a-chip (Fig. 3C) [146]. 
A naturally thick mineralized 3D tissue was generated by 
applying the principle of simultaneous growth dialysis. 
The resulting bone tissue provided the necessary micro-
environment for the colonization of metastatic breast 
cancer cells. Both metastatic and metastasis-suppressed 
breast cancer cells were introduced into the developed 
osteoblastic tissue. The metastasis-suppressed breast 
cancer cells showed the expected dormant behavior with 
limited metastases. On the other hand, the metastatic 
cells replicated key features and characteristics usually 

observed in vivo, such as the invasion of the mineralized 
tissue apical layer, invadopodia protrusion, and forma-
tion of the so-called “Indian files” formed by the invad-
ing cancer cells. Therefore, the developed bone-on-a-chip 
proved to be a physiologically relevant model for the 
study of breast cancer bone metastasis in vitro.

Breast CoCs’ advantages and limitations
In summary, the described breast cancer models have 
advantages in terms of more suitable therapies’ selec-
tion in the context of personalized medicine [143], in the 
study of the mechanisms behind tumor cells’ invasive 
behavior [144], in the analysis of the intravasation and 
extravasation events [145, 147], and in the replication 
of the metastatic microenvironment to identify the key 
phenomena [146, 148]. Organotropism, the non-random 
process where distant metastases are distributed to spe-
cific organs, can be elucidated thanks to the use of CoCs 
giving hints to identify better therapies for patients [138, 
145]. However, these studies were not always able to rep-
licate the 3D structure of the tumor microenvironment 
[143] and the associated stromal cells that are pivotal for 
the correct representation of the TME [144].

Lung cancer
Framework
Lung cancer is one of the most diagnosed cancers world-
wide with a high mortality rate [149]. Public health meas-
ures have been implemented in industrialized countries 
to reduce smoking, which is the main cause of such 
cancer. However, a high smoking incidence is still pre-
sent in low-income nations. On the other hand, the lung 
cancer subtype adenocarcinoma continues to occur in 
people that have never smoked [149]. Lung cancer often 
metastasizes in the liver, brain, bones, breast, and kidney, 
with a very low survival rate for patients with metasta-
sis. Therefore, the high and aggressive progression and 
the well-known resistance to chemotherapy have led to a 
search for better methods to investigate the mechanisms 
of lung cancer development and metastasis [150]. In this 
context, organ-on-chips represent a promising option to 
elucidate the underlying processes of lung cancer.

CoCs to study the lung primary tumor
A study was performed to reproduce human orthotopic 
models of non-small cell lung cancer (NSCLC) in  vitro 
[151]. The aim was to recapitulate the in vivo-like TME 
and investigate tumor growth using a lung-on-chip 
device made of two parallel channels separated by a 
porous membrane. Epithelial cells and a low density of 
NSCLC cells were cultured in one channel on the porous 
membrane, while human lung microvascular endothelial 
cells were cultured on all four walls of the facing channel, 
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forming a hollow vascular lumen. A mechanical suc-
tion was applied to mimic normal breathing. Indeed, it 
was found that this mechanism significantly suppressed 
lung cancer growth. Resistance to tyrosine kinase inhibi-
tor (TKI) therapy of patients showing specific mutations 
was successfully reproduced in this orthotopic device. 
This mechanism was never observed in the conven-
tional 2D in vitro models. The simulation of the alveolar 
microenvironment to study lung cancer was achieved 
by implementing a poly(lactic-co-glycolic acid) (PLGA) 
electrospinning nanofiber membrane as the cell scaf-
fold of a lung-on-chip [152]. A human NSCLC (A549) 
and a human fetal lung fibroblast (HFL1) cell lines were 
co-cultured in the chip device on the upper and lower 
sides of the membrane, respectively. This study evalu-
ated the effect of gefitinib, a selective inhibitor of the epi-
dermal growth factor receptor (EGFR)-tyrosine kinase. 
Significant resistance to drug treatment was observed 
in A549 and HFL1 cell co-culture, thus confirming the 
role of HFL1 cells in decreasing tumor cells’ sensitivity 
to chemotherapy. Moreover, A549 and HFL1 cells were 
co-cultured with endothelial cells (HUVEC). This experi-
ment showed how A549 cells became strongly invasive 
destroying the endothelial barrier and starting the meta-
static invasion process. Therefore, reproducing the TME 
is pivotal to obtaining a pathophysiological model. A 3D 
microfluidic lung cancer model was developed to inves-
tigate the role of the stromal cells in lung tumorigenesis 
and to resemble as much as possible the in  vivo TME 
[153]. This in  vitro lung cancer platform was estab-
lished by tri-culturing endothelial cells, fibroblasts, and 
lung cancer cells within a 3D collagen matrix (Fig.  4A). 
The presence of fibroblasts allowed the formation of the 
tumor environment by regulating the biophysical and 
biochemical properties of the TME. Moreover, the vascu-
logenesis induced by fibroblasts was confirmed thanks to 
the establishment of a stable in vitro tumor model with a 
complex structure.

Lung CoCs for the metastatic behavior
A lot was done to elucidate the mechanisms of the lung 
cancer metastasis process and to investigate the charac-
teristics of the metastatic sites. In a seven-channel 3D 
microfluidic platform, brain metastatic non-small cell 
lung carcinoma (BM-NSCLC), cerebral microvascular 
endothelial cells, and primary human brain astrocytes 
were cultured together to reconstitute the brain tumor 
microenvironment (bTME) (Fig. 4B) [154]. The enhanced 
cancer cells’ survival was studied revealing the activation 
of specific pathways against the anti-cancer drugs. More-
over, cytokine-related intracellular pathways were discov-
ered to be responsible for the acquired drug resistivity. 
This model elucidated the communication mechanisms 

among the different components of the bTME. A 
multi-organs-on-a-chip was developed including the 
primary site of cancer (the lung) and three different met-
astatic organs (the brain, bone, and liver) (Fig. 4C) [136]. 
Changes in lung cancer cells and expression of specific 
epithelial and stromal markers were identified as clear 
signals of tumor growth and cell invasive capacity. Cell–
cell interactions during metastasis have been elucidated 
thanks to this microfluidic device.

Lung CoCs’ advantages and limitations
In conclusion, the described lung cancer-on-chip models 
highlight the potential of these systems in studying tumor 
growth and its response to specific therapies [151, 152]. 
They confirm the important role of TME reproduction 
to resemble as much as possible the in  vivo conditions 
[154] and describe the communication mechanisms and 
interactions among the different TME components in the 
metastatic organs [136, 154]. Better pathophysiological 
models could be obtained by introducing specific TME 
components that play a role in tumor progression [151, 
152] and cancer-associated immune cells [154].

Pancreatic cancer
Framework
There are two main types of pancreatic cancer: exocrine 
and rare endocrine cancer. Exocrine Pancreatic Ductal 
Adenocarcinoma (PDAC) has one of the lowest sur-
vival rates [155]. Failure of current chemotherapeutics 
is reasonably due to the high molecular heterogeneity of 
PDAC and its intricate tumor microenvironment [156, 
157]. A specific system is pivotal for drug discovery and 
personalized medicine in such cancer.

CoCs to study the pancreatic primary tumor
Few successful attempts have been published so far, 
notwithstanding a pancreas-on-a-chip was generated 
for the first time in 2015 [158]. This model was inflated 
with isolated patient-derived pancreatic ductal organoids 
mimicking pancreatic cell function and interface in  situ 
(Fig. 5A). Even if this model didn´t recapitulate the pan-
creatic TME, it represents the first physiologic-like model 
of the pancreas. A study was carried out to develop a 
platform useful in the diagnosis and prognosis of PDAC, 
the so-called HepaChip® [159]. The obtained results 
demonstrate the feasibility of PDAC cell cultures in a 
microfluidic chamber under continuous and controlled 
perfusion (Fig.  5B). Moreover, the chemotherapeutic 
drug cisplatin was tested in the organ-on-chip model giv-
ing consistent responses with what is observed in  vivo. 
Pancreatic patient-derived organoids were cultured in a 
microfluid scaffold platform called InVADE. This study 
aimed to elucidate the evolution of the PDAC stroma and 
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Fig. 4 Examples of lung cancer-on-chips. a Microfluidic chip for the study of the role of the stromal cells in tumorigenesis. (i) An in vivo-simulating 
representation of the TME was achieved by integrating into the same microfluidic device stromal cells, fibroblasts, and endothelial cells surrounded 
by a 3D collagen matrix with a channel for the continuous flow of the culture medium. (ii) Overview of the main components interacting 
with the microfluidic device. Adapted from [153] with permissions from Scientific Reports. b Microfluidic device to recapitulate the metastatic 
brain niche. (i) Representation of the bTME composed of BM-NSCLC, cerebral microvascular endothelial cells, and primary human brain 
astrocytes. (ii) Configuration of the seven-channel microfluidic device with its cross-section showing where each cell type is cultured. Adapted 
from [154] with permissions from Advanced Science. c Multi-organs-on-a-chip for the study of different metastatic sites. (i) Schematic illustration 
of the multi-organs-on-a-chip comprising the primary site of cancer (the lung, in purple) and the three distant organs (inlet 3, inlet 4, and inlet 5). (ii) 
Representation of the chip lung structure, where a membrane divides the air compartment from the blood one. Lung cancer cells are co-cultured 
with human bronchial epithelial cells on the upper side of the membrane, while stromal cells (microvascular endothelial cells, fibroblasts, 
and macrophages) are seeded on the lower side. Metastatic lung cancer cells move along the blood channel to reach distant organs, the brain, 
bone, and the liver. (iii) Overview of the chip structure composed of three main layers and two microporous membranes. Adapted with permission 
from [136]. Copyright 2016 American Chemical Society
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Fig. 5 Examples of pancreatic cancer-on-chips. a Pancreas-on-a-chip to model fibrosis-related disorders. (i) Pancreatic ductal epithelial cells 
(PDCEs) were cultured inside the single-channel chip (ii) together with pancreatic islets (iii) to monitor the Cystic Fibrosis Transmembrane 
Conductance Regulator (CFTR) function. Adapted from [158] with permissions from Nature Communications. b HepaChip® for the diagnosis 
and prognosis of PDAC. (i) Image of the chip with the 8 culture chambers. The electrodes and ridges present in each chamber are shown together 
with flow velocity and trajectory simulation. (ii) Live/Dead of the PDAC cells after 146 h of culture inside the HepaChip®. Adapted from [159] 
with permissions from Scientific Reports. c Organ-on-chip to model the invasion of PDAC tumor cells to blood vessels. (i) Two hollow cylindrical 
channels in the microfluidic device mimic the blood vessel and the pancreatic cancer duct, respectively. Endothelial cells (HUVEC) were seeded 
in the perfusable vessel, while pancreatic cells were cultured in the cancer duct. (ii) Representation of the average invasion distance of the PDAC cell 
line PD7591 when an FBS gradient is established and with/without the HUVEC cells. Speed migration is increased when the HUVECs are present. 
Adapted from [161] with permissions from Science Advances
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its effects on drug bioavailability. The resulting vascular-
ized human PDAC model also captured the hallmarks 
of an evolving TME thanks to a co-culture with human 
fibroblasts [160].

Pancreatic CoCs for the metastatic behavior
The most frequent pancreatic cancer metastasis occurs 
in the liver, peritoneum, and lung (80%, 48%, and 45%, 
respectively) [162]. Indeed, pancreatic cancer expresses 
and secretes a plethora of proangiogenic factors [163], 
even if it is poorly vascularized [164]. In 2019, a 3D 
organotypic model helped to shed light on this mecha-
nism (Fig.  5C). This model was able to recapitulate the 
invasion of PDAC tumor cells to blood vessels, showing 
how these cells can rapidly penetrate the lumen of blood 
vessels and ablate the endothelial cells [161].

Pancreatic CoCs’ advantages and limitations
The reported examples show how these models can repro-
duce the main physiological features of the pancreas 
in vitro [158], the major characteristics of the PDAC TME, 
and its response to drug therapy [159, 160]. Moreover, 
pancreas cancer-on-chip models help better understand 
this cancer type’s metastasis mechanisms [161]. How-
ever, still, too few studies have been published to better 
investigate this type of cancer and the related metastasis 
mechanisms, and the described ones lack important TME 
components and cancer-associated stromal cells [159].

Colorectal cancer
Framework
Colorectal cancer (CRC) represents the second leading 
cause of cancer-related death and the third most diag-
nosed cancer worldwide [165]. CRC is largely asympto-
matic until it progresses to advanced stages characterized 
by distant metastasis and poor overall survival [166, 167]. 
The liver represents the most common CRC metastatic 
site: 25–30% of patients present colorectal liver metasta-
sis (CLM) at the time of diagnosis or develop it after the 
primary tumor resection [168, 169]. Furthermore, most 
of these patients are not eligible for curative surgery at 
the time of diagnosis and they usually have a 5-year sur-
vival rate (< 15%) [170, 171]. This highlights the urgent 
need to improve drug treatments along with a deeper 
understanding of the biological mechanisms of CRC. 
In such a scenario, several OoCs were developed in the 
last years aimed to elucidate in depth the CRC molecular 
pathways, perform drug testing and understand the met-
astatic steps of this disease [135, 172–175].

CoCs to study the colorectal primary tumor
A vascularized micro-tumor (VMT) device com-
posed of three tissue chambers was co-cultured with 
different human cell types: endothelial colony-form-
ing cell-derived endothelial cells (ECFC-EC), nor-
mal lung fibroblasts (NHLF), and colorectal cancer 
cells (HCT116 and SW480) (Fig.  6A) [172]. Once the 
cells were seeded in each tissue compartment, they 
were exposed to a physiological flow. This mechani-
cal stimulus led to complex self-organization from 
day 5 in culture. To better characterize this innova-
tive platform, transcriptomic analysis was performed 
on HCT116 cells grown in the VMT, implanted as a 
xenograft tumor, and cultured in the conventional 2D 
culture system. The results showed that gene expres-
sion of HCT116 cells from the VMT closely resembled 
that grown in vivo while differing from the same cells 
cultured in the 2D system. Indeed, several pathways 
were found to be enriched in the VMT and xenograft-
derived cells compared to 2D monocultures, such as 
MAPK signaling, PI3K-Akt signaling, and microsat-
ellite instability. Furthermore, the same comparison 
was performed to evaluate the response to FOLFOX 
(5-fluorouracil, leucovorin, and oxaliplatin), the first-
line treatment for CLM patients [176]. HCT116 and 
SW480 cells derived from VMT or xenograft tumors 
showed a significant reduction in drug sensitivity 
compared to the cells grown in 2D. These findings 
suggest that the VMT system can recapitulate the 
in  vivo CRC features, such as tumor drug response. 
Due to the increasing attention to the TME and its 
relationship with tumor progression and response to 
drug treatments, the interaction between CRC cells 
and fibroblasts was studied in a microfluidic device 
fabricated with seven channels: three to host colo-
rectal adenocarcinoma cell line (HT-29) and normal 
colon fibroblasts (CCD-18Co), and four to provide 
nutrients with the medium (Fig.  6B) [177]. In this 
device, a significant increase in HT-29 spheroid size 
was observed when co-cultured with CCD-18Co com-
pared with the monoculture spheroids suggesting the 
growth-promoting role of fibroblasts for tumor cells. 
At the same time, CCD-18Co showed an increase in 
the levels of αSMA and F-actin in the co-culture with 
tumor cells, highlighting the established crosstalk 
between the two cell types. Furthermore, the treat-
ment with paclitaxel revealed that tumor cells in co-
culture with fibroblasts were less sensitive to this drug 
treatment compared with HT-29 monoculture. This 
result suggests the importance of developing culture 
systems able to mimic the in vivo TME and its role in 
chemotherapeutic resistance.
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Colorectal CoCs for the metastatic behavior
Intense efforts were focused on reproducing CoC mod-
els to investigate the metastatic process of CRC cells 
and their dissemination to the metastatic site. To this 
scope, a CRC-on-chip was developed by incorporating 
key features of the TME (e.g., shear force mimicking 
peristalsis) in a two compartments device. Intestinal 
epithelial cells (Caco2, C2BBe1) were seeded in the 
upper chamber and left to generate a complete func-
tional barrier. The lower chamber hosted endothelial 

cells (HUVEC). After a few days in culture, CRC cells 
(HC116 or HT29) were injected into the intestinal com-
partments and exposed to constant flow and stretch 
conditions, which led to the formation of CRC cell clus-
ters on the top of the 3D structure of the intestinal cells 
(Fig. 6C) [174]. HCT116 cells showed a significant inva-
sion ability compared to HT29 cells and several meta-
bolic pathways were identified to be greatly enriched 
in the most invasive cell type. Furthermore, these cells 
were more heterogeneous in the endothelial chamber 

Fig. 6 Examples of colon cancer-on-chips. a The vascularized micro-tumors (VMTs) are composed of 3 tissue chambers (T1-3), hosting CRC cells, 
fibroblasts, and endothelial cells. There is also a pressure regulator (PR) to prevent the gel rupture, two loading ports (L1-2), and two medium inlets 
and outlets (M1-2). The entire structure is bonded onto a bottomless 96-well plate. Reproduced from [172] with permission from The Royal Society 
of Chemistry. b Schematic representation of the microfluidic device for tumor and fibroblast cells co-culture composed of seven channels: three 
to host cells and four for the media. Reproduced with permission [177] Copyright 2016, Jeong et al. c The CRC-on-chip (image courtesy of Emulate, 
Inc.) is composed of two channels: at the top, the epithelial channel (1), hosting epithelial and CRC cells (3); at the bottom, the endothelial channel 
(2), hosting HUVEC cells (4). The two channels are divided by a porous membrane (5). Reproduced with permission [174]. Copy-right Strelez et al., 
2021. d Metastasis-on-a-chip (MOC). To provide an equal flow into all device chambers, the media was perfused from the colorectal compartment 
and then bifurcated twice to the endothelial (E), lung (Lu), and liver (Li) constructs. Reproduced with permission [135]. Copyright 2019, John Wiley 
and Sons
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compared to the same cells on 2D plastic. In particular, 
the invasive characteristics of HCT116 were found to 
be pronounced when a fluid flow, mimicking the physi-
ological peristalsis, was applied to the device or in the 
presence of cancer-associated fibroblasts. These results 
showed the fundamental role of each TME component 
in the behavior of tumor cells. A multi-organs-on-chip 
was developed to elucidate the mechanisms of cells 
spreading to different organs. The metastasis-on-chip 
(MOC) was designed to host the primary tumor con-
struct and three target tissues (liver, lung, and endothe-
lial compartments) (Fig.  6D) [135]. After ten days in 
culture, the cancer HTC116 cells, originally seeded in 
the CRC chamber, started to disseminate in the circu-
lating flow reaching the downstream target tissues and 
showing a different localization between lung and liver 
sites. In the lung, HCT116 cells were mainly found 
around lung cells, while they showed higher engraft-
ment in the liver site. Therefore, the tumor cell dis-
semination process and the phenomena underlying the 
preferential metastatic site could be understood thanks 
to the reproduction of a more in vivo-like environment 
in the multi-organs-on-chip model.

Colorectal CoCs’ advantages and limitations
In summary, the described CRC chips represent a supe-
rior alternative to the current in  vitro models. In  vivo-
like responses are obtained using the material and data 
from CRC organ-on-chip platforms [172, 176]. TME 
features are successfully reproduced to study how the 
tumor grows and reacts to pharmacological treatments 
[177]. Moreover, the study of the factors driving meta-
static behaviors is also possible thanks to the imple-
mentation of such models [135, 174]. Notwithstanding, 
some important TME features are still missing, like the 
immune component [172, 177]. Another limit is the use 
of immortalized cell lines instead of patient-derived cells 
[172]. Indeed, the use of patient-derived cell populations 
is the best way to represent the heterogeneity of human 
cancer biology.

Liver cancer
Framework
Primary liver cancer is the sixth most diagnosed cancer 
worldwide, accounting for almost 900.000 new cases per 
year [178]. Hepatocellular carcinoma (HCC) and intra-
hepatic cholangiocarcinoma (iCCA) represent the two 
major histological types, resulting in 75% and 15% of all 
liver cases, respectively [178, 179]. Primary liver cancers 
are characterized by poor 5-year survival rates and few 
therapeutic strategies are available. Indeed, surgery still 
represents the main curative option for these patients [140, 
180]. In the last years, intense efforts were dedicated to 

developing cutting-edge culture systems to mimic in vivo 
liver tumors and elucidate the molecular mechanisms.

CoCs to study the liver primary tumor
A biomimetic liver tumor-on-chip was designed by seed-
ing HepG2 cells, an HCC immortalized cell line, in a 
decellularized liver matrix enriched with gelatin meth-
acryloyl (GelMa). This structure closely mimics the 3D 
complexity of the hepatic microenvironment, thanks to 
the presence of essential ECM proteins, growth factors, 
shear stress, and matrix stiffness [181]. This perfusion-
based platform observed a dose-dependent response 
after treatment with acetaminophen and sorafenib. This 
result evidences that specific matrix proteins are needed 
to better emulate cancer biophysical properties and have 
an accurate platform for drug screening. A microfluidic 
platform was co-cultured with hepatoma cells (Hepa1-
6) and hepatic stellate cells (JS-1) to study the role of 
hypoxia in the anticancer effect of paclitaxel (PTX) and 
tirapazamine (TPZ) in a more reliable microenvironment 
(Fig.  7A). Hepa1-6 and JS-1 cells showed a decrease in 
the viability after treatment with both drugs in monocul-
ture and normoxic conditions. Instead, increased drug 
resistance was observed when Hepa1-6 cells were co-
cultured with JS-1 cells. This effect was enhanced after 
PTX treatment in the hypoxic condition compared to the 
normoxic one. These results suggested that the activation 
of hepatic stellate cells could interfere with the resistance 
to PTX of the hepatoma cells in hypoxia and co-culture 
conditions [182]. This liver tumor-on-chip model dem-
onstrated its ability to replicate the tumor niche and rep-
resents a useful platform for drug screening. Only one 
microfluidic system is reported in the literature for the 
study of CCA. This system was developed as a diagnos-
tic tool to detect the circulating tumor cells (CTCs) in 
human bile (Fig. 7B) [183]. In this micrometric platform, 
composed of different modules, the cells isolated from 
the human bile are loaded and incubated with magnetic 
beads targeted against the EpCAM, an epithelial cell mol-
ecule, to isolate the cellular complexes (upper module of 
the chip). Subsequently, an immunofluorescence staining 
is performed with two specific anti-cytokeratin for CCA 
cells and, finally, the CTCs are detected and quantified in 
the sample (lower module of the chip). This different use 
of microfluidic technology underlines its potential role in 
the medical and biological fields.

Liver CoCs’ advantages and limitations
In conclusion, on the one hand, liver tumor-on-chips 
prove to have clear advantages concerning conventional 
in vitro models. Biophysical properties and TME features 
can be recapitulated in these platforms providing better 
results in terms of drug screening [181, 182]. On the other 
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hand, even if models that reproduce the CCA tumors are 
still undiscovered, applications studying the characteris-
tics of these cancer cells start to appear in the scenario of 
microfluidic systems [183]. In general, studies that focus 
on elucidating metastatic behavior are still absent and 
more efforts are necessary to better understand and repli-
cate the main TME components of this cancer type.

Cancer‑on‑chip: pros & cons and future 
perspectives
Cancer-on-chip has been identified as a promising tech-
nology for studying the environment and the devel-
opment of different cancers. It is becoming a possible 
powerful tool for different oncology applications (Fig. 8).

These tiny devices can mimic the physiology and the 
pathophysiology of a target human organ, resembling 
human body conditions [151]. Compared to the in  vivo 
models, the lower cost, and the possibility to have ani-
mal-free approaches should lead to extensive use of these 
devices, especially in the study of cancer and the possible 
therapies [184]. These models are considered superior to the 
2D in  vitro counterparts [185]. In the organ-on-chips, the 
implemented cell constructs are often in three dimensions, 
better recapitulating the cell–cell interactions by regulat-
ing key important factors such as nutrients, cytokines, and 
hormones. Anyway, most of the developed cancer-on-chip 
models still rely on the use of cell lines. Indeed, the imple-
mentation of primary cells, especially patient-derived, could 
be an important step to obtain a superior reproduction of 

Fig. 7 Examples of liver cancer-on-chips. a Schematic design of the microfluidic device. (i) The left channel was used to generate the hypoxic 
gradient (red fluorescent image), flanked by the culture compartment composed of three adjacent channels. (ii) Image of the co-culture 
compartments. Reproduced from [182] with permission from the Chinese Journal of Analytical Chemistry. b Cholangiocarcinoma-on-chip 
to detect the CTCs in the human bile. (i) Image of the chip with its compartments. Upper module: A, sample loading chamber; B, membrane-type 
micromixers/micropumps; P, PBS chamber; W, waste outlet. Lower module: C, membrane-type micromixers/micropumps; D, paraformaldehyde 
chamber; E, Triton X-100 chamber; F - G, first and secondary antibody chambers, respectively; H, DAPI/Hoechst stain chamber; P, PBS chamber; 
W, waste outlet. (ii) Schematic representation of the cell capture, washing, collection, and immunofluorescence (IF) staining and analysis on-chip. 
Reproduced from [183] Copyright Hung et al., 2017
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the in  vivo conditions. Different organs and tissues can 
be represented within the same platform, having a better 
model to study a specific phenomenon or structure [136]. 
The microenvironment could also be recapitulated with the 
flow key component. Indeed, important mechanical and 
chemical stimuli are generated thanks to the movement of 
the medium inside the designed channels, like shear stress 
and specific factors’ gradients, thus reproducing the in vivo 
conditions. The implementation of the flow and the per-
fused endothelial-lined vessels allow the study of several 
processes such as cancer cell intravasation, extravasation, 
and dissemination [132, 186]. Moreover, drug delivery stud-
ies are better modeled than in conventional in vitro systems 
thanks to the samples collected from compartments dedi-
cated to a specific organ [143]. In the OoCs, sensors with 
different outputs (e.g., temperature, pH, and oxygenation) 
can be added to control the microenvironment and perform 

measurements in real-time [187]. For example, sensors 
have been implemented for the control and measurement 
of physical features, such as flow [188], temperature [189], 
and pH [190]. Specific sensors have been used for cancer-
on-chips: an electrical cell-substrate impedance sensing 
(ECIS) was implemented for the monitoring of single cancer 
cells [191]; an electrical biosensor based on nano roughened 
poly(methyl methacrylate) (PMMA) was used to detect 
the metastatic cells [192]; and a surface plasmon resonance 
imaging (SPRI)-impedance sensor was applied to analyze 
the status of living cancer cells in real-time [193]. On one 
hand, this versatility represents a strong driver in the adop-
tion of the technology, and it is essential to have trustwor-
thy and robust organ-on-chip models. On the other hand, 
such sensor implementation makes organ-on-chip com-
plex systems often not easily exploitable by people without 
the required expertise. In general, OoCs are more difficult 

Fig. 8 Overview of the possible cancer-on-chips applications. In general, these microfluidic devices can be used to study all cancer features 
and stages, to perform anti-cancer drug screening in terms of safety and efficacy, and to implement personalized medicine using patient-derived 
cells
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to implement than other 3D models, like spheroids, which 
usually show a higher throughput [194]. PDMS is the most 
widely used material for organ-on-chip production due to its 
high biocompatibility, transparency, and oxygen permeabil-
ity. However, the major drawback of PDMS is its nonspecific 
absorption of small hydrophobic molecules, including some 
drugs [195]. Therefore, new materials should be developed 
and implemented for organ-on-chip production by retain-
ing the same important characteristics of PDMS, in terms 
of biocompatibility and optical clarity, but with low or null 
drug absorption. Solutions can be found using for example 
additives [196], coatings [197, 198], and completely other 
materials [199–201]. High pressure is put on the users to 
find materials that fit the purpose and the aim of the device’s 
application. For this reason, several manuals have appeared 
[202, 203] to guide users to make a more informed and cor-
rect choice. Technical robustness is another challenge that 
should be overcome. The small scale and the high complex-
ity of these systems make them sensible to simple factors, 
like bubbles, that can impair the interplay of the imple-
mented controls and features with the loss of organ-on-chip 
functionality [204]. Studies have been performed trying to 
prevent the formation of bubbles by providing hints about 
channel structuring and characteristics [205] or strategies to 
efficiently remove the bubbles [206]. Finally, organ-on-chip 
devices should be manufactured according to Good Manu-
facturing Practices (GMP), and the tests conducted follow-
ing the in-force Good Laboratory Practices (GLP) and the 
Good In  Vitro Method Practices (GIVIMP) [207]. These 
are the requirements to be recognized as pre-clinical tools. 
Indeed, even if most of the OoCs are tested for reproducibil-
ity, the variability due to the user-to-user component is still 

difficult to control. Fabrication and cell culturing methods 
are developed by each user mostly without any guidance. 
This leads to OoCs that differ in technological and biologi-
cal aspects [55]. The passage from the results obtained in 
the micron-scale to a possible application at the macro-
scale (scalability) is therefore hampered due to the lack of 
standardization [55]. These limitations get worse if complex 
multi-organ interactions are implemented. To summarize, 
organ-on-chip technology is still in its young phase and sev-
eral challenges must be overcome as well as improvements 
adopted (Fig. 9). But the technological advancement of these 
platforms keeps on increasing. Table 2 provides an overview 
of some implemented solutions to reduce the impact of the 
described challenges. Regarding CoCs, future development 
relies on personalized medicine [208]. Patient-derived cells 
could be directly cultured within the platform providing a 
precise tool to better investigate the biological mechanisms 
underlying cancer development and to investigate the most 
suitable patient-specific drug therapy during the clinical tri-
als. However, obtaining patient-specific cells is often chal-
lenging [209]. A possible solution relies on the use of stem 
cells. But this cellular model shows limitations in terms of 
technical reprogramming, increased genetic instability, 
especially of the induced pluripotent stem cells (iPSC), and 
the highly variable (but typically low) efficiency of stem cell 
differentiation across cell lineages [210]. Another limitation 
of cancer-on-chips is the simplicity of these devices, since 
only the essential components are usually recapitulated, 
missing some important chemical and physical characteris-
tics inherent to the TME. Help is coming from the increased 
awareness of cancer microenvironment physiology, which 
is leading to more representative and even modular devices 

Fig. 9 Summary of pros and cons of cancer-on-chips. Many pros are identified for the cancer-on-chip technology when compared 
to the conventional in vitro and in vivo models. However, acceptance of cancer-on-chip as a pre-clinical tool has several drawbacks that must be 
solved
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[211]. Moreover, the development of a cancer-on-chip that 
reproduces the entire body (body-on-chip) or multiple 
organs fluidically connected is aiding in a better under-
standing of the cancer pathophysiology, the structure, the 
hidden mechanisms, and the metastatic process [212].

Conclusion
The current in vitro and in vivo models show evident limi-
tations in reproducing the complexity of the TME and 
studying cancer progression and metastasis. Cancer-on-
chips could provide the necessary complexity to express 
the pathophysiology and the cell–cell crosstalk within the 
TME and allow for studying tumor development and pro-
gression in a more in vivo-like environment. This new tech-
nology represents an advanced and unique way to reveal 
underlined molecular, chemical, and cellular mechanisms 
with a key role in cancer progression. Furthermore, the 
development of these platforms using patient-specific cells 
could help obtain a more realistic tool to faithfully recapitu-
late the main characteristics of the TME. The possibility to 
integrate multiple organs in the same platform has the huge 
potential to reproduce in vitro realistic models of invasive-
ness and metastatic tumors, thus better mimicking the 
intricate pathologic conditions. However, intense efforts 
are needed from academic researchers, manufacturers, and 
regulators to push the adoption of organ-on-chip technol-
ogy as an alternative to the 2D in vitro and in vivo mod-
els. Indeed, the establishment of good practices as well as 
shared and approved standard protocols could guarantee 
the fundamental required quality allowing the use of organ- 
and cancer-on-chip as a keystone to close the gap between 
the pre-clinical and clinical studies.

Abbreviations
2D  Two-dimensional
3D  Three-dimensional
BBB  Blood-brain barrier
BM-NSCLC  Brain metastatic non-small cell lung carcinoma
bTME  Brain tumor microenvironment
CAFs  Cancer-associated fibroblasts
CCA   Cholangiocarcinoma
CCL2  Chemokine (C–C motif ) ligand 2
CCL5  Chemokine (C–C motif ) ligand 5
CCL7  Chemokine (C–C motif ) ligand 7
CFTR  Cystic Fibrosis Transmembrane Conductance Regulator
CLM  Colorectal liver metastasis
CoC  Cancer-on-chip
CRC   Colorectal cancer
CSE  Cigarette smoke extracts
CTC(s)  Circulating tumor cell(s)
CXCL12  Chemokine (C-X-C motif ) ligand 1
dT-MOC  Ductal tumor-microenvironment-on-chip
EB(s)  Embryoid body(ies)
EC(s)  Endothelial cell(s)
ECFC-EC  Endothelial colony-forming cell-derived endothelial cells
ECIS  Electrical cell-substrate impedance sensing
ECM  Extracellular matrix
EGFR  Epidermal growth factor receptor
EMT  Epithelial-to-mesenchymal transition
EV(s)  Extracellular vesicle(s)
EVμBR(s)  Microfluidic
EV  Microbioreactor(s)
FGF  Fibroblast growth factors
FLD  Fatty liver disease
FOLFOX  5-Fluorouracil, leucovorin, and oxaliplatin
GelMa  Gelatin methacryloyl
GIVIMP  Good In Vitro Method Practices
GLP  Good Laboratory Practices
GMP  Good Manufacturing Practices) and the
HCC  Hepatocellular carcinoma
HFL1  Human fetal lung fibroblasts
IBD  Inflammatory bowel disease
iCCA   Intrahepatic cholangiocarcinoma
IL-8  Interleukin-8
IORT  Intraoperative radiotherapy

Table 2 Overview of some solutions implemented to overcome or reduce the challenges faced by organ-on-chip technology

Model Challenges Solution Reference

In vitro tumor microenvironment Complex system
Lower throughput
Low technical
robustness
PDMS nonspecific
absorption

Injection molded plastic array 3D culture platform for the formation 
of vascularized tumor spheroids in one step

[213]

Brain metastatic microenviron-
ment due to non‐small cell lung 
carcinoma

Use of cell lines Use of patient-derived cells to reproduce the brain metastatic microen-
vironment

[154]

Human tissue barriers PDMS material Implementation of inert and optically clear borosilicate glass for chip 
production using PDMS just as a sealing agent

[214]

Translational organ-on-chip platform Complex system
Lack of standards

Implementation of a fluidic circuit board which enables microfluidic 
control of multiple components like sensors or organ-on-chip devices 
through an interface based on openly available standards

[215]

Monitoring of cell metabolic activity Low throughput
Lack of standards
Low technical robustness

The measure of oxygen consumption rates and drug-induced metabolic 
shifts in an array of microfluidic devices contained within an oxygen 
sensor-integrated microfluidic culture plate in a microtiter plate format 
and industry-standard footprint

[216]
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MOC  Metastasis-on-chip
MMP2  Matrix metalloproteinases 2
MMP9  Matrix metalloproteinases 9
NanoCaCO3  CaCO3 nanoparticles
NHLF  Normal lung fibroblasts
NSCLC  Non-small cell lung cancer
OoC  Organ-on-chip
PTX  Paclitaxel
PDAC  Pancreatic ductal adenocarcinoma
PDCE(s)  Pancreatic ductal epithelial cell(s)
PDGF  Platelet-derived growth factors
PDMS  Polydimethylsiloxane
pH  Power of hydrogen
PLGA  Poly(lactic-co-glycolic acid)
PMMA  Poly(methyl methacrylate)
SDF-1  Stromal cell-derived factor 1
SNS  Sympathetic nervous system
SPRI   Surface plasmon resonance imaging
TEER  Transepithelial/endothelial resistance
TGFβ  Transforming growth factor beta
TKI  Tyrosine kinase inhibitor
TME  Tumor microenvironment
TPZ  Tirapazamine
TS(s)  Tumor spheroid(s)
UV  Ultraviolet (light)
VMT(s)  Vascularized micro-tumor(s)
μ-CCD  Microfluidic hanging drop-based spheroid co-culture device
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