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Abstract 

Background Technologies for quick and label-free diagnosis of malignancies from breast tissues have the potential 
to be a significant adjunct to routine diagnostics. The biophysical phenotypes of breast tissues, such as its electrical, 
thermal, and mechanical properties (ETM), have the potential to serve as novel markers to differentiate between nor-
mal, benign, and malignant tissue.

Results We report a system-of-biochips (SoB) integrated into a semi-automated mechatronic system that can char-
acterize breast biopsy tissues using electro-thermo-mechanical sensing. The SoB, fabricated on silicon using micro-
fabrication techniques, can measure the electrical impedance (Z), thermal conductivity (K), mechanical stiffness (k), 
and viscoelastic stress relaxation (%R) of the samples. The key sensing elements of the biochips include interdigitated 
electrodes, resistance temperature detectors, microheaters, and a micromachined diaphragm with piezoresistive 
bridges. Multi-modal ETM measurements performed on formalin-fixed tumour and adjacent normal breast biopsy 
samples from N = 14 subjects were able to differentiate between invasive ductal carcinoma (malignant), fibroad-
enoma (benign), and adjacent normal (healthy) tissues with a root mean square error of 0.2419 using a Gaussian 
process classifier. Carcinoma tissues were observed to have the highest mean impedance (110018.8 ± 20293.8 Ω) 
and stiffness (0.076 ± 0.009  kNm−1) and the lowest thermal conductivity (0.189 ± 0.019  Wm−1  K−1) amongst the three 
groups, while the fibroadenoma samples had the highest percentage relaxation in normalized load (47.8 ± 5.12%).

Conclusions The work presents a novel strategy to characterize the multi-modal biophysical phenotype of breast 
biopsy tissues to aid in cancer diagnosis from small-sized tumour samples. The methodology envisions to supplement 
the existing technology gap in the analysis of breast tissue samples in the pathology laboratories to aid the diagnostic 
workflow.
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Background
Among cancers affecting women, breast cancer 
accounted for nearly 25% of all new cancer cases and 
15% of cancer-related mortality in 2020 [1]. The accurate 
diagnosis and timely therapeutic intervention (surgery, 
radiation, or chemotherapy) of breast cancer have signifi-
cantly improved the 5-year survival rates [2]. While his-
topathology and immunohistochemistry are the current 
standards for the diagnosis of breast cancer, technologies 
that can provide a quick, preliminary assessment of the 
nature of the tumour (benign or malignant) in extracted 
biopsy sample has potential utility in the pathology labs 
and surgical margin assessment and planning [3, 4].

While the identification of malignant tumours is of pri-
mary importance in diagnostics, the ability to also detect 
benign tumours has significance in deciding the nature of 
surgery to be performed [5]. If the preoperative diagnosis 
is benign, the tumours are usually removed at the behest 
of the patient. In such cases, the target is to remove 
only the tumour with a minimal amount of surrounding 
healthy tissue to minimize cosmetic damage and disfig-
urement [6]. When the preoperative diagnosis is malig-
nant, the aim of the surgical procedure is therapeutic. In 
such a scenario, the target is to ensure that no malignant 
lesions are left behind so as to reduce the risk of relapse 
[7]. This requires the excision of an additional margin of 
the adjacent normal tissue around the malignant tumour. 
During surgery, tissue biopsies are often analyzed using 
frozen section examination to arrive at the real-time esti-
mate of the boundary for the surgical excision [8]. The 
ability to classify the sample as benign, malignant, or 
healthy, thus, has implications for surgical outcomes and 
patient survival.

The biophysical properties of the breast tissue, such as 
its thermal response, electrical conductivity, and stiff-
ness, have been used to develop several non-invasive 
cancer screening technologies such as mammography, 
ultrasonography, thermography, and optical coherence 
tomography, to name a few [9, 10]. In the context of ana-
lyzing ex-vivo biopsy samples during diagnosis and sur-
gery, assessing the biophysical properties of the biopsy 
tissues requires significantly lesser sample preparation 
steps than routine biochemical analysis [11, 12]. Several 
aspects of tumourigenesis and tumour progressions, such 
as the increased proliferation of cells, smaller volume 
fraction of intact cells, leaky blood vessels, and remod-
eling of the extracellular matrix (ECM), have been shown 
to alter the electrical, thermal, and mechanical properties 
of cancer tissues, including in breast cancer [13–16]. For 
the samples of small dimensions that are often extracted 
during surgical procedures, technologies for biophysical 
phenotyping of the tissue biopsies ex vivo are required to 
be miniaturized.

Previously our group has reported the observation of 
scaling laws in the temperature and frequency-depend-
ent electrical transport through ex  vivo breast biopsy 
samples and employed the scaling law parameters to 
classify the sample as a normal or tumour [17]. We also 
observed that the bulk DC electrical resistivity meas-
ured at an elevated tissue temperature of 37 ℃, when 
combined with a concordant measurement of the ther-
mal conductivity, was also able to differentiate between 
adjacent normal and tumour with a high level of statisti-
cal significance [18]. However, these studies only classi-
fied the samples as normal or tumour and did not look 
at differences between benign and malignant tumours. In 
this work, a system of biochips (SoB) integrated with the 
semi-automated system is reported that can perform the 
electrical, thermal, and mechanical (ETM) characteri-
zation of breast biopsy tissue. The platform enables the 
measurement of the electrical impedance (Z), the ther-
mal conductivity (K), mechanical stiffness (k), and viscoe-
lastic relaxation (R) towards a comprehensive biophysical 
understanding of the sample. We observe that such a 
multi-modal electro-thermo-mechanical phenotyping 
can serve as a novel biomarker to differentiate between 
adjacent normal, benign, and cancerous tissues with a 
high level of statistical significance. The scheme of the 
study is summarized in Fig. 1.

Results
Semi‑automated experimental setup integrated 
with a system‑of‑biochips (SoB)
The experimental setup consists of the schematic shown 
in Fig.  1C which is a semi-automated system with two 
horizontal probes (X-direction) and one vertical probe 
(Z-direction) for interacting and taking measurements 
from the tissue sample. The system integrates three bio-
chips, namely S1, S2, and S3 (as shown in Fig. 1C inset), 
which constitutes the system of biochips (SoB). S1 acts 
as the microforce sensor for mechanical characteriza-
tion, while S2 and S3 are used for electro-thermal char-
acterization. The photograph of the fabricated biochips 
is shown in Fig.  2A. The design of S1 consists of four 
piezoresistive bridges fabricated on a thin diaphragm cre-
ated on a silicon substrate. The dimension of S1 is 2.5 mm 
x 2.5 mm. The optical microscope image of one piezore-
sistive bridge is shown in Fig. 2B. The functional elements 
of S2 and S3 consist of a microheater, interdigitated elec-
trodes, and thermistors around the microheater. While 
the microheater is used to heat the tissue, the interdigi-
tated electrodes and the thermistors measure the electri-
cal and thermal properties of the tissue placed between 
S2 and S3. A square shape profile is provided for the 
microheater, thermistors, and the electrodes to geometri-
cally match with the cuboidal shape of the sample tissues, 
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which makes subsequent data analysis and parameter 
extraction simpler. The biochip has an overall dimension 
of 7 mm x 12 mm with an active area of 1 mm x 1 mm. 
An optical profilometry image of the sensing elements is 
shown in Fig. 2C.

The photograph of the assembled system with the 
probes, electronic modules, biochips, and rotary platform 
for placing the sample is shown in Fig. 3A. The biochip 
S1, which integrates the force sensor, is wire bonded on a 
carrier printed circuit board and attached to the vertical 
probe along with a force transfer mesa, while the biochips 
with the electro-thermal sensors, S2 and S3, are attached 
to the two horizontal probes. This arrangement is shown 
schematically in the inset of Fig. 1C, and the actual pho-
tograph of the arrangement is shown in Fig.  3B. The 
probes are actuated through NEMA-17 stepper motors 
connected to a microcontroller and motor driver system. 
The biochips are connected to the electronic modules in 
the system using flexible flat cables (FFC). The electronic 
modules integrate the circuits for multiplexing and meas-
uring the voltages from the force sensor and the resist-
ances from the thermistors and interdigitated electrodes. 
The microheater on S2 is connected to a constant cur-
rent voltage driver circuit to act as the heat source for 
the thermal characterization of the tissue. The micro-
heater structure on S3 acts as a thermistor to detect the 

heat transmitted through the tissue, along with the other 
three thermistors around it. Finally, the interdigitated 
electrodes on S2 and S3 are connected externally to the 
GW-INSTEK LCR 8105G impedance analyzer system for 
electrical measurements. The complete actuations and 
measurements are controlled through a laptop connected 
to the system through the microcontroller via the UART 
port through serial communication. Before loading the 
samples, a disposable 3D printed attachment for hold-
ing the tissue surface is placed on the rotary platform to 
avoid contamination of the setup (shown in Fig. 3B).

Protocol for electro‑thermo‑mechanical characterization 
of breast biopsy tissues
The experiments are conducted in a class 10000 clean 
room with a controlled ambient temperature of 21 ℃. 
The experimental methodology of evaluating the system 
involves capturing the electrical, thermal, and mechani-
cal properties of the tissue sample loaded into the system 
using the SoB. The Z-axis probe indents the sample ver-
tically and captures the mechanical force response and 
stress relaxation using the microforce sensor attached 
to it. The mesa interacts with the tissue and transfers 
the force to the diaphragm in the sensor S1, and the 
changes in the piezoresistive bridges are recorded by the 
onboard electronics through the wires attached to the 

Fig. 1 Scheme of the study showing A breast excisional biopsy, B histopathological examination of the sample to identify malignancy, C system 
for simultaneous electro-thermo-mechanical phenotyping of the biopsy tissue with the system-of-biochips for force sensing and electro-thermal 
sensing attached to the tissue probes shown in inset, and D summary of key results from the study comparing tumour and normal based 
on the results from the electrical, thermal, and mechanical characterization
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carrier PCB. The two X-axis probes capture the electro-
thermal properties of the sample, such as its electrical 
impedance and thermal conductivity, using the biochips 
attached to them. The microheater on S2 heats the tissue 
to the required temperature, and the interdigitated elec-
trodes between S2 and S3 capture the electrical imped-
ance data across the tissue sample. This methodology is 
chosen so that once the sample is loaded into the system, 
its complete biophysical phenotype (electrical, thermal, 
and mechanical) can be captured. The mechanical char-
acterization, which involves loading the sample to 30 mN 
force followed by stress-relaxation and unloading to the 
original state, is performed first as the electro-thermal 
characterization involves heating the tissue sample to 37 
℃. Once the sample is loaded into the system, the follow-
ing protocol is used to capture the ETM properties (also 
shown graphically in Fig. 3C (i to iv):

1. The Z-axis probe with the force sensor indents the 
sample at a constant rate of 30 μm/s to a compres-
sive load of 30 mN. The sample is kept loaded for 150 
s to capture the relaxation data, and then the Z-axis 
probe is moved up to unload the sample. The load-
displacement data is captured from the force sensor.

2. After this, the two X-axis probes, with the biochips 
for electro-thermal characterization, approach the 
sample at 20 μm/s and make contact.

3. The microheater on S2 is switched on and is used to 
heat the tissue to a temperature of 37 ℃ in steps of 3 
℃. At each temperature point, the resistance values 
of the thermistors are recorded. These resistance val-
ues are then mapped to the sensed temperature and 
used to compute the thermal conductivity.

4. At 37 ℃, the impedance of the sample from 10 Hz 
to 3 MHz at 100 mV excitation voltage is captured 
across the IDEs on the two biochips.

5. After the impedance and thermistor measurements 
at 37 ℃ are completed, the X-axis probes move away 
from the sample, thereby completing the measure-
ments.

A representative video showing the system in operation 
is provided as a Supplementary Video. To clearly indicate 
the clearances between the probes, this video shows a 
position where all probes are in contact with the tissue. 
For the actual experiments, the Z-axis probe indents the 
tissue and moves back, followed by the measurements 
using the X-axis probes (as detailed in Fig. 3C). The video 

Fig. 2  System-of-biochips (SoB) for electro-thermo-mechanical phenotyping of breast tissues. A optical photograph of the biochips, B optical 
microscope image showing the piezoresistive bridge in the force sensor for mechanical characterization, and C optical profilometry image 
of the electro-thermal biochip showing the microheater, interdigitated electrodes and thermistor
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captured with a larger-sized tissue for clear visibility of 
the different components is shown.

Experimental results and biophysical parameters 
from the ETM characterization
The electrical impedance at 37 ℃ as a function of 
frequency, the conducted thermal energy through 
the tissue, and the mechanical loading and relaxa-
tion response are the electrical (E), thermal (T), and 
mechanical (M) measurements, respectively, performed 
on each sample. Figure  4 shows the summary of the 
ETM characterization measurements of the samples 
from N = 14 subjects indicating the mean curves with 
error bands for the three sample groups, viz. adjacent 
normal (AN), fibroadenoma (FA), and carcinoma (CA). 
Since the experiment protocol involves heating the 
tissue, which might cause irreversible changes, meas-
urements were not repeated on the same sample. How-
ever, for each of the 10 carcinoma, 4 fibroadenoma, 
and 14 adjacent normal tissue samples, two samples 
each were extracted and measured. Thus, experiments 
were conducted from a total of n = 56 samples from 

N = 14 subjects. Additionally, to quantify the variations 
between experiments, the electrical impedance and 
mechanical characterization experiments without heat-
ing the tissue were carried out on a few samples multi-
ple times (n = 3). The maximum coefficient of variation 
observed was 6.5%.

Figure 4 A and B show the mean plots of the magnitude 
and imaginary part of the complex electrical impedance 
as a function of frequency measured at a tissue tempera-
ture of 37 ℃. The impedance magnitude plots of each of 
the 14 sample pairs are shown in Fig. S1. The plot of the 
mean phase response and the plot of the real part of the 
impedance vs. the imaginary part for the AN, CA, and 
FA groups is also shown in Fig. S2. The mean impedance 
of CA is observed to be higher than AN and FA at all 
the measured frequencies. The mean plot of the imagi-
nary part of the impedance (Fig. 4B) has a continuously 
decreasing trend for the AN group, while for the FA and 
CA samples, there is a kink in the low-frequency region. 
However, the trend of higher mean impedance for the 
CA group compared to the AN and FA is also observed 
for the imaginary part.

Fig. 3 Experimental setup.  A  Photograph of the semi-automated system with the three probes and system of biochips, B close-up view of one 
electrothermal biochip and the force sensing chip connected to the probes, and C experimental protocol for the ETM measurements (i) sample 
is loaded into the system, (ii) S1 indents the tissue followed by stress-relaxation for 150s, (iii) S1 retracts, S2 and S3 probe the tissue, make contact, 
and heats the sample to 37 ℃, and (iv) measurements are captured from the RTDs followed by the impedance characterization
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Fig. 4 Mean plots of ETM measurements from N = 14 paired breast biopsy samples. A and B shows the magnitude of the complex impedance 
and imaginary component of the complex impedance as a function of frequency, C the mechanical loading characteristics obtained 
for the samples, D viscoelastic relaxation curves and E the thermal response of the samples to heating showing the temperature at source 
and sense points
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The impedance curve data for the sample groups also 
facilitates the extraction of circuit parameters which can 
provide insights into the tissue organization. The stand-
ard cole-cole model is modified with two capacitances, 
 Cdl, to account for the double layer capacitance at the 
tissue-electrode interface at both ends of the sample. The 
other circuit parameters of the tissue are similar to the 
Cole-Cole model, namely, the extracellular resistance  Re, 
the membrane resistance  Rm, the membrane capacitance 
 Cm, and the intra-cellular resistance  Ri. The equivalent 
circuit used to fit the mean impedance curves is shown in 
Fig. S3. The fitted curves for the mean impedance and the 
mean phase response along with the experimental data 
for the three groups, are shown in Figs. S4 and S5, respec-
tively. The CA samples had significantly (p < 0.001) higher 
 Re (1.75e5 ± 7.07e3 Ω) and  Ri (3.29e4 ± 1.49e3 Ω) than 
FA  (Re = 3.51e4 ± 4.34e3 Ω;  Ri = 1.3e4 ± 2.33e2 Ω) and 
AN  (Re = 2.27e4 ± 1.78e3 Ω;  Ri = 1.23e4 ± 5.31e2 Ω).  Rm 
was calculated to be highest for the FA (5.48e6 ± 1.14e5 
Ω, p < 1e-5) samples and similar for CA (6.43e4 ± 3.14e3 
Ω) and AN (9.27e4 ± 1.33e4 Ω). The membrane capaci-
tance,  Cm was calculated to be highest for the CA (1.02e-
10 ± 1.77e-11 F, p < 0.05) samples while it was similar for 
the FA (1.11e-11 ± 6.94e-13 F) and AN (1.1e-11 ± 1.63e-12 
F) groups. All the fitted circuit parameter values are sum-
marized in Table S1.

The mechanical loading and stress relaxation tests plots 
for the three groups are shown in Fig. 4C and D, respec-
tively. Figure  4C shows the changes in the indentation 
force measured by the force sensor, S1, with the indenta-
tion depth of the tissue, with the loading force capped to a 
maximum of 30 mN. The error bars indicate the family of 
loading curves for each sample within the sample groups. 
The data for each sample pair is provided in Fig. S6. It can 
be seen that the mean loading curves for the CA and FA 
samples overlap each other and are steeper than the AN 
sample, indicating higher stiffness. The AN samples get 
indented to a larger extent (larger amount of strain) for 
the same applied force of the indenter. Figure  4D plots 
the relaxation in the normalized load with time up to 
150 s. It can be seen that the FA group has the maximum 
relaxation, followed by CA and AN. While in the loading 
curves, the CA and FA groups were observed to behave 
in a similar manner, the relaxation curves revealed differ-
ences between the two groups, suggesting the utility of 
such a characterization.

Figure 4E summarizes the results of the thermal char-
acterization of the samples. The x-axis plots the tempera-
ture at the source point of heating of the samples using 
the on-chip microheater in S2. The samples were heated 
from room temperature to 37 ℃. Given that in-vitro col-
lagen is thermally unstable beyond 37 ℃ [19], the samples 
were not heated beyond this temperature to avoid any 

irreversible damage or charring of the tissue that could 
confound the impedance measurements at 37 ℃. The 
y-axis plots the temperature detected by the thermistors 
in S3 from the heat transmitted through the tissue. It can 
be seen that the AN samples attain a higher temperature 
at the sense point for a given source temperature than the 
CA and FA groups, indicating higher thermal conductiv-
ity. The CA and FA groups attain similar temperatures at 
the sense point for the given source temperature, with 
the CA group having a comparatively lower value than 
the FA group.

From the experimental data in Fig. 4, four key biophysi-
cal parameters were extracted. These are namely, the 
impedance Z (Ω) at 15 kHz, the thermal conductivity K  
 (Wm-1  K-1) computed at 37 ℃, the mechanical stiffness 
k (kN/m), and the percentage relaxation in normalized 
load, %R (in %). These extracted parameters for each of 
the three sample groups are shown as scatter interval 
plots in Fig.  5. All the scatter plots were first assessed 
for their conformity to the normal distribution using the 
Shapiro-Wilk test and were observed to follow the distri-
bution. The frequency of 15 kHz was chosen as the non-
zero frequency, which showed the highest magnitude of 
difference between the three groups in Fig. 4A. The ther-
mal conductivity, K  of the samples, were computed at 37 
℃ from the mean resistance measured by the thermis-
tors, power input provided to the microheater, and the 
geometry of the samples. The stiffness, k was calculated 
as the slope of the loading curves for each sample at 20% 
strain. The percentage relaxation, %R value was selected 
as the endpoint relaxation at 150 s of the stress relaxation 
experiments.

 From Fig.  5A, the CA group had a significantly 
higher mean impedance of 110018.8 ± 20293.8 Ω 
than FA (44261.8 ± 10496.2 Ω, p = 2.02e-2) and AN 
(22206.2 ± 3400.7 Ω, p = 2.6e-3). The impedances of the 
FA and AN groups were not found to be significantly dif-
ferent from each other. The AN group had a significantly 
higher mean thermal conductivity of 0.45 ± 0.025  Wm-1 
 K-1 compared to the FA (0.242 ± 0.019  Wm-1  K-1, p = 6.4e-
5) and CA (0.189 ± 0.018  Wm-1  K-1, p = 7.64e-8) groups 
(Fig. 5B). The K  of FA and CA were not significantly dif-
ferent. The CA samples had the highest mean stiffness 
of 0.076 ± 0.009 kN/m, which was significantly higher 
(p = 1.4e-4) than the AN (0.02 ± 0.003 kN/m) (Fig.  5C). 
The FA samples were also significantly stiffer than the AN 
with k of 0.057 ± 0.003 kN/m (p = 1.6e-4), which was sta-
tistically similar to the CA group. Finally, the FA samples 
had the highest relaxation in normalized load among the 
three groups of 47.8 ± 5.1% compared to CA (37.2 ± 2.5%) 
and AN (26.4 ± 1.75%) (Fig.  5D). The percentage relaxa-
tion observed for the FA and CA groups was significantly 
higher than in the AN sample (p < 0.01). The extracted 
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biophysical parameter values from each of the 14 sample 
pairs are summarized in Table 1.

Analysis with a combination of the biophysical parameters
As is evident from Fig. 5, no single biophysical parameter 
extracted from the experimental data is able to differen-
tiate between all the three sample groups (AN, FA, and 
CA) with statistical significance. The electrical imped-
ance at 15 kHz (Z) is able to differentiate CA from AN 
and FA, but not AN from FA. Likewise, the thermal 
conductivity (K), stiffness (k), and percentage relaxa-
tion in load (%R) are able to differentiate AN from FA 
and CA, but not FA from CA. Fisher’s combined prob-
ability test was applied to understand whether an analy-
sis with a combination of parameters could differentiate 
between all the three groups. Before applying the test, 
each parameter was pairwise tested for its independence 

to assess whether they add new information that enables 
differentiation with higher statistical significance.

The pairwise testing was performed by plotting each 
sample on a 2D space defined by two of the four param-
eters and then repeated for each parameter pair. The 
independence was assessed by calculating the R-square 
value of the linear fit for each sample group. A low 
R-square indicates a poor fit and thereby a higher degree 
of independence. The pairwise scatter plots are shown in 
Fig. 6A–F. It can be seen from the analysis that Z - K and 
K - %R are the most independent pair of parameters, with 
the maximum R-square value of only 0.09 for the AN 
group in the K - %R plot. The k - %R pair was noted to be 
the least independent pair of parameters with R-square 
values of 0.48, 0.63, and 0.008 for the AN, FA, and CA 
samples. The lower degree of independence for the k - 
%R pair follows from the fact that both parameters are 
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extracted from different aspects of the mechanical char-
acterization of the samples. All the plots also show a clear 
separation between the AN and CA groups, with the FA 
group clustering between the two in a partially over-
lapped manner.   A colormap of the R-square values for 
each of the three groups is shown in Fig. 6G–I. The color-
maps indicate that the parameters are least independent 
for the FA samples, suggesting difficulty differentiating it 
from AN and CA, as was also evident from the experi-
mental data. The Fisher’s combined probability test with 
all the four parameters in a multi-modal manner was able 
to differentiate between the three groups with the highest 
statistical significance. The test differentiated AN from 
FA, AN from CA, and CA from FA with p = 1.68e-9, p 
= 5.76e-13, and p = 4.5e-3 respectively. Thep values for 
the tests with the other combinations of the parameters, 
including those for the single parameter Student t-tests 
for the three group comparisons, are summarized in 
Table  2. Since only Z was able to differentiate FA from 
CA and K, k, and %R was able to distinguish between AN 
and FA and AN and CA, combining Z with one of K, k, or 
%R was able to differentiate between all the three groups, 
albeit with lower statistical power. Additionally, though K 
or k alone was not able to distinguish CA from FA, test-
ing with the combination of these two parameters was 
able to achieve the differentiation of CA from FA with 
a low degree of statistical significance. The data in the 
table, in summary, shows that since the parameters are 
fairly independent and add information to the differen-
tiation, the p values progressively become lower as more 

parameters among the four are used as a basis for differ-
entiation between the sample groups.

Evaluation of classification accuracy using a gaussian 
process classifier
While Fisher’s combined p-value analysis only gives 
insights into the potential of the combination of param-
eters to better differentiate between the sample groups, 
it does not however perform any classification or assess 
its accuracy. For this, Gaussian process classifiers with 
different covariance kernels, namely, rational quadratic, 
squared exponential, exponential, and matern 5/2 were 
evaluated with the four biophysical parameters (Z, K, k, 
and %R) as input features to classify the samples into the 
three sample groups (AN, FA, and CA). The classification 
was performed using the leave-one-out cross-validation 
(LOOC) technique. The matern 5/2 kernel was overall 
found to be the best performing in terms of the RMSE. 
Figure  7 summarizes the key results from the Gaussian 
process classification using the matern 5/2 covariance 
kernel. The four parameters (Z, K, k, and %R) standalone 
and in various combinations were used as input features 
for the classification. Figure  7A–D shows the classifica-
tion response plots along with the RMSE when each of 
the parameters Z, K, k, and %R alone was used as the 
metric for classification. Using Z as the feature gives the 
poorest RMSE of 0.6932. Using only K or k gives a better 
RMSE of 0.4442 and 0.4286, respectively, as compared to 
Z (0.6932) and %R (0.5914). However, the FA group has 
been significantly misclassified or poorly classified in all 

Table 1 Extracted biophysical parameters from N=14 paired samples

SN ADJACENT NORMAL TUMOR

Impedance
(Z) [Ω]

Thermal 
Conductivity (K) 
[Wm‑1K‑1]

Stiffness 
(k) [kNm‑1]

Viscoelastic 
relaxation (%)

Type Impedance (Z) [Ω] Thermal 
Conductivity 
(K) 
[Wm‑1K‑1]

Stiffness 
(k) [kNm‑1]

Viscoelastic 
relaxation 
(%)

S1 4608.1 0.307 0.034 27.83 CA 21567 0.124 0.055 33.33

S2 29845 0.353 0.00894 20.6 CA 256510 0.174 0.0833 33

S3 24092 0.337 0.01707 24.2 CA 66865 0.184 0.142 29.3

S4 16093 0.353 0.0039 26.6 CA 123700 0.165 0.076 36.6

S5 18394 0.414 0.0178 32.2 CA 57090 0.152 0.075 43.3

S6 21633 0.384 0.015 21.4 CA 146280 0.135 0.067 33

S7 51204 0.44 0.03668 31.7 CA 151700 0.265 0.065 51.7

S8 14276 0.51 0.0104 21.8 CA 89743 0.133 0.1066 49.6

S9 29218 0.42 0.01774 26.3 FA 75189 0.298 0.04856 30.4

S10 17931 0.495 0.0205 19.5 CA 132300 0.242 0.0542 35.5

S11 44780 0.58 0.028 34.1 FA 51961 0.253 0.0612 51.5

S12 17689 0.525 0.0178 19 FA 24258 0.221 0.0531 52.8

S13 16500 0.611 0.0409 42.9 FA 25639 0.194 0.0658 56.6

S14 4624 0.565 0.018 21.8 CA 54433 0.311 0.04 26.6
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four cases, contributing significantly to the higher RMSE. 
The lowest RMSE of 0.2419 is obtained when all the four 
parameters are used as input features for the classifica-
tion task (Fig. 7E). Using all the four parameters was also 
able to bring down the error in the classification of the FA 
group. Table S2 summarizes the RMSE values obtained 
for all the combinations of the parameters for the four 
different covariance kernels used for the classification. 
These results further corroborate the highly significant 
p-values obtained using the Fisher’s combined p-value 
tests with all the parameters.

Discussion
The experimental setup demonstrated in this study with 
the system of biochips enables a comprehensive bio-
physical characterization of the breast tissue samples. 
The multiple changes that occur during tumourigenesis 

and tumour progression affect the tissue’s bulk electri-
cal, thermal, and mechanical properties, be it benign or 
malignant, as is revealed through the experimental data 
presented. Histologically, the fibroadenoma is charac-
terized by cell proliferation in both the stromal and epi-
thelial components (biplastic) of lobules, with the glands 
and ducts growing over them to form the tumour mass. 
It is also observed to be hypo-vascular [20]. The malig-
nant breast tumours (in this case, invasive ductal car-
cinoma), on the contrary, are a site of a more intense 
cellular proliferation, disorder, and leaky vasculature 
owing to a hypervascular stroma [21–23]. The extracellu-
lar matrix (ECM) and its transformations also play a key 
role in tumour progression [16, 24]. The two key com-
ponents of the ECM, namely, the interstitial matrix and 
the basement membrane, undergo different degrees of 
transformation in benign and malignant tumours. While 
the remodelling of the interstitial matrix is observed in 
both benign and malignant cases, the transformation 
of the basement membrane is a unique characteristic of 
malignancy [25]. This remodelling of the basement mem-
brane enables the cancer cells to invade the stromal tissue 
making the tumour mass malignant [26]. The remodel-
ling of the ECM involves the processes of ECM deposi-
tion, chemical modifications, degradation by proteolysis, 
and force mediated transformations of the fibres which 
opens up passages for cells to invade and migrate. The 
ECM deposition process alters the abundance and com-
position of the components of the normal ECM. While 
malignancy alters all the four processes, benign tumours 
usually undergo only the ECM deposition with a few 
chemical modifications [27]. These transformations at 
the cellular and microenvironment levels are likely to be 
the key drivers of the differences in the biophysical prop-
erties between normal, benign, and malignant breast 
tissues.

The significantly higher mean impedance observed for 
the CA group compared to FA and AN is thus likely due 
to the modified and disrupted ECM and high cellular 
proliferation. The hyper-vascular stroma, which creates 
leaky vasculatures, makes it comparatively rich in water 
content. While the increased water content aids the 
electrical conduction in the in  vivo and freshly excised 
ex vivo conditions through ionic transport, upon forma-
lin fixation, this water content becomes electrically and 
thermally immobile. This, combined with the disrupted 
and modified ECM, makes the CA samples electrically 
less conductive than FA and AN. The modelled circuit 
parameters also reflect these changes. While the higher 
value of  Re obtained for CA reflects the changes in the 
disrupted ECM, the higher  Ri captures the increased 
nuclear-cytoplasm ratio, higher genetic materials, and 
multinucleation observed in cancer cells. Though it is 

Table 2 Analysis of combination of modalities

*0.01 < p < 0.05

**0.001 < p < 0.01

***p < 0.001

Modality COMPARISON GROUP

AN vs. FA AN vs. CA FA vs. CA

Z 1.65e-1
(ns)

2.6e-3
(**)

2.02e-2
(*)

K 6.4e-5
(***)

7.64e-8
(***)

1.15e-1
(ns)

k 1.6e-4
(***)

1.4e-4
(***)

8.1e-2
(ns)

%R 2.3e-4
(***)

2.2e-3
(**)

7.9e-2
(ns)

Z and K 1.32e-4
(***)

4.63e-9
(***)

1.64e-2
(*)

Z and k 3.05e-4
(***)

5.76e-6
(***)

1.21e-2
(*)

Z and %R 4.24e-4
(***)

7.5e-5
(***)

1.2e-2
(*)

K and k 2e-7
(***)

2.8e-10
(***)

5.3e-2
(ns)

K and %R 2.8e-7
(***)

4e-9
(***)

5.18e-2
(ns)

k and %R 6.7e-7
(***)

5e-6
(***)

3.9e-2
(*)

Z, K, and k 3.8e-7
(***)

1.44e-11
(***)

8.7e-3
(**)

Z, K, and %R 5.3e-7
(***)

1.9e-10
(***)

8.6e-3
(**)

K, k, and %R 9e-10
(***)

1.23e-11
(***)

2.52e-2
(*)

Z, k, and %R 1.2e-6
(***)

1.9e-7
(***)

6.5e-3
(**)

Z, K, k, and %R 1.68e-9
(***)

5.76e-13
(***)

4.5e-3
(**)
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reported that cancer cells have a lower membrane capaci-
tance than benign and normal, the higher  Cm obtained 
for the CA group could be the cumulative sum of the 
membrane capacitances of the higher number of prolifer-
ated cells per unit volume of the tissue [28, 29].

With regard to the mechanical characterization, the 
higher stiffness in CA and FA samples can be attributed 

to the basal level ECM remodelling that occurs com-
monly in both groups through ECM deposition and 
alteration in the composition and abundance of the 
matrix fibre proteins, as discussed earlier. While the 
cells become softer, the matrix becomes stiffer owing to 
the matrix remodeling, leading to an overall stiffer tis-
sue in the case of tumours (both benign and malignant) 

Fig. 6 Evaluation of independence of the modalities. A–F shows the 2D scatter plot of the pair-wise independence plots between the four 
modalities, namely, impedance at 37 ℃ (Z), thermal conductivity (K), stiffness (k), and percentage relaxation in normalized load (%R), and (G), (H) 
and (I) show the heatmap of the R-square values indicating the level of independence between the modalities for each class of samples, namely, 
adjacent normal (AN), fibroadenoma (FA), and carcinoma (CA)
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[30–32]. It has been shown through indentation and 
imaging studies that while elasticity and stiffness could 
be used to detect tumours, they most often lack the sen-
sitivity to differentiate between benign and malignant 
cases due to an overlap seen in the measured values 
in the two groups [33, 34]. Additionally, formalin fixa-
tion reduces the overall sensitivity owing to the physi-
cal changes that accompany the fixation process [35]. 
This explains the overlap seen in the indentation curves 
for the CA and FA groups. On the contrary, viscoelastic 
relaxation has been reported to be a good indicator in 
differentiating between benign and malignant tumours 
[36–38]. The proteolytic degradation of the matrix seen 
in malignant tumours increases their degree of anisot-
ropy compared to benign tumours [39]. Additionally, 
the increased ECM deposition with reduced degrada-
tion makes the benign tumours more isotropic than 
malignant and normal tissue. As a result, the benign 
tumours (FA) have a greater percentage of relaxation in 
load than CA and AN, as observed in this study.

The results obtained for the thermal conductivity of 
the samples follow the same biophysical and biochemi-
cal changes. The degraded and disrupted ECM and the 
poor thermal conductivity of the ECM fibres make the 
CA samples the least thermally conductivity, followed 
by FA and AN. The formalin fixation also impedes the 
thermal conductivity of the water content in the tis-
sues making the overall thermal conductivity of all the 

sample groups lower than those reported in  vivo and 
from freshly excised samples [40, 41]. Thus, the electrical, 
thermal, and mechanical characterization of the tissues 
help to capture the transformations that happen in the 
tissue microenvironment to serve as a basis to delineate 
between normal, benign, and malignant cases.

The Fisher’s combined probability test, which was used to 
assess the utility of using a combination of parameters, has 
traditionally been used in meta-analysis to combine data 
from independent studies to evaluate the statistical power 
of a hypothesis [42]. The same methodology has been 
adopted to combine the data from the different modalities 
in our experiment to assess the statistical power of a com-
bined analysis. The classification using the GP method fur-
ther corroborates the results obtained from the combined 
statistical analysis. The uncertainty estimates graphically 
depicted in the GP classification results help one to make 
an informed choice, especially for a clinical use case. Even 
though the FA group has a relatively smaller sample size 
(N = 4), the reduced RMSE obtained with all the four bio-
physical parameters as input features demonstrate the util-
ity of the methodology to differentiate between the three 
sample groups. The higher RMSE obtained for the classifi-
cation with the individual parameters, especially for the FA 
group, also shows that the classification is not an overesti-
mation. The use of additional parameters to classify indeed 
helps pool the unique physiologically relevant information 
captured by those parameters.

Fig. 7 Evaluation of prediction errors with the gaussian process classifier using (A) only Z, (B) only K, (C) only k, (D) only percentage relaxation (%R), 
and (E) all four parameters for training the classifier
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The engineering technology, experimental setup, and 
results presented in this work propose a methodology 
using micro-engineered biochips and electronic system 
engineering to capture the biophysical phenotype of the 
specimen tissues. The use of microfabrication technol-
ogy enables the measurement from smaller-sized sam-
ples (< 5 mm) that are often extracted during biopsies 
and surgical procedures. The technique is label-free and 
involves minimal sample preparation other than the ones 
done for routine diagnosis. The measurement of each 
sample takes 18 ± 2 min. Routine histopathology, though 
highly sensitive, takes 48 – 72 h to give the results. Fro-
zen section examination, used during intra-operative 
margin assessment, takes about 20 min per sample but 
is skill-intensive and subjective, requiring a high level 
of expertise from the pathologist, who also uses a high 
suspicion index to arrive at the conclusions [43]. While 
several technologies have been developed for non-inva-
sive diagnostic breast imaging for identifying cancer-
ous lesions and for intra-operative margin identification 
from large-sized excised ex vivo samples during surgical 
resection, advancements toward improving the analysis 
and diagnosis of ex vivo tissues extracted during biopsy 
(such as samples from core needle (CNB) and incisional 
biopsy) have been limited [44, 45]. Most of the technolo-
gies available for diagnosing breast cancer from ex vivo 
tissues are compatible with analyzing only the larger-
sized samples greater than 1 cm owing to the size of the 
equipment, the form factor of the probe, spatial resolu-
tion limitation, and power constraints [46–49]. Though 
there have been significant advancements in MEMS 
technology in developing intricate and innovative sen-
sor designs, the system-level integration of these devices 
into product-looking prototypes useful for clinical test-
ing has been limited. The MEMS devices that have seen 
success in human sample testing and clinical trials have 
primarily focused on the mechanical characterization of 
the tissues for applications such as in vivo assessment or 
guided tissue targeting [50]. Devices designed for elec-
trical and thermal characterization have been primarily 
used for monitoring cell cultures or assessing differences 
between cancerous and normal cells in culture plates 
[51–55]. MEMS devices integrated on portable systems, 
leveraging their advantage of miniaturization, to com-
prehensively assess the multimodal biophysical pheno-
type of small-sized biopsy tissue samples have not been 
reported. The system reported in this work has been 
specifically designed to supplement this technology gap 
by providing a solution for comprehensive biophysi-
cal analysis of the tissue samples in the form factor of a 
portable table-top semi-automated setup integrated with 
biochips in the pathology laboratories to aid the diag-
nostic workflow. The system can be used not only for 

analyzing breast cancer biopsy tissues but also for other 
cancers that form solid tumours, such as oral, cervical, 
pancreatic cancers, etc., after sufficient experiments to 
understand the baseline values of the normal tissues in 
which such cancers originate.

From a technology perspective, the system and meth-
odology provide only bulk information on the electrical, 
thermal, and mechanical characteristics of the sample. It 
does not perform imaging nor provide micro-structural 
information about the tissue architecture. The current 
form factor of the system limits its direct adoption for 
an in vivo application, such as for intra-operative margin 
assessment and surgical guidance. The biochip, indent-
ers, and tissue holder have been designed to probe an 
ex  vivo sample and measure its bulk properties. Addi-
tionally, owing to the finite dimensions of the edges of the 
indenter and the sensor-indenter interface module, sam-
ples less than 1.5 mm in thickness cause the two arms of 
the system to touch each other, leading to unreliable con-
tact with the sample. For the sample dimensions greater 
than 7 mm in thickness, the thermal testing results in 
considerable time to reach equilibrium. Additionally, the 
electrical charge penetration gets affected at higher thick-
nesses. Owing to the above practical and theoretical limi-
tations, the sample dimensions were kept above 1.5 mm 
and below 7 mm during the processing. The dimensions 
of the system (205 mm x 310 mm x 165 mm (L X B X H)) 
also restrict its use in an in vivo application. However, the 
modalities (ETM) discussed and statistical analysis meth-
ods could be adopted when designing a system for in vivo 
studies in the future.

Conclusions
The study presents a unique methodology using micro-
engineered biochips and electronic system engineering 
to capture the biophysical phenotype of tissues. The elec-
trical, thermal, and mechanical properties of the tissue 
characterized through the measurement of the electrical 
impedance, thermal conductivity, mechanical stiffness, 
and viscoelastic relaxation help to comprehensively char-
acterize the different constituent elements of the tissue to 
serve as a basis for delineation between normal, benign, 
and malignant breast biopsy tissues. Measurements from 
N = 14 formalin-fixed paired tumour and adjacent nor-
mal breast biopsy tissues show that a combination of 
all four parameters can differentiate and classify all the 
three sample groups with good statistical significance 
(p < 4.5e-3) and least root mean square error (0.2419), 
respectively. While formalin-fixation is a routine proce-
dure used in pathology laboratories for tissue preserva-
tion and analysis, the same methodology can be applied 
to freshly excised tissues stored in saline solution. While 
the current methodology could be readily adapted for use 
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in a pathology laboratory, studies with freshly excised tis-
sues could pave the way for its potential application in 
operating rooms during surgery. We envisage integrating 
this methodology on a hand-held probe for its applica-
tion in in vivo tumour delineation during surgical proce-
dures and for other applications which require soft tissue 
analysis.

Methods
Fabrication of the SoB
S1, the biochip for force sensing, is fabricated using a 
five-mask process on a 3-inch oxidized silicon wafer. 
The oxide layer is patterned using photolithography fol-
lowed by boron diffusion to create the four piezoresistive 
elements around the chip. Subsequent window opening 
and diffusion steps create the p + contacts. Titanium/
Gold (15 nm/140 nm) is then deposited and patterned to 
create the contacts for the piezoresistive bridges. These 
bridges are positioned at the edges of a diaphragm of 
thickness 30 μm, created using bulk micromachining 
of the silicon substrate using deep reactive ion etching, 
which constitutes the last mask in the process. Each 
chip is then diced from the wafer using automatic dicer 
to realize the device. This microforce sensor is a design 
variant of a previously reported sensor from our group 
with changes in the bridge structure of the piezoresistive 
elements [56]. A two-mask process is used to fabricate 
S2 and S3, the biochips for electro-thermal sensing. The 
functional pattern is created as an array of biochips on a 
3-inch oxidized silicon wafer by depositing and pattern-
ing Titanium/Platinum (30/150 nm) using a lift-off pro-
cess. Photolithography with the second mask followed by 
deep reactive ion etching for bulk micromachining cre-
ates a thermal isolation trench around the microheater. 
The biochips are then diced from the silicon wafer using 
the automatic dicer to realize the devices.

Details of samples used for the study
The ETM characterization was performed on formalin-
fixed excisional breast biopsy samples from N = 14 sub-
jects ((ethics approval from Assam Medical College (Ref. 
No: AMC/EC/1334) and biosafety (Ref. No: IBSC/IISc/
HP/01/2019) and human ethics (Ref. No: 05/582,021) 
committee approval from the Indian Institute of Science). 
From the samples excised for a routine examination, the 
pathologist extracted a part of the tumour and adjacent 
normal tissue for the study. Three types of breast tissue: 
fibroadenoma (benign), invasive carcinoma (malignant), 
and adjacent normal, were used for the study. The pathol-
ogist classified the samples into each group by micro-
scopic examination of the histopathology as part of the 
routine hematoxylin and eosin staining for each tumour. 
Tumour samples from N = 10 subjects diagnosed with 

invasive ductal carcinoma (CA) and N = 4 subjects of 
type fibroadenoma (FA) were used for the study, with the 
corresponding adjacent normal tissue. Uniform cuboi-
dal blocks of tumour and adjacent normal tissues with 
dimensions 4 ± 0.12 mm x 4 ± 0.18 mm x 4 ± 0.15 mm 
were prepared using a surgical knife from the extracted 
samples and stored in separate 1.5 mL tubes filled with 
10% buffered formalin. At the time of measurement, 
the samples were removed from the formalin tubes and 
loaded into the system for the ETM characterization.

Data analysis and statistical testing
The electrical impedance ( Z ) from 10 Hz to 3 MHz at 
a tissue temperature of 37 ℃, the tissue temperature at 
the sensing (to assess the thermal energy transmitted 
through the sample) and source (microheater) side as a 
function of microheater temperature, and the mechani-
cal loading and stress-relaxation data were captured from 
the N = 14 paired adjacent normal and tumour (FA and 
CA) samples. Four key biophysical parameters, namely, 
the impedance value, Z at 15 kHz, the thermal conduc-
tivity, K  at 37 ℃, the mechanical stiffness, k at 20% strain, 
and the percentage relaxation in normalized load, %R 
after 150 s of stress-relaxation were then extracted from 
the raw experimental data. These biophysical parameters 
formed the basis for the subsequent statistical tests to 
assess the differences between the sample groups (AN, 
FA, and CA). The Student’s t-test assuming unequal vari-
ance (Welch’s correction) was used to assess the statisti-
cal differences between the three sample groups for each 
of the four biophysical parameters. Before applying the 
Student’s t-test, the data from each group were confirmed 
to follow the normal distribution using the Shapiro-Wilk 
test.

While the Student’s t-test is useful in understanding 
how each of the four parameters is different across AN, 
FA, and CA, we also wanted to see whether a combina-
tion of these parameters can be used to differentiate 
between the sample groups with a higher statistical sig-
nificance. The Fisher’s combined probability test was 
used to evaluate the significance level of the differen-
tiation between the sample groups when a combination 
of the biophysical parameters was used as a metric for 
delineation. The Fisher’s test combines p-values from 
independent tests bearing the same overall null hypoth-
esis, and the combined statistic is known to follow the 
chi-squared distribution [57, 58]. To ensure that com-
bined p-values are not over-estimated, the independence 
of the parameters with respect to each other was evalu-
ated by calculating the R square value of pairwise scat-
ter plots of the parameter values for the three groups. 
A low R-square value indicates poor goodness of fit 
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and correlation and thus a higher level of independence 
between the parameters.

As a final step in the statistical analysis pipeline, the 
gaussian process (GP) method was used to classify the 
samples as AN, FA, or CA using each of the four parame-
ters and combining them as input features. The accuracy 
of the classification was evaluated using the root mean 
square error (RMSE) as a metric. GP is a non-parametric 
supervised learning method that models a Gaussian dis-
tribution over unknown functions and has been used for 
regression and classification tasks [59]. GPs thus extent 
multi-variate Gaussian distributions to random func-
tions with probability distributions that follow the Gauss-
ian curve. The key components of this distribution of 
unknown functions are the mean and covariance kernel 
functions, which can fully describe the GP. Such a non-
parametric probabilistic classification method also con-
siders the uncertainty of the predictions, which becomes 
useful in clinical settings by providing an option of reject-
ing uncertain cases and a potential application of deci-
sion theories to optimize the classification in the future 
[60]. GPs have been used for classification in several bio-
medical applications, such as estimation of Parkinson’s 
disease based on speech, classification of Alzheimer’s 
disease patients, classification and grading of histologi-
cal images from prostate and breast cancer patients, to 
name a few [61–65]. Though widely applied for regres-
sion tasks, the less-explored aspect of using the GPs for 
classification with uncertainty estimates has been utilized 
in our study.
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