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Abstract

Background: Understanding the fundamental mechanisms underlying the cellular response to topographical
surface features will extend our knowledge regarding the regulation of cell functions. Analyzing the cellular
response to different topographical features, over multiple temporal and spatial scales, is central to understanding
and guiding several biological functions. We used micropatterned substrates with convex and concave
architectures to evaluate the behaviors of human epithelial cells on these substrates.

Results: Pillar and pit substrates caused heterogeneous spatial growth and distribution, with differences in cell
density, over 48 h. Regional densities and distribution were significantly increased at pillar sidewalls, and at pit
sidewalls and bottoms compared with those on flat unpatterned areas. Time-lapse observations revealed that
different mechanisms of cell migration were dependent upon pillar and pit features. Cells on pillar substrate
migrated towards the sidewall, whereas cells on pit substrate tended to move towards the sidewalls and bottom.
Cytoskeletal staining of F-actin and vinculin showed that this migration can be attributed to difference in spatial
reorganization of actin cytoskeleton, and the formation of focal adhesions at various points on the at the convex
and concave corners of pillar and pit substrates. Cells cultured on the pillar substrate had stress fibers with extended
filopodia and immature focal contacts at the sidewalls and convex corners, similar to those on the flat unpatterned
substrate. Cells at the sidewalls and concave corners of pit substrate had more contractile stress fibers and stable
focal contacts compared with cells on the pillar substrate. We also found that the substrate structures affect cell-cell
contact formation via E-cadherin, and that this was associated with reorganization of the actin cytoskeleton at the
sidewall, and at the convex and concave corners of the substrate.

Conclusion: Migration is an important factor affecting spatial growth and distribution. Heterogeneity at various
locations was caused by different migratory behaviors at the convex and concave corners of pillar and pit
substrates. We propose that this investigation is a valuable method for understanding cell phenotypes and the
heterogeneity during spatial growth and distribution of epithelial cells during culture.
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Introduction

In tissue engineering, various efforts have been made to
promote tissue regeneration. Studies have shown that
providing an appropriate environment, with chemical or
physical support, is important for cellular functions such
as cell adhesion, proliferation, migration and differenti-
ation [1-3]. In particular, cell adhesion on scaffold sur-
faces is a primary step for guiding cellular function and
further tissue generation [3]. By understanding the man-
ner in which cells interact with their physical environ-
ment, it might be possible to control cellular behavior
through the fabrication of substrates with unique phy-
sical properties [4]. These approaches could allow re-
searchers to study the dynamic responses of cells to
well-defined micropatterned substrates, and the effects
of modulating cell behaviors such as cell-cell and cell-
substrate interactions with respect to using such con-
structs for tissue replacement [2,4].

Many approaches to manipulate the cell microenviron-
ment have been conducted on micropatterned surfaces.
The behaviors of many cell types have been examined
using various micropatterned substrates created by a var-
iety of microlithography and micropatterning techniques
[2-16]. Of these modified surfaces, regular micropatterns
affected cell responses, controlling cell morphology and
function, when compared with cells grown on unpat-
terned flat substrates [2,3]. Green et al. studied the growth
rate of human abdominal fibroblasts cultured on sub-
strates patterned with square pillars or pits. They observed
that cells were more sensitive to pillars or pits with smal-
ler sizes [14]. The influence of microarchitecture on cell
behavior with respect to morphology and functionality is
further exemplified by the ability of cells to acutely sense
variability in topographic cues. However, there have been
few systematic analyses into the impact of micropatterned
features on cell adhesion and migration mechanisms.
Therefore, analyzing the cell responses to different topo-
graphical cues, acting over multiple temporal and spatial
scales, is central to understanding and guiding several bio-
logical functions.

In this study, micropatterned substrates with convex
and concave architectures were established to assess the
responses of human epithelial cells to these substrates
and to determine their spatial growth and distribution.
We investigated the fundamental mechanisms of cell
and culture surface interactions with respect to the for-
mation of the actin cytoskeleton, focal adhesion, and
cell-cell contacts.

Materials and methods

Fabrication of micropatterned substrates

Micropatterned substrates were provided by Kuraray
Co., Ltd. (Kurashiki-shi, Japan). Two different topographic
patterns, pillar and pit, were fabricated in polystyrene
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using a UV-lithographic technique. The fabrication pro-
cess was completed by growing SiO, using a vacuum de-
position system on the substrates. A schematic outlining
micropatterned surfaces composed of pillar and pit are
shown in Additional file 1: Figure S1. The different spatial
aspects for the pillar and pit features were: the top surface;
the sidewalls; the bottom surface; and gaps. The gaps refer
to spaces between adjacent pillar and pit. Fabricated sam-
ples were observed with a scanning electron microscope
(Additional file 1: Figure S1). The dimensions of the pillar
features were 50.8+0.56 um wide and 25.9+0.18 um
high, with a pitch of 198.0 £ 0.57 pm. The dimensions of
pit features were 53.8 £ 0.75 um wide and 22.6 + 0.59 pm
high, with a pitch of 195.2 + 3.48 pum. The pitch sizes were
set to specific values so as to clarity an individual topog-
raphy itself effects.

Cells and culture conditions

Infinity telomerase immortalized human epithelial cells
(hTERT-HME1; Clontec Laboratories, San Diego, CA,
USA) were thawed and incubated in a 25-cm? flask
(Nunc, Roskilde, Denmark). Unless otherwise stated,
the cells were cultivated in serum-free medium contain-
ing 10 pg/ml insulin (HuMedia-KG2; Kurabo Industries,
Osaka, Japan) at 37°C under a 5% CO, atmosphere. For
experiments, the seeding density of viable cells (X), de-
termined by trypan blue exclusion staining, was 8.0 x
10? cells/cm?. Culture medium was replaced every 72 h.

Determination of spatial cell distribution

The procedures used for staining of cytoplasm and nuclei
were similar to those described previously [15]. Briefly,
cells were rinsed twice with phosphate-buffered saline
(PBS, Sigma-Aldrich, MO, USA). Samples were incubated
at 37°C under an atmosphere with 5% CO, in HuMedia-
KG2 containing CellTraker Green CM-FDA (Molecular
Probes, Eugene, OR, USA) to stain the cytoplasm of living
cells. After 45 min, the cells were further incubated for
30 min in HuMedia-KG2 without CellTraker Green CM-
FDA and then were rinsed twice with PBS.

Cells were fixed with 3.7% paraformaldehyde in phos-
phate buffer (Wako Pure Chemical Industries, Osaka,
Japan) for 10 min at room temperature and rinsed with
PBS. They were then soaked in PBS with 0.25% Triton
X-100 for 4 min. Cells were washed three times with
PBS and then counterstained with TOPRO-3 (Molecular
Probes) for visualization of nuclei. Cells were then ob-
served using a confocal laser-scanning microscope (CLSM,
model FV-300; Olympus, Tokyo, Japan) with a 60x objec-
tive lens. Two-dimensional (2-D) images were generated
by scanning along the longitudinal height of the bottom
surface. The resolution of each 2-D image was 256 x
256 pixels, which covered 0.25 mm® of the captured
area with 256 gray level, ranging from 0 (black) to 255
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(white). A 2-D image was captured every 0.6 um along the
z-axis. The signal intensities for CellTraker Green CM-
FDA and TOPRO-3 were obtained by exciting at the cor-
responding wavelengths of 488 and 633 nm, respectively.

The experimental procedure to determine the number
and spatial distribution of epithelial cells cultured on
micropatterned substrates with pillars and pits is out-
lines in Figure 1. Spatial cell distribution was measured
in the vertical and horizontal directions. To measure the
cell number and distribution on micropatterned sub-
strates in vertical direction, 2-D images were stacked and
stereoscopic images were analyzed to estimate the location
of cytoplasms and nuclei using Image-Pro Plus version 6.0
software (Media Cybernetics, Silver Spring, MD, USA).
The region of interest (ROL 235 um x 235 um) was de-
fined as the total area (Rts) and was divided into two re-
gions (R; and R,). The densities and distributions of cells
in the vertical direction were determined using ROL We
determined the number of adherent cells at 24 and 48 h
and calculated the ratio (X,g5/X54) of adherent cells be-
tween these time points.

For reconstruction of a three-dimensional (3-D) image,
the 2-D images were stacked, and the stereoscopic image
was analyzed to estimate the location of nuclei using
Image-Pro Plus version 6.0 software. Stereoscopic im-
ages were subjected to an algorithm with serial processes
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for primary noise removal, particle numbering, second-
ary noise removal, and 3-D construction.

To define the spatial distribution of epithelial cells on
the micropatterned substrates in the horizontal direction,
image capturing was conducted using epithelial cells cul-
tured for 48 h; the coordinates for nucleus gravity were es-
timated. To analyze the local distribution of nuclei, it was
assumed that the gravity height of nuclei on the bottom
surface (Z) was lower than a given threshold value (Z,) as
follows:

Zy=Zm+ 2SD (1)

where the average height of nucleus gravity (Z,=
4.5 pm) and standard deviation (SD =1.2 um) were de-
termined in advance for cells cultured on the micropat-
terned substrates. The position of the bottom surface
(Z=0) was determined by measuring the autofluores-
cence of the culture vessel. Additionally, the height of
the surface (Z},) was determined by measuring autofluo-
rescence at the top and bottom of the surface (Zj=
20 pum). The distribution of nuclei on the micropatterned
substrate at 24 h can be seen in Figure 1. The distribution
of nuclei can be compartmentalized to three topographic
regions: the top (T; Zy, < Z); the sidewall (S; Z,<Z < Z);
and the bottom (B; Z<Z,). The spatial growth and
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distribution of cell nuclei on micropatterned substrates
were determined for the top, sidewall and bottom of pillar
and pit substrates.

Observation of cell behaviors

Time-lapse observation for dynamic behavior was con-
ducted by obtaining images every 10 min at several posi-
tions using a custom-made observation tool [16]. Time-
lapse images of cells at 48 h were traced backward and
their dynamic movements analyzed along with division
and migratory processes. Growth ability was estimated
by comparing the number of dividing cells (Ry) with the
total number of cells at 48 h after seeding.

Immunofluorescence staining

The procedure for immunofluorescence staining was
similar to that described previously [17]. Cells were fixed
with 3.7% paraformaldehyde in phosphate buffer for
10 min at room temperature and rinsed with PBS. They
were then soaked in PBS with 0.25% Triton X-100 for
4 min. After masking of non-specific proteins by incuba-
tion in Block Ace (Dainippon Sumitomo Pharma Co.,
Ltd., Osaka, Japan) for 1 h at ambient temperature, cells
were treated with a primary antibody at 4°C overnight.
The primary antibodies used were against vinculin (Santa
Cruz Biotechnology, CA, USA) or anti-E-cadherin (Santa
Cruz Biotechnology) and were diluted appropriately in
PBS containing 10% Block Ace. Cells were washed with
Tris-buffered saline and then incubated with Alexa Fluor
594-conjugated goat anti-mouse IgG (Molecular Probes)
for 1 h. F-actin was stained with Alexa Fluor 488 phal-
loidin (Molecular Probes). Cells were observed using a
CLSM with a 60x objective lens.

Statistical analysis

All experiments were conducted at least three times and
data were expressed as means with standard deviations.
Student’s ¢-test was used to determine the statistical sig-
nificance among data sets. A p-value less than 0.05 was
considered significant.
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Results

Spatial growth and distribution of epithelial cells on
micropatterned substrates

The cultures of epithelial cells were performed for 48 h
on micropatterned substrates with pillar and pit. As
shown in Figure 2, the densities of cells in R; and R, re-
gions on the pillar substrate were respectively 9.6 x 10>
and 9.6 x 10® cells/cm® at 24 h, similar to the density
in Rra. Cell densities were increased for pillar and pit
substrates in comparison with those on flat unpatterned
substrate (7.1 x 10% cells/cm?). At 48 h, the cell densities
in R, and R, regions on the pillar substrate were 3.8 x 10*
and 1.3 x 10* cells/cm?, respectively. These were 4- and
1.4-fold enhancements compared with those flat unpat-
terned substrate.

The growth ability of cells in the R; and R, regions for
the pillar and pit substrates after 48 h is clearly shown in
Table 1. Compared with cells on the flat unpatterned
substrate, the ratio of adherent cells from 48 h to 24 h
(X48/X>54) in the Ryy region of pillar and pit substrates
was lower, but significantly different from that in the Ry
and R, regions. The X 3/X,4 corresponding to the R; re-
gion of pillar and pit substrates was 3.9+ 1.8 and 2.7 £
1.4, respectively, which was 2.8 and 1.8-fold enhance-
ments as compared with those in the R, region. How-
ever, the ratio of dividing cells to the total number of
cells (Ry) for 48 h in R; region was similar to that for
the R, region, irrespective of the substrate’s topograph-
ical feature.

Based on the determined coordinates of nuclei (x, z),
the spatial distribution and nucleus density on the mi-
cropatterned substrates occurred on the top surface,
sidewall, and/or bottom of the substrate. As shown in
Figure 3, cells were predominantly restricted to the side-
walls of the pillar substrate, and to the sidewalls and bot-
toms of pit substrate. For the pillar substrate, nucleus
densities were 0.04, 0.37 and 0.56 nuclei/topographic re-
gion at the top, sidewall and bottom, respectively after
24 h. After 48 h, the nucleus density at the sidewall was
higher than at the top and bottom. For the sidewall,
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Figure 2 Vertical spatial growth and distribution of epithelial cells cultured for 48 h on pillar (A) and pit (B) substrates. The red lines
indicate the data determined on the flat unpatterned substrate. Data are measured from individual pillars and pits of 9. The bar shows the
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Table 1 Growth ability of epithelial cells cultured for 48 h on micropatterned substrates with pillar and pit

Locational classification of convex Pillar substrate

Pit substrate

or concave in vertical direction . .
Ratio of increased cell

Ratio of dividing

Ratio of increased cell Ratio of dividing cells,

number, Xzg/X>4 (<) cells, Ry (1072) number, Xs5/X>4 (-) R4 (1072
Rya region 1.8+08 913+£73 18+05 940+ 39
R region 39+18 909 +84 27+£14 89.2+80
R, region 14+10 914+7.1 15+04 943+56
Flat Region 21+07 840+84 26+06 96.1+2.1

Measurements were made in an individual 9 pillars and pits. Data are expressed as means + standard deviation from triplicate measurements and analyzed using
Student’s t-test. There were no statistically significant differences among the data sets.

nucleus density was 2.6 nuclei/topographic region, which
was 13.5- and 5.5-fold higher than those at the top and
bottom. For the pit substrate, similar trends regarding
nucleus density were observed, with 0.61, 0.85 and 0.24
nuclei/topography for the top, sidewall and bottom at
24 h. The densities of nuclei at the sidewall after 48 h
were 1.8-fold higher than those at those at the top and
the bottom.

Behavior of epithelial cells on micropatterned substrates
To understand the dynamic behavior of epithelial cells on
the micropatterned substrates, we conducted time-lapse
observations of representative cells on the pillar and pit
substrates as well as the flat unpatterned substrate. As
time elapsed, cells exhibited active division and migration,
irrespective of topographical feature (Additional file 2:
Movie S1, Additional file 3: Movie S2, and Additional file
4: Movie S3). Cells on the pillar substrate migrated to-
wards the sidewall, or stayed at the top of the surface.
However, cells on pit substrate tended to move towards
the sidewalls and bottom, or confined at the bottoms of
the surface. Additionally, cells in the gaps tended to cling
to attaching cells at the sidewalls, and to have extended
protrusions to the sidewalls. In contrast, cells on the flat
unpatterned substrate formed a cluster of cells through
division and migration, and rotated persistently in con-
strained spaces.

Cytoskeletal formation of epithelial cells on
micropatterned substrates

To confirm the cytoskeletal organization and focal con-
tact of epithelial cells cultured on the micropatterned
substrates for 48 h, staining of F-actin and vinculin was
conducted. For cells on the pillar substrate, stress fibers
assembled along straight edges, with extended lamelli-
podia and filopodia at the sidewalls and convex corners
of the structure; this was also seen for cells on flat unpat-
terned substrate (Figure 4A1 and Figure 4C1). Immature
vinculin spots were detected at the cytoplasm and
periphery of cells at the sidewalls and convex corners
of pillar substrate (Figure 4A3(a) and Figure 4A3(b)).
In contrast, the formation of the contractile stress fibers
with lamellipodia and filopodia were seldom seen at the
concave corners of the pit substrate (Figure 4B1). The
formation of the distinct spots of vinculin became pro-
nounced appeared (Figure 4B3(c)).

Cell-cell contacts of epithelial cells on micropatterned
substrates

To investigate contribution of E-cadherin to cell adhe-
sion, the expression of E-cadherin in the cells cultured
on the micropatterned substrates with pillar and pit for
144 h was observed. As shown in Figure 5, expression of
E-cadherin was observed in almost all cells on the pillar
substrate, similarly to those on the flat unpatterned
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Figure 3 Horizontal spatial growth and distribution of epithelial cells cultured for 48 h on pillar (A) and pit (B) substrates. Data are
measured from individual pillars and pits of 9. The bar shows the standard deviation obtained from triplicate measurements.
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Figure 4 Immunostaining of vinculin (red) and F-actin (green) for epithelial cells cultured on pillar (A), pit (B) and flat (C) substrates.
The scale bars show 50 um. The yellow lines outline the pillar or pit features. The white dotted lines indicate the formation of actin stress fibers.
Panels A2, A4, B2, and B4 show the cross-sectional views (dotted pink and blue lines) of the images in panels A1, A3, B1, and B3, respectively.
Panels a-d show merged enlargements of the corresponding boxed areas in panels A3, B3, and C2. The asterisks indicate the formation of filopodia.

substrate. However, cells on the pit substrate dispersed as
confluent monolayers with low levels of E-cadherin
expression at the bottom (Figure 5B2(b)).

Discussion

In this study, we have described cellular responses to 3-
D topographical surface features. We compared spatial
growth and distribution on two micropatterned sub-
strates with well-defined anisotropic topographical cues.
The topographical features of pillar and pit substrates
with convex and concave architectures caused heteroge-
neous spatial growth and distribution in vertical and

horizontal directions (Figures 2 and 3). At 24 h, the re-
gional densities and distribution on the pillar substrate
was similar to those on pit substrate, regardless of their
topographical region. At 48 h, the highest cell densities
were observed at the sidewalls of pillar substrate, and at
the bottom and sidewalls of pit substrate, respectively.
However, there were no significant differences between
the topographical regions in the growth ability with
number of dividing cells from 24 h to 48 h (Table 1).
These results suggest that the topographical features of
pillar and pit possibly limit the ability of cells to migrate
vertically and horizontally.

Figure 5 Immunostaining of E-cadherin (green) for epithelial cells cultured on pillar (A), pit (B) and flat (C) substrates. Nuclei are stained
in red. The scale bars show 50 um. The yellow lines outline the pillar or pit features. Panels A1 and B1 show the cross-sectional views (dotted pink
and blue lines) of the images in panels A2 and B2. Panels a and b show merged enlargements of the corresponding boxed areas in panels A2 and B2.
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Surface topography is critical to guide cellular beha-
viors such as adhesion, spreading and migration [2,8].
Responding to the topographical features, cells protrude
their leading edge. The extension of membranes toward
the direction of motility, including both lamellipodia and
filopodia, brings attachment and thus the traction force
to the substrate, resulting in a counter-force on the cell
to promote cell migration [1,7]. With these steps of cell
migration in mind it follows that surface topography
may modulate direction of motility through contact
guidance, as the reaction of cells to topographical fea-
tures leads to cell polarization, lamellipodial and filopodial
protrusion, actin bundle alignment, and focal adhesion
formation preferentially along these surface features. In
the present study, we address the spatial responses of epi-
thelial cells to the micropatterned substrates with pillar
and pit. We propose that the heterogeneity of spatial cell
distribution, induced by directional migration, is caused
by the convex and concave corners of pillar and pit sub-
strates in Figure 6. Cells on pillar substrate responded to
convex corners by altering morphology and migrating
from the top to the bottom of the surface (Additional file
2: Movie S1), suggesting that they might be predominantly
located in sidewalls connecting the top and bottom sur-
faces. For cells grown on the pit substrate, cells migrated
to the sidewalls and bottom of the pit substrate, often
bridging corners and attaching to both the bottom and
sidewalls. Cells at bottom had an apparent preference for
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settling at the bottom of the concave cavity, suggesting
that they might be sensitive to changes at concave corners
(Additional file 3: Movie S2). It indicates that the convex
and concave corners possibly limit the ability of cells to
migrate vertically and horizontally. It is therefore possible
to selectively influence either cell adhesion or morphology
via surface topography. These observations indicate that
orientation, migration, and morphology of the cells ap-
peared to be governed by topographical features of the
convex and concave corners of the pillar and pit sub-
strates. It is not clear, however, whether morphological po-
larity of the cell itself at convex and concave corners of
pillar and pit substrates can determine the direction of
movement. The different patterns of movement during
migration take place at the convex and concave corners of
pillar and pit substrates, resulting in heterogeneity of
spatial cell distribution.

Although a detailed mechanism for the transduction
of such topographic signals is unclear, one possibility is
that mechanical forces are transmitted through integrins.
This might cause an associated sensing protein on the
cytoplasmic side to alter its conformation and enzyme-
substrate activities [3,4]. Consequently, cytoskeletal or-
ganization and adhesion to a substrate alters the way in
which cells sense and respond to their microenviron-
ment, thereby affecting cell-cell contact [18]. The cyto-
skeleton of a moving cell’s protrusion is the property
that determines such reactions to topography. We found
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that the response of cells upon encountering a topo-
graphical feature could be predicted. Convex and con-
cave topographies have attracted significant attention
with regards to providing insights into the mechanisms
of cell migration [2]. Spatial organization and dimen-
sions of these micropatterns have been shown to affect
the migration of cells [2,7]. Ghibaudo et al. investigated
the role of substrate topography in cell adhesion and mi-
gration [18]. The topographical features of convex sub-
strate induced changes in cellular morphology that were
caused by alterations in the cytoskeleton in response to
focal adhesion formation. Focal adhesions are known to
serve as membrane sensing entities that control local
and global adhesion mediated by Rho family GTPases
signaling [19-23]. Racl and cadherin appear to be the
major players in the maintenance of epithelial cell mor-
phology [18,19]. Previous studies have demonstrated that
this switching mechanism occurs in cells moving from
2-D to 3-D environments because of lower Racl activity
in 3-D cell cultures [18]. Thus, the location and patterns
of adhesive sites imposed by substrate topography most
probably drive the direction of cell migration by modu-
lating RhoA and Racl signaling pathways, and thus, cell
polarity, adhesion and traction forces [18]. Furthermore,
Racl signaling has emerged as a key regulator of E-
cadherin-mediated cell-cell adhesion [23]. In this study,
we found that variations in the spatial distribution and
cytoskeletal structure of cells on the micropatterned
substrates were dependent upon altered migration. Cyto-
skeletal staining for F-actin and vinculin showed that
cells cultured on pillar substrate had stress fibers with
extended filopodia and immature focal contacts at the
sidewalls and bottom corners, similar to those seen on
the flat unpatterned substrate (Figure 4A and Figure 4C).
However, cells at the sidewalls and concave corners of
the pit substrate had contractile stress fibers and more
stable focal contacts than convex corners of the pillar
substrate (Figure 4A and Figure 4B). Overall there were
more developed filopodia and immature adhesions at
the convex corners of pillar substrate compared with
concave corners of pit substrate, possibly accounting for
increased migration. This suggests that cells followed
the convex corners and migrated toward the sidewalls of
pillar substrate. Based on our observations it is plausible
that the location for focal contacts on the micropat-
terned substrate is specified by spatial restrictions where
cells can favorably form contact points with the surface.
In addition to cytoskeletal formation, E-cadherin expres-
sion was seen for cells attached to the top of the pillar
substrate. This expression was reduced in cells toward
the bottom of the pit substrate (Figure 5b). When stable
cell adhesion occurs inside a concave structure, stress in
the actin cytoskeleton is induced. This disrupts the cy-
toskeleton during persistent migration, limiting the
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intracellular pathways responsible for cell-cell contact
formation. We propose that epithelial phenotypes at the
convex and concave corners of micropatterned sub-
strates are regulated by the actin cytoskeletal architec-
ture through cell-cell and cell-substrate interactions.
These, in turn, elicit different contractile forces and
levels of adhesion to stimulate cell migration. Taken to-
gether, our results demonstrate that anisotropic topo-
graphical features are important factors that affect spatial
growth and distribution. Heterogeneity was caused by dif-
ferences in migratory behavior at the convex and concave
corners of pillar and pit substrates.

Conclusion

Our study supports the notion that the evaluation of
spatial distribution in culture of epithelial cells can help in
understanding the proliferation and migration potentials
of cells grown on the pillar and pit substrates. Variations
in orientation, migration, and morphology of cells were
dependent upon substrate topography. We found that this
altered migration could be attributed to spatial reorga-
nization of the actin cytoskeleton, and formation of focal
adhesions at various points along the convex and concave
corners of pillar and pit substrates. Cells cultured on the
pillar substrate had stress fibers with extended filopodia
and immature focal contacts at the sidewalls and convex
corners of substrate. Cells at the sidewalls and concave
corners of pit substrate had contractile stress fibers, and
formed more distinct focal contacts than cells on the pillar
substrate. The convex and concave corners of pillar and
pit substrates possibly created patterns of mechanical
forces that modulate the level and direction of intracellu-
lar forces. The anisotropic topographical features of mi-
cropatterned substrates affected the spatial growth and
distribution, thereby changing cell-cell and cell-surface in-
teractions. Our investigations could lead to an effective
approach for the design of the materials to control cell mi-
gration, and in the design of implants for tissue engineer-
ing applications.
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