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Parameter-less approaches for interpreting
dynamic cellular response
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Abstract

Cellular response such as cell signaling is an integral part of information processing in biology. Upon receptor
stimulation, numerous intracellular molecules are invoked to trigger the transcription of genes for specific biological
purposes, such as growth, differentiation, apoptosis or immune response. How complex are such specialized and
sophisticated machinery? Computational modeling is an important tool for investigating dynamic cellular behaviors.
Here, I focus on certain types of key signaling pathways that can be interpreted well using simple physical rules
based on Boolean logic and linear superposition of response terms. From the examples shown, it is conceivable
that for small-scale network modeling, reaction topology, rather than parameter values, is crucial for understanding
population-wide cellular behaviors. For large-scale response, non-parametric statistical approaches have proven
valuable for revealing emergent properties.
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The interpretation of dynamic cellular processes is indis-
pensable for biological research. Especially in the last
two decades, there have been tremendous efforts that
were aimed at understanding complex biological net-
works in different cell types to various kinds of stimula-
tions or perturbations, and in disease conditions using
systems biology approaches. What sort of models do we
need to conceptualize biological networks for interpret-
ing or predicting dynamic responses?
In the early 1900s Victor Henri, Leonor Michaelis and

Maud Menten thoroughly investigated enzymatic reac-
tions in vitro, and developed the hyperbolic rate equation
that we now popularly call the Michaelis-Menten enzyme
kinetics. This is a more sophisticated form of mass-action
type reaction, considering the saturation of kinetics at
higher substrate concentrations instead of ever increasing
profile for the latter. Subsequent work on this basic
principle led to the extension of the kinetics to represent
more complex scenarios, such as multi-substrate ping-
pong and ternary-complex mechanisms [1].
As the development of computing power progressed

significantly in the 1960s, there have been numerous
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efforts to model complete biological pathway modules,
such as the glycolysis, using enzyme kinetic equations
with the aim of estimating parameter values by fitting to
steady-state concentration levels of metabolites. How-
ever, the more truthful abstraction of enzymatic com-
plexity resulted in a dilemma where increased accuracy
required increased knowledge of many parameters that
were too difficult to obtain precisely. If parameter values
are not accurately determined, the enzymatic reaction
models will not be able to recapitulate experimental out-
come reasonably well.
Most, if not all, studies adopting in vitro experiments

determine the parameter values of reaction species for
computational modeling from an artificial environment
where the species are deliberately purified from its physio-
logic neighbors. This is because, until today, the in vivo
kinetic parameters cannot be reliably measured using the
current experimental technologies. Notably, there have
been various reports that claim the kinetic parameters de-
termined through in vitro and in vivo experiments can dif-
fer by several orders of magnitudes [2]. As a result, when
combining these errors into the model, the final predic-
tions could differ by several orders of magnitude. For ex-
ample, the steady-state concentration of the glycolytic
metabolite 3-phosphoglycerate in Trypanosoma brucei
was under-predicted by an order of 7 [3].
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The difficulty of accurately determining parameter
values led to the development of non-parametric ap-
proaches such as the flux-balance analysis (FBA) [4]. Here,
only the reaction topologies or stoichiometry of the net-
work and steady-state levels are required to be known.
Constraints are introduced by the stoichiometric coeffi-
cients in the system for the optimization of certain bio-
logical function, such as growth or production of certain
compounds. Although, the FBA requires the assumption
that metabolite concentrations remain at steady-states for
analysis, it has been successfully used to interpret import-
ant physiological functions of a living cell. For example,
Palsson and colleagues experimentally verified their pre-
diction for the primary carbon source and oxygen uptake
rates for maximal cellular growth in E. coli [5]. So, why is
such simple steady-state method relying on stoichiometry
of reactions make useful predictions? (Note that FBA re-
quires the network topology to be largely known, as is the
case for metabolic networks. For signaling pathways,
where the detailed role of numerous molecules are still in-
complete, FBA has limited application).
In a pioneering work on understanding the complex

dynamics of bacterial chemotaxis, Leibler and colleagues
created a highly simplified two-state mass-action model
of E. coli chemotactic network [6]. Using the model, and
subsequently with experiments [7], they showed that the
adaptation precision of bacterial chemotaxis was insensi-
tive to the large variation of its network parameter
values. This mechanism, therefore, allows E. coli to dis-
play robust behavior to a wide range of attractant and
repellent concentrations. However, at the same time,
other properties, such as adaptation time and steady-
state tumbling frequency, were variable to the stimulant
concentration. Overall, their work demonstrated that
bacterial adaptation property is a consequence of net-
work’s connectivity and does not require the precision of
parameter values. This work is a milestone paper that
indicates complex biological phenomena can be under-
stood using simple models that are not sensitive to par-
ameter values.
The observation of simplicity in what appears to be

highly dynamic and complex can have profound benefits
in understanding and controlling disease conditions.
Our research has focused on cell signaling dynamics of
innate immune response and cancer cell survival. Over
the last decade, we adopted systems biology approaches
to study toll-like receptor (TLR) signaling [8-10], tumor
necrosis factor (TNF) signaling [11] and TNF-related
apoptosis-inducing ligand (TRAIL) signaling [12], from
receptor stimulation through downstream gene expres-
sions, via transcription factor activations.
The strategy was to first create a dynamic computa-

tional model based on current known pathways of a sig-
naling process. Next, first-order response (mass-action)
equation was used to represent each signaling reaction or
process (protein binding, complex formation, ubiquitina-
tion, etc.). Subsequently, the model parameters were
chosen to fit wildtype experimental dynamics, and com-
pared with mutant cells for reliability of the models and
their parameters [13]. When a single model is unable to
simulate multiple experimental conditions, the model’s
topology was allowed to be modified, using response rules,
in accordance with the law of signaling flux conservation
[9-13]. This is simply because we do not yet possess
complete knowledge of all signaling reactions or molecules
involved.
Notably, for all the complex signaling processes that

we have investigated so far, we were successful to predict
novel signaling features, such as missing intermediates,
crosstalk mechanisms, feedback loops [8,11,12], and
identify novel targets for controlling proinflammatory
response [11] and cancer apoptosis [12]. All the predic-
tions have been experimentally validated [9,11,14,15]. So
why do simple models utilizing first-order response
equations sufficient to produce insightful results of a
complex system?
Firstly, the main reason for us to utilize first-order terms

is due to the experimental observation of deterministic re-
sponse waves of signal transduction within the period of
investigations, usually up to 1-2 h after stimulation. That
is, stimulating cell population in a dish with respective li-
gands resulted, in general, to dynamic activation response
of intracellular proteins that followed gradual increase
from their initial state to reach peak activation levels and,
subsequently, decay to their original state (Figure 1A).
Such responses are observed for the first round of re-
sponse waves of myriad signaling species (Figure 1B). Al-
though the kinetics could vary slightly from sample to
sample, the general average response profiles are very well
reproducible. In other words, regardless of how complex a
signaling topology might be, the species’ average dynamic
responses followed deterministic formation and depletion
waves [13,17,18].
Secondly, it can be shown, theoretically, that no matter

how complex or non-linear the signaling system is, the dy-
namic response can be approximated using first-order
terms if the perturbation levels are small. Consider the
general form of a complex kinetic equation: ∂X

∂t ¼ F Xð Þ. F
can be any non-linear function constituting of reaction
and diffusion terms of species X. In engineering, for rela-
tive changes and when insufficient information is available,
such systems are often carefully linearized using power or

Talyor series ( ∂δX∂t ¼ ∂F Xð Þ
∂X jXa

δX þ ∂F2 Xð Þ
2!∂X2 jXa

δX2 þ… , where

X = Xa is the point for linearization). Given a small per-
turbation, the higher order terms become less significant,
leaving only the first-order term as the dominant factor.
Note that the linearization techniques are approximate



Figure 1 The observation of linear response waves. A) Schematic of activated signaling species, such as protein binding and gene
expressions, with respect to time following formation and decay waves. Top panel represents a simple linear cascade with single wave. Bottom
panel illustrates two linear waves superposed, as a consequence of an additional time-delay formation term. This may arise from feedback or
crosstalk mechanisms. B) Quantitative dynamics of key molecules in insulin signaling pathway, showing similar dynamics to schematic in A).
Figures adapted from [16]. C) Schematic of linear and switch-like relationship between transcription factor concentration and gene expressions.
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methods to understand general behaviors and, in many
cases, cannot be used to interpret detailed mechanisms
of response.
In light of this linear response hypothesis, it is note-

worthy to quote the recent findings of two relevant
works, that studied the relationships between the tran-
scription factors and gene expressions in TNF-induced
[19] and Msn2 overexpressed [20] stress response. Col-
lectively, they found that increasing transcription factor
concentration resulted in graded gene expressions that
approximately followed a linear relationship (Figure 1C).
Although it is known that many transcription factors pro-
duce switch-like or digital relationship due to cooperativity
in DNA binding, the stress response transcription factors
have shown simple graded behavior. This finding may jus-
tify that certain key cellular processes, such as the immune
response, may be guided by linear response through the
signaling cascades. Taken together, it appears that linear
response, as a governing principle, is key to invoke precise
and optimal response when living cells are faced with im-
mediate threats.
In other studies, even without the need to know graded

response, binary (ON/OFF) state approaches have yielded
fascinating results in understanding cell signaling. One
notable study developed discrete Boolean network model-
ing to investigate the survival mechanism of cytotoxic
T lymphocytes (CTL) in T cell large granular lymphoctye
(T-LGL) leukemia [21]. Loughran and colleagues created a
T-LGL survival signaling model with 58 nodes, represent-
ing molecular species, and 123 edges, representing causal
interactions between the species. Using the model, they
identified the most significant interactions for activating
CTL in disease state compared to normal. Subsequent
experiments confirmed their model predictions.
It is conceivable that the arrival to parameter-less

approaches may be unrealistic in the realm of complex
systems, where non-linear factors and stochastic effects
can cause even small variation in perturbations to produce
diverse multistable outcomes or oscillatory patterns. Such
is the case observed for cell fate decisions where a single
fertilized egg can diversify into distinct cell lineages or a
bacteria being able to change fate under nutrient-deficient
condition [22]. To model such complexity, dynamical sys-
tems theory adopting non-linear equations may possibly be
used [23]. Also, for understanding self-organizing behav-
iors such as biological clocks/rhythms, spatial patterns,
Hopf bifurcation or other non-linear dynamics, Goodwin,
Brusselator, and Lotka–Volterra equations have been
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widely adopted [24-26]. However, these models require
the precision of parameter values and most often repro-
duce only the general behavior of complex biological re-
sponses in one (wildtype) condition.
Another issue to consider is the scale of networks. So

far, biological modules or network modeling that have
been successfully used consist of molecular species that
are relatively small, in the order of tens or a few hun-
dreds. However, the living system invokes response
of thousands of species and such large-scale studies
probably require different approaches. One common
strategy used to tackle large-scale effects is to use statis-
tical techniques that investigate regression or correlation
between species and samples, or apply clustering tech-
niques to identify groups of genes with similar temporal
or functional behaviors [27,28]. These methods have
been instrumental in revealing emergent behaviors, for
example, the observation of collective oscillations of
numerous cell cycle independent specific metabolic
cycle genes in Saccharomyces cerevisiae [29,30], and the
collective genome-wide expression dynamics, including
lowly expressed genes, for innate immune response
[31,32] and neutrophil cell differentiation [33,34]. For
classifying distinct cancer types for targeted therapy, self-
organizing maps on high-dimensional gene expression
data have been highly useful [35]. Thus, non-parametric
statistical works on high throughput gene expression data-
sets have been crucial in showing emergent self-organized
behaviors in cell populations.
In the future, non-parametric autonomous Boolean cir-

cuits, that have been recently shown to generate chaos,
with multiple attractor states through time-delayed feed-
back loops in physical signal propagation [36,37], may also
be investigated for biological systems. These could, espe-
cially, be valuable for the application of cell signaling re-
lated to non-linear cell fate decisions or disease formation.
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