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Abstract

Background: Genetic material extracted from in situ microbial communities has high promise as an indicator of
biological system status. However, the challenge is to access genomic information from all organisms at the
population or community scale to monitor the biosystem’s state. Hence, there is a need for a better diagnostic tool
that provides a holistic view of a biosystem'’s genomic status. Here, we introduce an in vitro methodology for
genomic pattern classification of biological samples that taps large amounts of genetic information from all genes
present and uses that information to detect changes in genomic patterns and classify them.

Results: We developed a biosensing protocol, termed Biological Memory, that has in vitro computational
capabilities to “learn” and “store” genomic sequence information directly from genomic samples without
knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs
and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common

in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion,
and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA
memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities
and differences. For efficient read out, a microarray was used as an output method. When the microarray-based
Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model
bacterial strains, i.e, Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can “learn”
input DNA, “recall” similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration
differences in samples.

Conclusions: This study demonstrated not only the in vitro information processing capabilities of DNA, but also its
promise as a genomic pattern classifier that could access information from all organisms in a biological system
without explicit genomic information. The Memory protocol has high potential for many applications, including

in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food
supplies, and non-biological information processing of memory devices, among many.
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Introduction

Nucleic acid technology has become an indispensible tool
in medical diagnosis, microbial ecology, environmental
microbiology, etc. by providing specific, sensitive detec-
tion of genes in chemically and biologically complex
backgrounds. However, genome-enabled studies have
focused on specific individual organisms. Conventional
techniques (i.e, polymerase chain reaction (PCR)-based
and gel-based methods) for studying DNA samples require
prior knowledge of the sequence, either for PCR primers or
for attachment to a target DNA. By focusing on known
genes, information from other unknown genes is lost.
Multiple genes or multiple infectious microorganisms are
known to be involved in many human diseases; however,
only a fraction of these genes has been identified, even
after the sequencing of the human genome and several
microorganisms. The functions of many proteins encoded
by these genes are unknown [1]. In addition, studies have
estimated that there are approximately 4 x 10 to 10*
microbial species per gram of soil, but only less than 1%
of microorganisms in nature are observable with the
standard culturing techniques [2]. These in turn generated
a renewed demand for innovative approaches that can
quickly, exhaustively, and intelligently detect and classify
gene expression profiles. It is possible to extract genomic
samples, such as DNA and RNA, from any biological
sample, such as soil, water, and biological specimens, with-
out knowing the genomic identities of the samples. The
complementary DNA (cDNA) synthesis from messenger
RNA (mRNA) is also well established, either using oligo-dT
or random primers. Recent advances in the next-generation
sequencing (NGS) technology opened the possibility of de
novo sequencing without any pre-existing genomic refer-
ences [3]. NGS can generate very large volumes of short
sequencing reads of genomic DNA (gDNA) at markedly
reduced prices and faster rates, and the massive data can be
reassembled de novo. However, substantial challenges exist
for the de novo applications of NGS, including high error
rates, massive information technology systems for data
processing and storage, efc.; hence, NGS with de novo
assembly is still limited to species-specific applications,
including bacterial genomes and mammalian bacterial
artificial chromosomes [3-8]. Thus, a challenge is to dis-
cover more efficient and effective ways to tap the large
amounts of genetic information from a biological sample
(i.e, gDNA) or all expressed genes in the biological sample
(i.e., cDNA from mRNA), and to use that information to
detect changes in genomic patterns and classify them.

To this end, we introduce a new in vitro methodology for
genomic pattern classification of biological samples. We
designed and implemented a biosensing protocol, termed
Biological Memory, that has in vitro computational cap-
abilities to learn genomic sequence information from
genomic samples, and that can detect changes in the
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genomic information from biological samples without
explicit knowledge of their genomic sequence or compos-
ition (Figure 1). The idea of processing large amounts of
information in a test tube, not on a conventional solid-
state computer, presents the possibility of working with
gDNA or cDNA on a community or population scale. The
Biological Memory does not seek to determine the
complete sequence information from biological samples.
The Biological Memory is a laboratory protocol that, through
DNA hybridization reactions with random probes, matches
sequence patterns and stores the DNA sequence information
in a DNA-based memory in vitro. Then, it matches or
“recalls” the stored information based upon sequence similar-
ity to new input (i.e, “associative recall”) [9]. Using a micro-
array as an output method, read out is easily accomplished
and high-throughput. Multiplexed detection is possible. More
conventional techniques would access the genomic informa-
tion in the biological samples with known sequences, and
then, rely upon a digital computer for processing the data.
Similarly, the massive volumes of short sequencing reads of
NGS must be processed digitally for their de novo assembly.
Pattern recognition and interpretation of large amounts of
gene expression or genomic data are difficult problems for
conventional computers. However, the Memory does all its
information processing in vitro in one massively parallel step
and does not require sequencing, not only alleviating sources
of errors associated with sequencing techniques and in silico
data processing, but also allowing the classification of patterns
from all organisms in biological samples at the population or
community scale. This paper discusses the theoretical ana-
lysis of the microarray-based Biological Memory with DNA
as a representative target and its experimental verification
and optimization processes using gDNA from two model
bacterial strains, ie, Escherichia coli K12 and Bacillus
subtilis, addressing basic understanding of the information
processing capabilities of DNA, and the promises of the
practical applications of those properties to biology and
medicine.

Design of Biological Memory with in vitro learning and
associative recall

In the Biological Memory (Figure 1a), the initial sequences
(termed memory tags) are a set of tag oligonucleotide se-
quences, to which random sequences are appended during
their synthesis. The appended random sequences theoret-
ically contain every possible sequence of a given length.
The tag oligonucleotide sequences are designed to be
independent of each other in that they do not hybridize to
each other (ie, non-crosshybridizing [NCH]) [10-14]
(termed NCH tag), and can be used for printing on a
microarray slide for output or separating products (e.g, mag-
netic bead separation) with proper chemical modifications
(ie, amine, carboxyl, or biotin modifications). Also, the
NCH tag could be utilized for other types of product
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Figure 1 Schematic and principle of a Biological Memory: (a) Schematic of a Biological Memory with in vitro learning and associative
recall and (b) principle of Biological Memory using two sets of genomic populations. The learned product of set A (LP,) is a subset of set
A, and LPg is a subset of set B. Theoretically, LP4 (or LPg) is same to set A (or set B). The [LP, — LPg] represents nothing but set A, and the

[LPg — LPA] does set B. Hence, set A and set B can be discriminated through DNA hybridizations between LP, and LPg and their comparisons.
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separation or output techniques for downstream process-
ing, such as DNA affinity column chromatography or DNA
microarray with sequences complementary to the tag
sequence attached to the column matrix or microarray
slide. With simple and common recombinant DNA opera-
tions, such as polymerization, nuclease digestion, and DNA
separation (e.g, magnetic bead separation or column chro-
matography), the system learns the DNA sequences to
which it is exposed. These learned sequences can then be
stored as a DNA memory. Subsequently, the learned mem-
ory stands can be used to “recall” the input sequences, or
sequences that are close under hybridization affinity.
Schematics of detailed protocols of the Memory designed
for this study are shown in Figure 2. For learning (Figure 2a),
initially, each memory tag consists of a 20-base NCH tag
sequence with biotin- or amine-modified 5" end (5Bio and
5Am, respectively), followed by a 20-base random probe
sequences (R20). In this study, the 5'-end modifications are
designed for the following downstream applications: (1) the
5’-end biotin-modified memory tags to separate the learned
products using the streptavidin-coated magnetic beads, and

(2) the 5'-end amine-modified memory tags for the
immobilization of the learned products on to microarray
slides. The 20-base NCH tag sequences in the memory tag
are designed and experimentally confirmed, according to
our established methods [10,13] to be thermodynamically
unfavorable at room temperature for hybridizing to any
other DNA sequences except their exact complementary
sequences. The input DNA (e.g, gDNA extracted from a
biological sample), which is to be learned, is mixed with
the initial memory tags (ie, NCH tag plus R20 probe).
The R20 probes anneal fully or partially at random loca-
tions on the input DNA. The subsequent single step
polymerization by Klenow fragment not only digests the
dangling end of the memory tags from the 3" end until a
double-stranded region is encountered, but also extends it
by 5" to 3" polymerization to learn the input DNA. The
free, unbound memory tags and input DNA are removed
by exonuclease digestion. The extended memory strands
(i.e, tag plus extended Watson-Crick complement of
input) are purified by commercially available magnetic
bead separation. The products are single-stranded DNA
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Figure 2 Experimental Design of a Biological Memory: (a) In vitro learning protocol and (b) microarray-based associative

with a unique tag attached to random length 3" regions that
are complementary to the input DNA, and that have
undergone some amplification during polymerization. To
learn additional inputs, the process is repeated with a
different NCH tag. For recall (Figure 2b), unknown input
is exposed to the learned memory strands. The input will
hybridize to the learned memory sequences that are close
to its Watson-Crick complement. In this study, the learned
memory strands are printed on to a microarray slide for

easy output. Its capability and sensitivity are evaluated using
gDNA from two model bacterial strains, ie, E. coli K12
and B. subtilis.

Results and discussion

Principle of the Biological Memory

An underlying hypothesis of the DNA-computing-inspired
Biological Memory is that the products, which are learned
in vitro, represent the entire DNA population in the input
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genomic sample (i.e, gDNA or cDNA from a biological
sample), and that the differences between input sets could
be discriminated by separating the output hybridization
patterns between the learned products. When it is assumed
that there are two input populations (e.g, set A and set B)
(Figure 1b), through the in vitro learning protocol, the
elements of each input population are stored in the
learned products as content-addressable memory struc-
tures. Ideally, the learned products from the set A (LP,)
and those from the set B (LPg) should contain every
elements of set A and set B, respectively. The sets A and B
can then be discriminated through DNA hybridization
with their learned products using an appropriate detection
system, such as microarray, as a part of the associative
recall protocol. At a minimum, the Biological Memory
should be able to distinguish between snapshots of a
biological sample, from the environment or a living being.
One of the unique advantages of the Biological Memory
stems from the utilization of random sequences in the ini-
tial memory tags. For example, the population of 20-base
random sequences (R20) contains 4%° (~1.1 x 10'?) differ-
ent 20-base DNA sequences, which well exceed the num-
ber of 20-base segments in any genomes known so far
(e.g, ~3 x10° of human genome). Hence, it is postulated
that, using the R20, the entire information of any genome
could be captured and stored in a DNA-based memory, if
the protocol is properly implemented. As the complexity
of genomic samples increases, which would likely happen
in real-world samples, for example from the environment
or a living being, the Memory protocol could be easily
adapted by using longer random sequences (i.e., >R20) to
capture more information in the complex samples. The
storage procedure is called “learning” because the memory
DNA acquires information from examples (i.e, the input
DNA), and does so without external knowledge of their
genomic sequences. Also, incorporating longer random
sequences, such as R20 or > R20, each memory tags can
obtain high specificity even at ambient temperature as
compared to the previously reported random primer method
[15] with random oligonucleotides of 7 to 10 bases.
Furthermore, in the Biological Memory protocol, the gen-
omic information is processed in one massively parallel step,
just as searches have been done using DNA for solutions to
hard computational problems [16]. Likewise, matching of
stored patterns with new input is done in parallel, in one
step. Similarity is implemented in vitro by degree of anneal-
ing between new input DNA and the learned memory
sequences, thus providing a technique for recognizing pat-
terns in different samples and detecting changes without
requiring sequencing. By contrast, the established molecular
biology techniques would acquire the genomic information
through biological samples with known sequences, and
then, depend on a conventional computer for processing
the data. Even the new de novo NGS requires massive
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computer-based information processing for data assembly
and their storage [3-8]. The Memory has in vitro capability
to efficiently implement pattern recognition and interpret-
ation of large amounts of genomic data that are difficult
problems for conventional computers. The Memory is not
a laboratory technique only to gather data for conven-
tional computational analyses, but uses the massive scale
of storage and parallelism of DNA as the computational
tool to draw inferences on the entire in vitro knowledge
base quickly and efficiently without any knowledge of
sequences. This implies that the Memory can reason and
extract knowledge in situations that involve both new and
unknown information, which is hard to achieve with con-
ventional laboratory techniques and computational ana-
lyses. Also, because there is no DNA sequencing, it is
more effective and efficient by alleviating the inherent
sources of errors, as well as costs associated with sequen-
cing techniques. Moreover, DNA's large storage capacity is
used to store genomic information from a population or
community in the sample for subsequent matching. The
information is stored in a compact form, and can serve as
a database of the status of the biological sample at a given
moment in time. In other words, the Memory is capable
of capturing global information on all organisms or whole
genome gene expressions in biological samples under cer-
tain conditions, and recognizing patterns of contrast and
commonality at the population or community level. When
the learned memory sequences are attached to a DNA
microarray, read out (i.e, “recall”) is easily achieved and
interpreted as either a positive or negative match. Also,
the microarray’s high capacity for multiplexing is an added
advantage, which other conventional gel- or PCR-based
approaches cannot afford. Thus, a microarray would pro-
vide an ideal vehicle to implement the Biological Memory
considering the enormous capacity of nucleic acids on each
slide/chip. Finally, it should be noted that the microarray-
based Biological Memory would also have significant utility
as a simple, fast, flexible, and high-throughput non-gel/
PCR based technical platform for genome studies, thus
reducing the current reliance on conventional PCR and
gel-based methodologies.

Validation and characterization of the Biological Memory

An important property to characterize the Biological
Memory is the ability of the learning and recall proto-
cols to learn and differentiate different sets of DNA. In
this study, the goal was to evaluate and verify the cap-
abilities of the DNA-based Memory protocol, which
include validating and optimizing learning of input
DNA sequences using R20 and testing recall of the
learned sequences, as well as its sensitivity using gDNA
from two model bacterial strains, i.e, E. coli K12 and B.
subtilis.
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Development of in vitro learning protocol and its
optimization

To investigate the performance and efficiency of the in vitro
learning protocol, the protocol was implemented at the
annealing temperature of 25°C using enzymatically digested
E. coli gDNA and a 5’'-biotin labeled memory tag to separate
out the learned products with the streptavidin-coated mag-
netic bead separation. Ethidium bromide staining denatured
Urea polyacrylamide gel electrophoresis (Urea-PAGE) im-
aging revealed that an average length of the digested gDNA
was around 200 bases (Figure 3a). Also, the Urea-PAGE gel
imaging analyses indicated that, after implementing the
learning protocol, the products were in general composed
of 3 regions, ie, high-molecular weight learned products
(LPy, >80 bases), relatively short learned products (LPs,
50 — 80 bases), and 40-base memory tag (Figure 3b), with
varying concentrations depending upon the inputs and
orders of reactions.

The learning protocol includes three key reaction steps
(Figure 2a): the memory tag-input annealing (A), the strand
extension by Klenow fragment (E), and Exo I digestion of
unbound memory tags and inputs (D). After each step, the
products are purified by the magnetic separation. When the
orders of the reaction steps were compared, the results
(Figure 3b) indicated that the order should be A—E — D.
When digestion preceded extension, little or no extension
occurred (Figure 3b, lane 4). However, after extension
(Figure 3b, lane 7), followed by digestion (Figure 3b, lane
10), the amount of extended strands increased substantially
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and there existed much less unused memory tags com-
pared to the initial tag concentration (Figure 3b, lane 3 vs
lane 7). After digestion, most of the excess unbound mem-
ory tags were removed and only extended strands remained,
whose molecular weights were higher than the memory tag
(Figure 3b, lane 10). The length of the extended strands
varied as indicated by the smear of DNA bands, but they
were well within the range of the input gDNA length
(Figure 3a, lane 2 vs. Figure 3b, lane 10). These results imply
the successful learning of the input DNA sequences. For the
rest of this study, all learning was performed on the basis of
the A — E — D reaction sequence.

To further confirm the learning protocol, it was imple-
mented with the following two negative controls, and the
results were compared with the learned products with the
positive control (i.e., both input gDNA and memory tag):
(1) memory tag only without input gDNA (Figure 3b,
lanes 6 and 9) and (2) input gDNA only without memory
tag (Figure 3b, lanes 5 and 8). The generalized annealing
reactions in the learning protocol can be represented as:
Input + Memory tag — Input-Input + Input-Memory tag +
Memory tag-Memory tag. Among these, only the extended
strands from Input-Memory tag complexes are the actual
learned products, ie. LPry;. The other two, ie, learned
products from the Input-Input (LP;;) and Memory tag-
Memory-tag (LPppnp), are by-products, which should be
eliminated. The LPy; could be easily separated from the
desired learned products (i.e, LPry) due to the absence of a
memory tag component in LP;j, ie, no 5'-end modifications
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Figure 3 Characterization of the learning protocol on the basis of the ethidium bromide staining denatured Urea polyacrylamide gel
electrophoresis (Urea-PAGE) at 60°C. (a) Digested E. coli gDNA with 4-12% Urea-PAGE. The lanes represent: (1) molecular size marker for
single-stranded (ss) DNA of 100 to 1000 bases in 100-base increments and (2) digested E. coli gDNA (avg. ~200 bases). (b) Learning products
with 4-20% Urea-PAGE. The lanes represent: (1) molecular size marker for ssDNA from 100 base in 100-base increments, (2) molecular size
marker for ssSDNA of 40 to 100 bases in 10-base increments, (3) memory tags (40 bases), (4) learning reaction mixture (e, memory tag + digested
gDNA) after annealing and digestion (A — D) (5) digested gDNA only after annealing and extension (A — E), (6) memory tags only after A—E, (7)
learning reaction mixture after A—E, (8) digested gDNA only after annealing, extension, and digestion (A — E — D), (9) memory tags only
after A— E— D, and (10) learning reaction mixture after A— E — D. The learning protocols were implemented with 5-amine modified
memory tags and the product of each run was separated by the magnetic bead separation. LPy; is the high-molecular weight (>80 bases)
learned products and LPs relatively short (50 — 80 bases) learned products.
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such as 5" biotin. As expected, no products were observed
after extension and magnetic separation (Figure 3b, lanes 5
and 8). Thus, the LPy; after annealing and extension should
not affect the yield estimation of the final learned products,
even though it could reduce the amount of available
inputs for the memory tag annealing during the learning
protocol and potentially reduce the final yield of the
learned products. However, LPy;y; from the memory tag
dimer could negatively affect the expected final outcomes,
since it showed similar band pattern to the LPyy; but does
not have any information from the input. To investigate
the possibility of the memory tag-memory tag duplex for-
mation and their extension, the melting temperature dis-
tribution of various lengths of random oligonucleotides
were calculated using OligoAnalyzer 3.1 under the reac-
tion condition (1.6 pM of oligonucleotides; 10 mM Na®;
10 mM Mg**; 4 mM dNTPs) (http://www.idtdna.com/
analyzer/Applications/OligoAnalyzer/). The minimum es-
timated melting temperature of the R20 oligonucleotides
under the learning reaction condition was around 42.6°C.
This means that most of R20 could form a stable duplex
at the reaction temperature (i.e, 25°C). The memory tag
concentration in the typical reaction volume in this study
(50 pL) was 1.6 uM, which is equivalent to 4.8 x 10
memory tag strands. The number of maximum independ-
ent sequences in the R20 is 1.1 x 10** (i.e, 4°°) strands.
Thus, the number of each unique R20 sequence in the
reaction volume is approximately 4.3 x 10*, This indicates
that the chances of self-hybridizations, especially perfect
matches, between the Individual R20 themselves are
extremely low (i.e, 1 of 1.1 x 10*Y). However, there are still
chances for partial hybridizations to form incomplete
duplexes. According to the melting temperature estimation,
around 7 bases could form a duplex under the reaction
condition, since the estimated mean melting temperature
of 7-base duplex was 25.7°C, and maximum melting
temperature of 5-base duplex was 30.9°C, showing the pos-
sibility of the memory tag-memory tag annealing and
extension through their partial hybridizations. The length of
LPyim is depending on the location where hybridization oc-
curs and estimated to be around 5 — 80 bases (see Additional
file 1: Figure S1), as confirmed by the experimental result
using only memory tags (Figure 3b, lanes 6 and 9). When
comparing LPpy; and LPypy (Figure 3b, lane 9 vs. 10), LPy
in LPpy; not only had similar molecular weights as the inputs
but also exceeded the possible length of LPy;pg thus, LPy
should be true learned products. However, the length of LPg
was around 50 to 80 bases, which overlaps with the estimated
molecular weight distributions of LPy; . Thus, LPg of the
learned products might be the mixture of LPyy; and LPyy s
Nonetheless, it was noted that the concentration of LPg in
LPr v (Figure 3b, lane 10) increased substantially (>5 fold
according to the gel intensity analysis) as compared to the
negative control (Figure 3b, lane 9). This implies that LPy;
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might be present in the learned products, but its concentra-
tion would not be significant. The probability of memory
tag-memory tag hybridization in the presence of input
DNA should be lower than that with memory tag only;
hence, the concentration of LPy; in the learned products
should be lower than the memory tag only.

To further minimize the undesirable LPy s and maximize
the yield and efficiency of the learning protocol to capture
and store the information from inputs, the learning protocol
was conducted at various annealing temperatures and the
amount of extended strands was evaluated as compared to
the negative control with memory tags only (Figure 4; see
Additional file 2: Figure S2). Comparing LP}; on the bases of
the gel intensity analyses, only for the positive control with
memory tags and input DNA (Figure 4; see Additional file 2:
Figure S2, even number lanes), significantly more extended
strands were present at the annealing temperatures of 40°C
(24 fold and 2.1 fold, respectively) and 55°C (2.3 fold and 2
fold, respectively) than those at 25°C and >60°C. No LPy
was observed for the negative control. This can be attributed
to not only the increased specificity of memory tags to
inputs at those relatively high temperatures (as compared to
lower temperatures, e.g, 25°C), but also more favorable
annealing conditions between memory tags and inputs (as
compared to higher temperatures, e.g, >60°C). Comparing
LPs, its concentration decreased as temperature elevated
due to the increase of melting temperature. Particularly,
there was significantly less LPg at 55° (0.72 fold and 0.65 fold,
respectively) and 60°C (0.48 fold and 0.42 fold, respectively)
than those at 25° and 40°C, and no significant differences
between positive and negative controls at >55°C. This
implies that LPs would contain much less undesirable

1 2 3 9 10
500 b — ! —
= LR,
100b — -
80b—p
LP,
50b—

Figure 4 Learning at various annealing temperatures for the
protocol optimization: 25°C (lanes 1 and 2), 40°C (lanes 3 and 4),
55°C (lanes 5 and 6), 60°C (lanes 7 and 8), and 70°C (lanes 9 and 10).
The odd-number lanes are for the negative controls with memory
tags only and without input gDNA, and the even numbers are for
the positive controls with both memory tags and input gDNA. The
learning products were analyzed using the ethidium bromide
staining 4-20% Urea-PAGE at 60°C. The contrasts of the top image
for LPy and the bottom image for LP, were adjusted separately
from the orginal Urea-PAGE image (see Additional file 2: Figure S2)
to better assess the results.
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LPpi (ie, purer) at the higher temperatures. However, at
the temperature over 60°C, none to very little LPs was
yielded. These results suggest that the annealing temperature
of 55°C could provide an optimal condition to maximize
LPy v and minimize LPyy ;. For the rest of the study, 55°C
was used as the annealing temperature.

Associative recall with microarray: proof of principle

The capabilities of the associative recall procedure were
tested using a microarray detection platform with the
learned products from the two model bacterial strains,
i.e, E. coli and B. subtilis, which, according to our pre-
liminary analysis, were shown to be genomically very
different (see Additional file 3: Table S1). For example,
less than 6% of 14-base sequences were common in the
digested gDNA of both strains. Therefore, the number
of common sequences at the length of the learned
products (i.e., >50 bases) must be very low between two
bacterial strains.

Three different concentrations of the learned products
were printed onto microarray slide with 10 replications
each, and the Alexa-labeled E. coli or B. subtilis gDNA were
hybridized as probes. Figure 5 shows the scanned images of
the microarray slide after each hybridization. Visually com-
paring the same features in two different hybridizations and
different features in the same hybridization, Alexa-labeled
E. coli probes resulted in significantly higher intensity for all
the E. coli spots than B. subtilis spots, and Alexa-labeled B.
subtilis probes yielded higher spot intensity for all the B.
subtilis spots. This clearly demonstrates the pattern separ-
ation capability of the Biological Memory that can discrimin-
ate differences in inputs and classify the identity of the
sample, verifying the basic operation of the Biological
Memory system. To further evaluate its sensitivity, the
Memory protocol was implemented using mixtures of
gDNA from the two different bacterial strains. Samples
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with different concentrations of E. coli gDNA and equal
parts of the rest with gDNA from B. subtilis were learned
and spotted on the microarray slide. After recall with Cy3
dye labeled E. coli gDNA through hybridization, all the
spots with learned E. coli gDNA lighted up, except the
spot without E. coli gDNA (Figure 6). Even with only 10%
of E. coli gDNA in the background of B. subtilis, it can still
be learned and recalled. Therefore, the learning and recall
protocols were able to detect the target at very low con-
centration in the mixture of different strains, indicating its
capability of very fine level of resolution to learn the
inputs, recall similar DNAs, differentiate between dissimilar
DNAs, and detect small concentration differences in samples,
both pure and mixed in different degrees.

To analyze the signal intensity difference, BSI and signal-
to-noise ratio (SNR) values were extracted using GenePix®
Pro 6.0 at three different PMTG values as sensitivity
settings, ie., 800, 900 and 1000. However, the microarray
image analyses showed that the signal intensity of spots
could not be compared and analyzed statistically, because
of the low SNR values of features. To obtain a reliable
signal intensity value, for example, to estimate a limit of de-
tection (LOD) and a limit of quantification (LOQ), the SNR
value should be higher than 3 [17,18]. However, even
though they could be visually discriminated as described
above, most of features showed SNR values lower than 3
(see Additional file 4: Table S2). The low SNR, ie., low
signal intensity, of each spot could be related to the probe
length and/or the low discrimination power of the micro-
array [17]. More uniformly digested and shorter DNA
would allow increasing the efficiency of the probe-target
hybridization on the microarray. The discrimination power
by microarray should be also further enhanced. Increasing
the number of fluorescent dyes per probe strand would be
one option to increase the signal intensity. Exploring other
higher resolution detection system for the recall protocol

a Hybridized with Alexa-labeled E. coli
ugful
04
Learned 02
E.coli
0.1
0
04
Learned 0.2
B. subtilis
0.1

0

~N

b Hybridized with Alexa-labeled B. subtilis

Figure 5 Microarray-based Memory protocol. Microarray image analyses of the learned products from E. coli and B. subtilis gDNA after
hybridization with (a) Alexa-labeled E. coli gDNA and (b) Alexa-labeled B. subtilis gDNA. The microarray slide was scanned with GenePix 40008 at
100% of laser power with a PMTG setting of 1,000 (see Additional file 4: Table S2).
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Figure 6 Sensitivity of the microarray-based Memory protocol.
Samples with different concentrations of E. coli gDNA (1, 0%; 2, 10%; 3,
20%;4, 30%; 5, 40%, 6, 50%, 7, 60%, 8, 80% and 9, 100%) and same
order of the rest with gDNA from B. subtilis were learned and spotted
on the CodeLink® microarray slide. Recall was done through the
hybridization with Alexa-labeled E. coli gDNA. The microarray slide was
scanned at 100% of laser power with a PMTG setting of 1,000.

would be another option, such as the Luminex® system,
which is a fluorescent bead-based multiplex assay system for
the quantitation and detection of biomolecules, including
DNA.

Furthermore, to realize the potential of the Memory
protocol that was demonstrated in this study, the protocol
should be further generalized to validate its ability to distin-
guish among different species and strains, and their levels
and patterns of gene expression. A microarray could be gen-
erated that has spots corresponding to the learned memory
strands of gDNAs or cDNAs from different species, strains,
or combinations of organisms. Each spot represents the
learned product of an organism or a collection of organisms.
Unknown biological samples (e.g, gDNAs or cDNAs from
real-world samples such as soil, water, and biological speci-
mens) are learned and their learned memory products are
recalled with the gDNA or cDNA microarray. Based upon
the differences in the hybridization patterns of the learned
products, inferences could be made as to the genomic con-
tents and states of the unknown biological samples without
their explicit genomic information. Moreover, the technical
platform of the recall protocol could be further refined to
make the Biological Memory more practical by using oligo-
nucleotide arrays with specific oligonucleotides in known lo-
cations on the chip. The Affimatrix GeneChip® System
(Affimatrix, Inc., Santa Clara, CA) could produce an oligo-
nucleotide chip with ~9 x 10° different oligonucleotide spots,
each of which contains millions of copies of a specific
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oligonucleotide with a specific length, via the company’s pro-
prietary light directed chemical synthesis process. With such
oligonucleotide arrays, hybridization signatures of the learned
memory products of unknown biological samples (e.g, gDNA
or cDNA from the environment or a living being) could
be captured and classified. Comparative analyses of the
hybridization patterns and signal intensities of the learned
memory products at different time intervals or locations
could allow us to effectively sense changes in the genomic
state of a biological system of interest and make inferences
about the biosystems without their clear genomic infor-
mation, realizing the promise of the Biological Memory.
An added benefit of the oligonucleotide arrays would be
that we could acquire sequence information on the learned
products on the basis of the known sequence information
of oligonucleotides on the array, further expanding the util-
ity of the Biological Memory. Hence, with further improve-
ments as the technology progresses, the Biological Memory
protocol may catalyze a paradigm shift in biosensing, from
the biomonitorings of ecosystems to the diagnoses of diseases,
by allowing the assessment of the large amounts of genetic
information or all expressed genes in in situ biological
samples at the population or community scale.

Conclusions

This study developed and verified an in vitro Biological
Memory to capture and store genomic information from
biological samples, both known and unknown, and to
classify and compare their genomic patterns. By process-
ing genomic information in vitro, rather than in silico, the
advantages include massively parallel sampling of the
input DNA, ability to work with unknown organisms and
sequences, and massively parallel recall and matching of
DNA sequence content to detect changes and classify
them. Experimental results with two model bacterial strains
demonstrated that the protocols worked as designed, and
were able to resolve small differences in sequence content.
Specifically, the developed learning protocol was simple,
fast, and flexible and could effectively capture the genomic
contents of samples without their explicit genomic infor-
mation at the population or community scale. Also, the re-
call protocol could discriminate genomic patterns with very
fine level of resolutions by template matching reactions
between the learned memory molecules and new inputs
using the microarray detection platform. However, further
improvements are required to fully realize its potential. The
learning protocol should be further optimized and general-
ized to increase the learning capacity, and the discrimin-
ation power of the recall protocol by microarray should be
further improved. Particularly, it should be not only vali-
dated using more complex genomic samples, but also
tested and optimized for gene expression studies (i.e, using
¢DNA). With further improvements, optimizations, and
generalizations, it is expected that not only the excellent
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promise of the Biological Memory system could be realized
as the genomic pattern classifier, but also its applicability
could be expanded to other various biological and biomed-
ical as well as computational applications. The key point is
that biological information is processed without explicit
knowledge of its sequence content in order to detect rela-
tive changes between samples. Examples include an envir-
onmental monitoring method that could provide a holistic
view of the genomic status of an ecosystem, a screening
tool for the prognosis of human diseases, such as cancer
and bacterial or viral infectious disease, a biosensing plat-
form for pathogens in water and food sources, and large-
scale DNA-based memories for massive storage and
retrieval of non-biological information.

Methods

DNA samples

The initial memory oligonucleotide with chemically modi-
fied 5" end, 20-base NCH tag sequence, and 20-base ran-
dom sequence was designed and purchased from IDT
DNA technology Inc. (Coralville, IA): 5'-/Bio (or Am)/
GAA AAA ACA CCC CTT CGA TGN NNN NNN NNN
NNN NNN NNN N-3’ (mole. wt. 12,6684 g/mole). To
ensure its purity and full randomization, it was purchased
with the options of high pressure liquid chromatography
(HPLC) purification and hand-mixing. The NCH tag
sequence was carefully designed to minimize undesirable
cross-hybridization and experimentally confirmed by the
previously established methods [10,13].

The gDNA of E. coli K12 and B. subtilis was extracted by
the phenol extraction and ethanol precipitation methods
described elsewhere [19]. The extracted gDNA was further
digested enzymatically to fragments with an average length
of around 200 bases to minimize the formation of second-
ary structures by the long gDNA and maximize the effi-
ciency of the learning protocol in Biological Memory. The
gDNA digestion was implemented according to the previ-
ously established method [19] with some modifications
using deoxyribonuclease I (DNase I), a random endonucle-
ase, which produces single-strand nicks in the presence of
Mg?*, randomly cleaving each strand of double strand
DNA. Briefly, the reaction mixture contained gDNA
(0.2 pg/pL), and pancreatic DNase I (Amersham Biosci-
ences, Piscataway, NJ) (0.002 U/pL) in 10 mM Tris—
HCI (pH 7.5) and 25 mM MgCl,. After incubation at
37°C for 90 sec, the reaction was terminated by adding
EDTA (5 mM). The digested gDNA was purified by the
phenol extraction and ethanol precipitation. The purified
gDNA was evaluated by the denatured Urea polyacrylamide
gel analyses (8 M Urea, 4% stacking gel, 12% resolving gel,
1x Tris-Borate-EDTA buffer) at 60°C. Also, the concentration
of the digested gDNA was evaluated using DU® 800 Ultra-
violet/Visible/Near-Infrared spectrophotometer (Beckman
Coulter, Brea, CA) at the wavelength of 260 nm.
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In vitro learning protocol

The reaction mixture consists of 0.02 pg/pL of the digested
gDNA (ie, the input DNA), and 1.6 pM of 5'-amine or
biotin modified memory tag in TAEMg buffer (10 mM
Tris-accetate, 1 mM EDTA, 10 mM Mg-accetate) as a final
concentration. The mixture was incubated at 95°C for
5 min. After a brief centrifugation, it was gradually cooled
down to a designated temperature (typically 25° or 55°C)
for 30 min, followed by 30-min incubation at 37°C after
adding Klenow fragment (5 U/pL) and dNTPs mixture
(10 mM). E. coli exonuclease I (Exo I) (20 U/uL) was
added, followed by additional incubation for 30 min.
During the optimization of the in vitro learning protocol, the
initial memory tags with biotin modified 5° end was used
and the learned products were purified using Dynabeads®
M-270 streptavidin (Invitrogen corporation, Carlsbad, CA)
according to the manufacturer’s instruction. The purified
learned products were evaluated by the denatured Urea-
PAGE analyses (8 M Urea, 4% stacking gel, 20% resolving
gel, 1x Tris-Borate-EDTA buffer) at 60°C. The band area
intensity of the Urea-PAGE image was assessed on the
basis of the gel intensity analysis with Image] software
(http://imagejnih.gov) [20]. For the microarray-based
recall, the learning protocol was implemented using the
memory tags with amine modified 5’ end.

Associative recall protocol with microarray

The learned products with 5’ -amine modified memory tags
was purified by the phenol extraction and ethanol precipita-
tion, resuspened in 1x microarray printing buffer (50 mM
sodium phosphate [pH 8.5]) as a stock solution (1 pg/uL),
and serially diluted for printing with the printing buffer. The
30 pL of the learned products, a negative control (e,
learned products without input DNA), and a blank (ie, 1x
printing buffer only) were transferred into a 384-well plate.
Each sample in the well plate was printed with 10 replica-
tions onto CodeLink™ activated microarray slide (Amersham
Biosciences) using MicroGrid II microarray printing
system with BioRobotics MicroSpot 2500 pins (Genomic
Solutions, MI) at 40% relative humidity according to the
previously established protocol [17]. After printing, the
slides were stored in a customized hybridization chamber
(GeneTix, CA), which was filled with saturated NaCl solu-
tion at bottom, for 15 hr at ~75% of relative humidity to
couple the amine group at the 5° end of the learned prod-
ucts to the activated N-hydroxysuccinimide-ester group
on the microarray slide surface. For blocking, the slide
was kept in a pre-warmed blocking solution (0.1 M Tris,
50 mM ethanolamine [pH 9.0]) at 50°C for 30 min. The
slide was briefly rinsed twice with deionized water and
washed with pre-warmed 4x saline-sodium citrate (SSC)
buffer with 0.1% sodium dodecyl sulfate (SDS) for 30 min
at 50°C with gentle shaking. The slide was dried by centri-
fugation and stored at ambient temperature. To evaluate
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the recall protocol, each digested E. coli and B. subtilis
gDNA was labeled using the ULYSIS™ Alexa Fluor 532°
Nucleic Acid Labeling Kit, according to the manufac-
turer’s instruction (Invitrogen corporation, Carlsbad, CA).
The ULYSIS™ Nucleic Acid Labeling allows a fluorescent
dye to react with the N of a purine base (i.e, A or G) in a
nucleic acid to form a stable coordination complex, implying
the high possibility of labeling the entire strands of the
digested gDNA. After labeling, the Alexa-labeled E. coli or B.
subtilis gDNA was stored in 4x SSC with 0.1% SDS. For the
recall, the labeled target DNA was reconstituted in the
hybridization solution (7.5x SSC, 37.5% formamide, 0.15%
SDS, 0.3 pg/pL bovine serum albumin) as a final concentra-
tion of 0.025 pg/pL. The 20 pL of the target DNA solution
was applied to the printed microarray slide with LifterSlip™
microarray cover slide. Hybridization was performed at
room temperature for 20 hr in the customized hybridization
chamber with ~75% relative humidity. After hybridization, it
was washed at room temperature twice with 4x SSC
containing 0.2% SDS for 5 min each, 1x SSC for 10 min,
and twice with 0.2x SSC for 2 min each. Microarray slide
was completely dried by centrifugation.

Image acquisition and data analysis

After recall, the microarray slide was scanned with GenePix
4000B (Axon Instruments, Forester City, CA) at 100% of
laser power with 3 different PMTG settings from 800, 900,
and 1,000 as detection sensitivity settings. Photobleaching
was very minimal at the scanner settings. Signal intensities
were measured with GenePix® Pro 6.0 microarray image
analysis software (Axon Instruments, Forester City, CA)
with 10 pm of pixel size as a detection sensitivity. The
obtained data were saved as csv (comma delimited) format
for data analysis. Background-subtracted intensity (BSI) values
were used in the subsequent analyses. Statistical analyses were
performed using statistical package R (version 2.8.0) [21].

Additional files

Additional file 1: Figure S1. Estimation of the by-products by the
undesirable annealing and extension between memory tags themselves
during the learning protocol.

Additional file 2: Figure S2. The original Urea-PAGE analyses of learning
at various annealing temperatures for the protocol optimization: 25°C (lanes
1 and 2), 40°C (lanes 3 and 4), 55°C (lanes 5 and 6), 60°C (lanes 7 and 8),
and 70°C (lanes 9 and 10). The odd-number lanes are for the negative
controls with memory tags only and without input gDNA, and the even
numbers are for the positive controls with both memory tags and input
gDNA. The learning products were analyzed using the ethidium bromide
staining 4-20% Urea-PAGE at 60°C.

Additional file 3: Table S1. Estimated number of common sequences
between the gDNA fragments of E. coli and B. Subtilis at a given length.

Additional file 4: Table S2. Microarray scanning results of the learned
products from (a) E. coli gDNA after hybridization with Alexa-labeled E.
coli gDNA and (b) B. subtilis gDNA after hybridization with Alexa-labeled
B. subtilis gDNA.
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