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Abstract
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Background: Synthetic biology aims to engineer biological systems for desired behaviors. The construction of
these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and

Results: Herein, we present a programmable, multipurpose microfluidic platform and associated software and apply
the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We
show the platform'’s capabilities for multiple automated DNA assembly methods, including a new method for
Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The
platform enables the automated control of cellular growth, gene expression induction, and proteogenic and

Conclusions: Taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions
for synthetic biology research, from design to functional analysis.

Keywords: Synthetic biology, Microfluidics, DNA assembly, Transformation, Cell culture, Analysis

Background

Synthetic biology currently relies heavily on trial and error,
and debugging and reprogramming complicated biological
systems continues to require significant resources [1].
While recent efforts have importantly established some
physical and informatics standards for synthetic biology
[2], the time required to reach a desired behavior remains
very lengthy. Furthermore, the high-throughput gener-
ation of reliable and reproducible experimental data is
still challenging and requires extensive laboratory automa-
tion [3, 4].

The synthetic biology research cycle, integrating design,
construction, testing, and analysis (Fig. 1), is a systems-
development approach shared in common with many
engineering disciplines [5]. The adoption of the integrated
development cycle as a standard approach in synthetic

* Correspondence: gregory.linshiz@gmail.com; njhillson@lbl.gov
'Fuels Synthesis and Technologies Divisions, Joint BioEnergy Institute,
Emeryville, CA 94608, USA

Full list of author information is available at the end of the article

( ) BiolMed Central

biology could significantly reduce the time to product, im-
prove the likelihood of producing desired functionalities,
and make the development of biological systems fast, in-
expensive, and robust [3].

Biology-friendly automated platforms and software
tools are crucial for modernizing the life sciences. While
liquid-handling robotics can accelerate research and pro-
vide efficient solutions, they remain expensive, have large
footprints, and require large sample volumes (which can
be prohibitively expensive for high-throughput experi-
ments). Performing laboratory operations in small vol-
umes and increasing throughput using miniaturized
microfluidic Lab-on-a-Chip (LOC) devices is the next step
forward in biotechnology [6, 7]. For synthetic biology
research automation in particular, a universal and
programmable microfluidic sample-processing platform,
capable of performing a broad range of operations and
integrating and automating the major steps of the devel-
opment process, is required.
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Fig. 1 Synthetic biology research cycle for the development of new biological systems

A great variety of microfluidic devices have been
demonstrated for sample processing applications [8].
However, the majority of these devices is limited to per-
forming specific tasks, and therefore has not achieved
integrated, end-to-end synthetic biology automation. A
recently reported hybrid digital/droplet microfluidic de-
vice [9] approaches to this end-to-end integrated auto-
mation, but starts with DNA assembly (post design and
DNA fragment preparation) and stops after transform-
ation (before testing and analysis). The multipurpose
microfluidic platform described herein uses pneumatically
actuated microvalve technology, enabling a wide range of
miniaturized sample processing operations with precise
metering and mixing capabilities, simplified scaling-down
of experiment protocols, and minimized reagent dead
volumes [10, 11].

2D microvalve array technology has been used as a
programmable sample processing architecture for nu-
merous chemical and biological analysis procedures
[10, 12—-14]. Digital transfer of fluids within a 2D array en-
ables precise and rapid reagent routing, mixing, rinsing,
serial dilution, and storage/retrieval operations. Further-
more, this technology allows rapid processing of sample
volumes ranging from the nanoliter to microliter scale.
The programmability, precision, and robustness of this
technology are ideally suited for the implementation of a
diverse set of synthetic biology applications.

Results and Discussion

Platform components

Our automated multipurpose platform consists of a
microfluidic chip (implemented using 2D microvalve array
technology), an electronic pneumatic control system [15],
a temperature regulation system, and computational soft-
ware. The microfluidic platform features 150 nL transfer
precision of each as well as the ability to do multiple
transfers to yield microliter volumes. The platform is
managed by PR-PR [16, 17], a high-level programming
language for laboratory automation with a web-based

interface, which translates user-defined sample processing
operations into a sequence of commands for microvalve
control at the machine level. PR-PR output is processed
by LabView software (National Instruments), which trans-
mits the operational commands to an array of miniature
solenoid valves. Each solenoid valve switches between
positive pressure (closing) and vacuum (opening) states,
and controls a single microvalve within the 2D array
(Additional file 1: Figures S1 and S2). A number of ap-
proaches for multiplex addressing of valves that reduce
the number of solenoids per valve have been previously
reported [15]. Liquids can be transported on-chip by a
programmable actuation of sequences of microvalves in a
peristaltic fashion.

Since many laboratory procedure steps can be de-
scribed as series of material transfers, even very complex
laboratory protocols can often be presented as sequences
of transfer commands implemented in PR-PR. Each PR-
PR transfer statement consists of four elements: Source,
Destination, Amount, and Method. The same four ele-
ments are applicable to liquid transfer across all platforms
supported by PR-PR. We consider the microfluidic chip as
undirected graph Graph = (Vertices, Edges), where valve
junctions and input/output wells represent vertices
(nodes) and connecting channels represent edges. A graph
search algorithm is implemented for finding the most effi-
cient path through the chip, between the source and the
destination locations (Fig. 2). It is possible to assign re-
agents used in a protocol to specific locations, which per-
mits a high level of protocol abstraction and enables users
to refer to a particular location by the corresponding re-
agent name. PR-PR also allows configuring parameters of
laboratory workspace, such as microfluidic device top-
ology, robotic worktable etc. through its biology-friendly
Graphical User Interface (GUI).

Process steps
Our microfluidic platform integrates and automates
the key steps of the iterative synthetic biology design-
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Fig. 2 Microfluidics chip. a Photograph of the physical microfluidics chip (ruler for scale). 16 input/output macro scale wells (~20 uL working
volume; blue-colored regions) surround internal micro scale valves (~150 nL). b PR-PR software user-interface schematic representation of the
microfluidics chip. The red arrows show a representative example of a reagent transfer path through the chip from macro scale input well [21] to
macro scale output well [8], through internal micro scale values [1, 5, 9, 13, 17, 20]

construct-test-analyze research cycle [18] (Fig. 1),
composed of: 1) Design of DNA libraries performed by
‘DNA constructor’ software and design of construction
protocols by PR-PR [16]. 2) Construction: DNA synthesis
and transformation into different hosts. In particular, we
have automated various methods of DNA synthesis, such
as Gibson [19] and Golden Gate assembly [20] and the Iso-
thermal Hierarchical DNA Construction (IHDC), which is
our novel method of de novo DNA assembly, especially
developed for the microfluidics environment. Further, we
implemented the transformation of the constructed DNA
molecules into two distinct hosts, E. coli and S. cerevisiae.
3) Test: we performed on-chip functional assays, including
cell growth, protein expression induction, and colorimetric
assay; 4) Analysis: we performed image analysis of on-chip
automated experiments for evaluation of desired function.
Below, we describe each of these process steps in greater
detail.

Design

DNA constructor

Software supporting the design of complex combinatorial
DNA libraries and the optimization of their corresponding
DNA construction protocols is critical to the efficient cre-
ation of new biological systems. We have developed ‘DNA
Constructor; a web-based application which designs opti-
mized hierarchical construction protocols for large DNA
molecules (Additional file 1: Figures S3a and S4a) and
combinatorial DNA libraries (Additional file 1: Figure S5).
DNA Constructor allows users to specify the desired
DNA library (via the DNA Constructor scripting language
Additional file 1: Figure S6) and parameters (e.g., max-
imum primer length) for customizing the protocol gener-
ation algorithm. The generated hierarchical construction
protocols minimize nonspecific products and are opti-
mized to achieve the construction in the fewest number of

steps. This allows efficient construction of long DNA
molecules and combinatorial DNA libraries by re-using
components shared between variants and incorporation of
available existing DNA fragments.

Construction

Isothermal Hierarchical DNA Construction (IHDC)

We developed a new method for hierarchical DNA con-
struction in isothermal conditions, especially optimized
for implementation on our microfluidics platform. IHDC
offers significant advantages over PCR-based methods
including reduction of control equipment, faster process-
ing times, and better amenability to direct automation
with microfluidic technology. Isothermal DNA cons-
truction takes as an input two overlapping dsDNA and
produces an elongated dsDNA as output. Primers are
recombinase-incorporated between the strands, and then
polymerase-elongated to produce ssDNA. The overlap-
ping ssDNA molecules hybridize, priming each other for
an overlap extension elongation reaction to form dsDNA,
which is then amplified by isothermal amplification to
yield the desired elongated dsDNA (Fig. 3). The mechan-
ism of IHDC is derived from Recombinase Polymerase
Amplification (RPA) [21]. RPA is an isothermal DNA
amplification process that is capable of pairing primers
with homologous sequences in duplex DNA. We modified
the reaction conditions and adapted them to the IHDC
method.

We have demonstrated automated Isothermal Hierarch-
ical DNA Construction on our microfluidic platform.
Figure 4a shows a schematic of the automated IHDC reac-
tion protocol on the microfluidic chip. This assembly
protocol was used to build a 754 bp construct from eight
synthetic oligos. Figure 4b shows the hierarchical con-
struction tree consisting of seven separate synthesis
reactions to form the final product. Particularly, on the



Linshiz et al. Journal of Biological Engineering (2016) 10:3 Page 4 of 15

a Basic biochemical step of IHDC
> A B > C D = E F G H
-« -«
\ / ssDNA
Synthesis
2
- — D
—r
Amplification
b ABCD
oo
= E
o9 ABCDEFGH ¥
2 2
Fig. 3 Isothermal hierarchical DNA construction (IHDC) coupled with Gibson DNA assembly. a Isothermal hierarchical DNA construction. At left,
an example of a three-level hierarchical construction tree starting with eight oligonucleotides. At right, schematic description of the basic biochemical
step of IHDC. b Gibson DNA assembly. Integration of IHDC-constructed fragments with Gibson DNA assembly
A

current microfluidic chip that has 16 input/output wells  the chip with the two previously constructed halves along
we have performed two hierarchical steps in a fully auto-  with two primers and performed an additional IHDC step.
mated manner, resulting in DNA molecules that encode  Between reloading the reagents, the valves were washed
the entire RFP (Additional file 1: Figure S4) and two  with an automated rinsing program. The assembly times
halves of GFP. For construction of the whole GFP- for GFP and RFP were less than two hours and one hour,
encoding DNA molecule, given the lack of sufficient in-  respectively, with each individual IHDC step requir-
put/output wells on the current chip, we have reloaded ing only 15 min for completion. Figure 4c shows gel
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Fig. 4 Overview of isothermal DNA construction on the microfluidics platform. a Overview of the basic IHDC step on the microfluidics platform.
Stage |. Two oligos A and B (as shown, or alternatively two DNA fragments A and B) and a mixture of enzymes are transferred to the reactor. Stage Il.
Primers P1 and P2, and a mixture of enzymes, are transferred to the reactor. Stage Ill. A mixture of ATP and magnesium acetate, and a mixture of
enzymes, are transferred to the reactor. The temperature is increased to 38 °C, and the reaction is incubated for 15 min. As a result, an elongated and
amplified DNA fragment AB is produced. b Hierarchical construction tree of seven separate synthesis reactions that result in the final product (gfp as
shown). ¢ Gel electrophoresis image of all the intermediates and the final gfp construct. Lanes as labelled by: M: GeneRuler 1 kb Plus DNA Ladder
(Thermo Scientific); Level 1 (quarter) fragments: 1-2, 3-4, 5-6, 7-8; Level 2 (half) fragments: 1-4 and 5-8; Level 3 (full length gfp) fragment: 1-8
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electrophoresis image of all the intermediates and the final
GEFP construct. The results of REP construction are shown
in Additional file 1: Figure S4b. These results indicate high
yields of intermediate and final products of the correct
length. Our automated DNA construction method is
therefore highly effective and can be scaled to larger as-
sembly lengths and combinatorial sets.

Gibson assembly

Using our automated microfluidic platform, synthetic
DNA fragments generated by IHDC were integrated
with expression vector pETBlue-1 by Gibson assembly
[19]. Gibson assembly allows joining multiple DNA frag-
ments in a single, isothermal reaction. We have adapted
the Gibson method to our microfluidic platform and
integrated our IHDC method with Gibson assembly.
The output DNA fragments of IHDC were designed to
be compatible with the Gibson method. In particular,
to insert full GFP or RFP coding sequences into the
pETBlue-1 plasmid, digested by EcoRV on the micro-
fluidic platform (Additional file 1: Figure S7), we cre-
ated overlapping regions during the IHDC stage by
addition of the regions surrounding the EcoRV restriction
site on the pETBlue-1 plasmid to the GFP or RFP DNA
molecule sequences. Alternatively, when inserting the
GFP as two fragments created by the IHDC method into
the plasmid, the overlapping region for Gibson assembly
was designed in the middle of the GFP DNA sequence
(Additional file 1: Figure S8a). Each DNA fragment con-
structed by IHDC and the pETBlue-1 linearized plasmid
were purified by QIAquick PCR Purification Kit (Qiagen)
and reloaded into the microfluidic chip. The Gibson DNA
assembly was automated by running the PR-PR output
script. The scheme of the automated Gibson assembly is
shown in Additional file 1: Figure S8b. After the assembly,
the reactions were incubated at 50 °C for 30 min on the
chip. As a result, the chip produced circularized, ready for
transformation, pETBlue-GFP (Additional file 1: Figure
S8b) and pETBlue-REP plasmids containing de novo syn-
thesized GFP and RFP DNA fragments. These plasmids
were used in automated E. coli transformations described
below. In our previous work, we have also demonstrated
on-chip hierarchical Gibson assembly of up to eight DNA
fragments yielding a 12 kbp plasmid [16].

Transformation of E. coli

Using our microfluidic platform we automated the trans-
formation of the newly assembled pETBlue-GFP and
pETBlue-REP plasmids into the E. coli host strain Tuner
(DE3) pLacl (Novagen). The chemically competent E. coli
cells and the Gibson assembly mixture (ie., assembled
pETBlue-GFP or pETBlue-RFP plasmids) were loaded into
the microfluidic chip cooled to 0 °C using an external
Peltier temperature controller. The DNA plasmids were
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transferred to the wells containing the competent E. coli
cells (Additional file 1: Figure S9). The DNA and the cells
were incubated for 10 min at 0 °C and then the heat shock
was performed at 42 °C for 45 s. Then the transformation
mixture was cooled to room temperature and the cells
were incubated with SOC medium for half an hour at
37 °C. Ultimately all the cells were plated on LB-Amp
agar plates and incubated at 37 °C over night to pro-
duce transformed E. coli colonies containing the desired
plasmids.

Golden Gate assembly of combinatorial library

We have previously demonstrated the capability of the
microfluidic platform for the assembly of combinatorial
DNA libraries by constructing a library of 16 variants by
the Golden Gate assembly method [22]. Design of the
library was done using j5 [23] and Device Editor [24].
All variants shared the same backbone p4001 and combin-
ation of one promoter variant with one variant of bicistro-
nic design (BCD) coupled with GFP gene (Additional file
1: Figure S10a). The architecture of the current microflui-
dic chip allows assembly of up to 8 variants in parallel,
therefore to produce a 16-variant library, the experiment
was run twice. Schematics of reagents and reaction allo-
cations are presented in Additional file 1: Figure S10b.
After assembly, the reactions were incubated at room
temperature and transformed into E. coli cells. After the
transformation and induction of expression of GFP by
addition of IPTG, we saw different levels of GFP expres-
sion for different variants. We verified the quality of all
the 16 constructed library variants by PCR colony screen-
ing and sequencing [16].

DNA assembly in yeast

To demonstrate automated transformation and in vivo
DNA assembly in yeast on the microfluidic platform we
have created a library of seven constructs with different
promoters that control expression of GFP. To isolate the
seven promoters we amplified two variants of 250 bp
and 100 bp of the following four promoters: gall, leu2,
spol3, tefl from S. cerevisiae genomic DNA (Fig. 5). As
a backbone for in vivo DNA construction we used plas-
mid pRS426-yeGFP, which was linearized on-chip by
Eagl restriction enzyme digestion. After restriction, the
purified plasmid and each promoter amplicon separately
were mixed with Salmon sperm DNA (Clontech) as a
carrier. The yeast cells were grown overnight, washed
twice in water and re-suspended in PEG and lithium
acetate solution. The DNA mixture and cell solution
were loaded into separate input wells on-chip. The S.
cerevisiae competent cells were automatically transferred
to wells with preloaded DNA mixture according to the
PR-PR protocol and the chip was incubated for two
hours at 42 °C. Then, the S. cerevisiae cells were plated
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Fig. 5 Construction in yeast of a promoter library. a Promoter library schematic. b Gel electrophoresis image of amplified promoters: lane 1,
Gal-250; lane 2, Gal-100; lane 3, Leu-250; lane 4, spo-250; lane 5, spo-100; lane 6, tef-250; lane 7, tef-100. ¢ Gel electrophoresis image of: lane
lane 2, pRS426-yeGFP Eagl digest. M is GeneRuler 1 kb Plus DNA Ladder (Thermo Scientific). d Schematic of reagent transfers through the microfluidic
chip. The green input wells contain a mixture of different promoters and digested plasmid pRS426 with Salomon sperm DNA as a carrier. The yellow
input wells contain S. cerevisiae competent cells. Arrows show pathways of reagent transfer on-chip according to the automated protocol
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onto rich, solid medium lacking uracil. After the over-
night incubation, yeast colonies with various levels of
green fluorescence were observed as a result of the various
levels of GFP expressed from the different promoters
(Additional file 1: Figure S11).

Test and evaluation
Screening assays are substantially important for the
development of new biological systems. Such assays are
required to validate the function of the engineered sys-
tem and quantify production levels of desired products.
In the present study, we demonstrated the capability of
our microfluidic platform to perform functional assays
through automated gene expression induction, pheno-
type screening, and isopentenol measurement. These
functional assessments are not necessarily more high-
throughput than alternative methods, but the device de-
scribed here enables a more streamlined assessment
process and reduced instrumentation and reagents costs
(see Additional file 1 for time and cost points of compari-
son with conventional laboratory automation systems).
Protein expression induction and phenotype screening
assay. We have evaluated on our microfluidic platform
the expression of the de novo constructed fluorescent
protein GFP. After transformation, 18 random clones,
containing pETBlue-GFP construct, were plated on LB-
Amp-IPTG agar plates. The plates were incubated over-
night. Seven clones containing error-free GFP constructs
developed green color (Additional file 1: Figure S12).
One of the colonies of green color phenotype was incu-
bated in LB medium with Ampicillin in twelve wells on
the chip. We loaded IPTG in two wells and transferred
it into six wells containing cells. After incubation at
room temperature with 1 mM IPTG for 8 h, we took an
image of the chip using a transilluminator and a CCD

camera with filter (Additional file 1: Figure S13). We
performed image analysis by measurement of average
intensity over squares of size 21x21 pixels with centers
in wells (green circles) and then calculated the relative
fluorescent intensity of induced and non-induced wells.
Based on the relative fluorescent intensity, GFP expres-
sion level of the induced cells was 8.6 times higher than
the non-induced cells. The results of our on-chip evalu-
ation clearly show that the cells containing de novo syn-
thesized DNA molecules encoding gfp, express GEFP
protein after induction by IPTG.

MBTH assay
Isopentenol is an excellent alternative to fossil fuels [25].
However, it is not widely produced by natural micro-
organisms. Recently the E. coli DH1 (pBbA5c-MevTsa-
MKco-PMK and pTrc99A-NudB-PMD) strain, capable
of isopentenol production, was developed [25]. To dem-
onstrate the automated screening capabilities of our
microfluidic platform, we grew the isopentenol-producing
E. coli in shake-flask cultures, induced production of iso-
pentenol with six different concentrations of IPTG for
48 h, took aliquots of the cultures, and placed the aliquots
in the wells of the chip to determine the levels of isopente-
nol produced using the colorimetric MTBH assay [26].
After the MTBH assay we captured the bright field
image of the chip. The isopentenol concentrations were
determined based on measurement of pixel intensities
within a 21x21 pixel region in the center of each well
(blue circles, Additional file 1: Figure S14). Based on the
standard curves of the relative intensities, derived from
image analysis, we found exponential functions mapping
the intensity ratios to the isopentenol concentration
and created a curve demonstrating the isopentenol
production as a function of IPTG concentration. The
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chip-based measurements were validated using a con-
ventional plate reader to measure the absorption (at a
wavelength of 620 nm) of the MTBH assay samples
(Additional file 1: Figure S14).

Conclusions

Synthetic biology aims to engineer biological systems
with desired functions. Construction of these systems is
a complex process, often requiring genetic reprogram-
ming, extensive de novo DNA synthesis, and functional
screening. The present study was inspired by an ap-
proach widely used in engineering disciplines for the de-
velopment and optimization of new systems, namely the
integration of design, construction, testing, and analysis
steps (Fig. 1). Adoption of this approach promises to en-
hance and optimize synthetic biology research, reduce
time to product and make the development of biological
systems fast, inexpensive, and robust. Herein, we have
demonstrated the application of this strategy to synthetic
biology research, integrating it with microfluidic technol-
ogy and laboratory automation.

The multipurpose programmable microfluidic platform
reported here is a full implementation of the Lab-on-a-
Chip paradigm (Fig. 6). We have established the feasibility
of the platform by on-chip demonstration of all key steps
of the biological product development cycle: design and
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construction of DNA molecules and combinatorial DNA
libraries, subsequent host transformation, induction of
protein expression, and screening for desired functionality.
The automated protocols implemented on our platform
are readily adaptable to a broad range of synthetic biology
procedures and host organisms for development of new
biological systems, beyond the specific applications to iso-
pentenol production and GFP expression presented here.
As part of this work, we report a new software tool
for efficient DNA construction design as well as a
novel method of de novo DNA assembly, Isothermal
Hierarchical DNA Construction (IHDC), specifically de-
veloped for the microfluidic environment.

The adaptation of protocols for these operations is
facilitated on our platform, as it was especially designed
to allow various operations with cells and it has a cap-
ability to work in nano- and micro-liter scales. It would
potentially cost millions of dollars to purchase trad-
itional liquid handling robots and reagents to perform
similar functions at the large (and wasteful) volume scales
(see Additional file 1 for time and cost points of compari-
son with conventional laboratory automation systems).
Implementation of the complete process on our multipur-
pose programmable microfluidic platform, resulting in the
desired phenotype, demonstrates its capability to provide
an end-to-end solution for synthetic biology research. The
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Fig. 6 Representation of the microfluidics platform’s functional modules. The platform is built from microfluidic and computational modules
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ability to perform diverse sample processing operations in
a common microfluidic format promotes the integration
of microfluidics technology with synthetic biology towards
the efficient and robust development of new biological
systems.

Methods

Microfluidic device fabrication and liquid transfer control
The 32-bit, digitally programmable microfluidic platform
was fabricated as a 3-layer glass PDMS (polydimethylsi-
loxane) hybrid structure. Device features were etched
into glass wafers using conventional photolithography and
wet chemical etching. Briefly, 1.1 mm-thick 100 mm-
diameter borosilicate glass wafers were coated with
200 nm of amorphous polysilicon using low-pressure
chemical vapor deposition. The wafers were then spin-
coated with positive photoresist, soft baked, and patterned
with the device design using a contact aligner and a
chrome mask. After development and removal of irradi-
ated photoresist, the exposed polysilicon regions were
removed by etching in SF6 plasma and the exposed
regions of glass were isotropically etched in 49 % hydro-
fluoric acid to a depth of 70 pum for the pneumatic layer
and 30 microns for the fluidic layer. After stripping the
remaining photoresist and polysilicon layers, the wafers
were diamond-drilled to produce 500 pm-diameter holes
for pneumatic input connections. The wafers were then
bonded together using a 254 pm-thick PDMS elastomer
membrane (HT-6240, Rogers Corporation, Binghamton,
NY). To create fluidic reservoirs, holes were punched into
3 mm thick pieces of PDMS, and aligned with each of the
sixteen, drilled, fluidic inputs on the array. The use of sim-
pler fabrication methods could open up the technology to
more users.

The pneumatically actuated, 2D microvalve array en-
ables discrete transfer of fluids between microvalves
within the array. Each monolithic membrane microvalve
consists of an etched displacement chamber in the pneu-
matic layer aligned with a discontinuous microchannel
in the fluidic layer. Application of vacuum pulls the
PDMS membrane away from the discontinuity, resulting
in fluid flow and filling of the microvalves with fluid.
Microvalves are actuated by vacuum (-87 kPa) and a
closing pressure of 35 kPa is applied to improve the effi-
ciency of the fluidic transfer and mixing operations.
Computer controlled solenoid valves were used for de-
livery of the microvalve actuation pressure.

When transferring reagents to a specific destination,
the PR-PR compiler calculates the shortest pathway
through the digital 2D microvalve array, represented as
graph, and also calculates the number of transfer cycles
required for a specific final volume given that each cycle
transfers 150 nL. By sequentially opening and closing a
series of microvalves in the array, discrete volumes of
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fluid are transferred through predefined pathways. By
iterating this process and increasing the number of cycles,
larger volumes are programmably transferred between
reservoirs. The rate of transfer is determined by the
microvalve actuation time, which can be defined once per
reagent or redefined in each transfer command. The fluid
transfer rate through the microvalve array depends on
reagent properties. For instance, the enzyme mixture
requires longer actuation times than water due to its
viscosity.

Since multiple distinct source-to-destination fluid
transfers may be potentially sequentially routed through
the same pathway segment within the device, this opens
the possibility of residue from a previous transfer con-
taminating a subsequent transfer. Particular applications
(whether molecular or microbial) could be significantly
impacted by small concentrations of contaminants. While
in the work presented here, and in previous work [16],
cross-contamination does not appear to have impacted
our results, this only suggests that contamination was
below our threshold of detection. To mitigate cross-
contamination concerns for sensitive applications, it
would be possible to wash pathways through the device
with buffer between reagent transfers. In previous publica-
tions, we characterized the valving efficiency and rinsing
efficiency for a broad range of sample processing pro-
cedures using 2D microvalve array technology, effect-
ively eliminating cross contamination between operations
[10, 12, 13].

DNA constructor

DNA Constructor automatically generates optimized,
hierarchical DNA assembly protocols. The application ser-
ver is written in Python using the Django web framework,
and generated protocols are saved in a SQLite3 database
hosted on the JBEI server (http://dnaconstructor.jbei.org).
DNA Constructor receives as input a nucleotide sequence
or set of sequences that the user wishes to assemble,
expressed in a novel scripting language that has been de-
veloped to support the software. Users can define string
variables (DNA Parts) consisting of the DNA alphabet.
DNA Constructor allows for the concatenation of string
variables with other strings and sub-strings. This allows
for the rapid specification of DNA chimeras, mutants, and
DNA libraries, in an intuitive and human-readable way
(Additional file 1: Figure S6).

DNA is simply expressed as nucleotide strings sur-
rounded by single or double quotation marks. DNA Part
declarations come in the form of an unquoted DNA Part
name, followed by an equal sign and a DNA sequence or
definition. A plus sign between DNA Parts indicates
concatenation of DNA sequences. Brackets after a DNA
Part name generate a subsequence from the hyphen-sepa-
rated indices within the brackets. For example, Seq2
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=Seql[5-10] will set the value of the DNA Part Seq2
to nucleotides 5 through 10 (inclusive) of Seql. To
modify (mutate) a subsequence of the sequence in a DNA
Part, the construct Part name([startIndex-endIndex] =
DNA) can be used. This will set the sequence of Part_-
name between the specified start and end indices to DNA
sequence, which is either a DNA Part name or string of
nucleotides. Finally, the target sequences of an assembly
protocol can be set by setting the ‘targets’ variable to a se-
quence or comma-separated list of sequences.

Upon receiving an input sequence or list of sequences,
DNA Constructor uses a novel algorithm to recursively
divide the inputs into smaller and smaller pieces until it
is left with a list of oligos that are small enough to be
synthesized (the threshold for synthesis length is speci-
fied by the user). Each target sequence is split into two
intermediate assembly fragments, or child sequences. To
determine where to divide a sequence into its children,
the algorithm begins in the middle of the sequence and
works outward. At each potential division point, the
software iterates over the possible overlap regions be-
tween child sequences (minimum and maximum overlap
lengths are specified by the user as well). Each allowed
overlap is given a score based on the likelihood of un-
desirable non-specific sequence interactions as deter-
mined by sequence similarity between non-overlap
regions of the child fragments. After iterating over these
possible overlaps, the algorithm picks the division point
and overlap size with the lowest non-specific interaction
score. When a division point has been chosen, this same
algorithm is applied to the two child sequences created
by the division until they are small enough to be synthe-
sized directly. By choosing a division point as close as
possible to the center of a DNA sequence fragment, the
algorithm creates the most symmetrical assembly tree
possible. This results in a protocol involving the lowest
total number of reactions, and therefore the least amount
of work. When the division algorithm has generated an as-
sembly tree with all the ‘leaf’ sequences small enough to
synthesize, it picks primers for every reaction in the proto-
col. Starting at the root nodes of the tree, DNA Con-
structor generates primers for the assembly reaction
involving the two children of every node. Primers are
picked by iterating over the possible primer sizes, as deter-
mined by user-specified maxima and minima, and calcu-
lating the pairwise alignment score of each potential
primer against its template. Primer candidates that have
too many matches in their 3’ ends are discarded. As the
algorithm moves down the tree, child nodes can inherit
either their parent’s forward or reverse primer, depending
on which side of the parent sequence they form. This
allows for primer re-use in large assembly reactions.

In the case where combinatorial DNA library specified
as targets, the software uses a MUSCLE alignment [27]
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to determine if the targets have any overlapping regions.
If a large overlap is found between targets, this overlap
sequence is used as an intermediate target in the assembly
reaction for all the targets. This minimizes redundancy in
the construction of multiple similar target sequences,
resulting in reduced synthesis cost and reaction time
and effort.

DNA Constructor additionally supports the use of
“Natural Fragments” [28], which are meant to represent
sequences that the user already has in storage and are
available for use as an assembly intermediate. When
natural fragments are specified by the user, the division
algorithm aligns them with the target sequences to en-
sure that they are true subsequences of the targets. The
software will then attempt to divide the targets in such a
way that the Natural Fragments can be used in their en-
tirety as leaf nodes of the assembly tree. This allows
users to utilize their existing resources to assemble new
pieces of DNA, reducing labor and the potential for
errors.

The final result of DNA Constructor is an optimized
hierarchical DNA construction protocol and outputs a
visual representation of the protocol in the form of an
interactive reaction tree (Additional file 1: Figures S3
and S4), implemented using the DOT language used by
the Graphviz visualization software [29]. This DOT
string is passed on to the client-side Javascript, which
uses the canviz.js [30] library to display the tree and
allow interactive functionality. Non-leaf nodes in the tree
represent individual synthesis reactions, while leaf nodes
are oligonucleotides that must be directly synthesized or
available natural fragments. Data that are not directly
displayed in the tree (such as the primer sequences for
each reaction, and the length of the target sequence) are
saved in a SQLite database and can be accessed by click-
ing on individual nodes in the tree or exported and
downloaded in FASTA file format.

DNA Constructor is open-source software under the
BSD license, is freely available from GitHub https://
github.com/JBEI/dna-constructor, and is also available
through its web interface on the public DNA Constructor
webserver http://dnaconstructor.jbei.org.

DNA Constructor’s database implementation gives it
considerable potential to be integrated with other DNA
assembly automation platforms, such as j5/DeviceEditor
[23, 24] and laboratory automation operation systems
such as PR-PR http://prpr.jbeiorg [16, 17]. All input
scripts used herein for DNA Constructor are available
from within Additional file 2. All input scripts used herein
for PR-PR are available from within Additional file 3.

Isothermal hierarchical DNA construction (IHDC)
A basic step of the IHDC on the Microfluidics platform
is composed of liquid transfers of the following
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components to the reactor well (Fig. 4): two DNA frag-
ments from previous steps or oligos (0.2 pmol/pL) 1 pL
each, two Primers (0.2 pmol/pL) 2 pL each, mixture of
ATP 100 mM (Thermo Scientific) 0.3 pL with magne-
sium acetate (280 mM) 1.2 pL and enzymes mixture in
reaction buffer (TwisDX) 15 pL. Enzyme mixture was
prepared by addition of 80 pL rehydration buffer to one
tube with lyophilized enzymes. After the reaction assem-
bly the temperature was increased to 38 °C and the reac-
tion is incubated for 15 min. As a result, an elongated
and amplified DNA fragment is received and is ready to
be used as an input at the next iteration of the IHDC
hierarchical process according to the construction tree.
The hierarchical construction process is continued this
way until the desired DNA molecule is received. The se-
quences of the DNA primers and oligos used in the con-
struction of gfp and rfp are shown in Tables 1, 2, 3 and 4.

DNA plasmids

All DNA plasmids used in this study (Table 5) are
available from the JBEI public registry [31] in collection
https://public-registry.jbei.org/folders/160.

Digestion of pETBlue-1 plasmid by EcoRV

Four 20 pL EcoRV digestion reactions each consisting of
15 pL purified plasmid pETBlue-1 (100 ng/pL), 2 pL
CutSmart™ Buffer, 1 uL. EcoRV-HF (NEB) (20 units/pL),
and 2 pL deionized water were assembled on chip. The
plasmid was loaded into four input wells and the reac-
tion mixture of enzyme buffer and water were trans-
ferred automatically on-chip and mixed with the
plasmid. The digestion mixture was incubated for 1 h at
37 °C. Digested samples were combined and purified by
PCR purification kit (Qiagen) according to the manufac-
turer’s protocol.

Gibson assembly

We have adapted the Gibson DNA assembly method
to our microfluidic platform and integrated it with
our IHDC method. The output DNA fragments of
IHDC were designed to be compatible with the Gibson

Table 1 gfp primers

ofp_Prm_1_F TTAAGAAGGAGATATAGATATGAGCAAAGGAGAAGAAC
gfp_Prm_2_R CATAGGTCAGAGTAGTGACAAGTGTTGGCCACGGAACA
GGTAGT

ofp_Prm_3_F CCTGTTCCGTGGCCAACACTTGTCACTACTCTGACCTA
gfp_Prm_4_R CTTTAACTCGATACGATTAACAAGGGTATCACCTTCAAAC
gfp_Prm_5_F GTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAA
ofp_Prm_6_R TATTTTGTTGATAATGGTCTGCTAGTTGAACGGAACCA
gfp_Prm_7_F GATGGTTCCGTTCAACTAGCAGACCATTATCAACAAAAT

ACTCCA

gfp_Prm_8_R CCCGGGCAGGAATTCGATTTATTTGTAGAGCTCATCCAT
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Table 2 gfp oligos
gfp_Olig_1

TTAAGAAGGAGATATAGATATGAGCAAAGGAGAA
GAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAA
TTAGATGGTGATGTTAATGGGCACAAATTTTCTGTC
CGTGGAGAGGGTGAAGGTGATGC

CATAGGTCAGAGTAGTGACAAGTGTTGGCCACGG
AACAGGTAGTTTTCCAGTAGTGCAAATAAATTTAA
GGGTGAGTTTTCCGTTTGTAGCATCACCTTCACCCT
CTCCACGGACAGAAAATTTGTGCC

CCTGTTCCGTGGCCAACACTTGTCACTACTCTGAC
CTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCA
CATGAAACGGCATGACTTTTTCAAGAGTGCCATGC
CCGAAGGTTATGTACAGGAACGC

CTTTAACTCGATACGATTAACAAGGGTATCACCTTC
AAACTTGACTTCAGCACGCGTCTTGTAGGTCCCGTC
ATCTTTGAAAGATATAGTGCGTTCCTGTACATAACC
TTCGGGCATGGCACTCTTGAAA

GTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTA
AAGGGTATTGATTTTAAAGAAGATGGAAACATTCTT
GGACACAAACTCGAGTACAACTTTAACTCACACAAT
GTATACATCACGGCAGACAA

TATTTTGTTGATAATGGTCTGCTAGTTGAACGGAACC
ATCTTCAACGTTGTGGCGAATTTTGAAGTTAGCTTTG
ATTCCATTC GTTTGTCTGCCGTGATGTATACATT
GTGTGAGTTAAAGTTGT

GATGGTTCCGTTCAACTAGCAGACCATTATCAACAA
AATACTCCAATTGGCGATGGCCCTGTCCTTTTACCA
GACAACCATTACCTGTCGACACAATCTGTCCTTTCG
AAAGATCCCAACGAAAAGCGT

CCCGGGCAGGAATTCGATTTATTTGTAGAGCTCATC
CATGCCATGTGTAATCCCAGCAGCAGTTACAAACTC
AAGAAGGACCATGTGGTCACGCTTTTCGTTGGGATC
TTTCGAAAGGACAGATTGTGTC

ofp_Olig_2

gfp_Olig_3

gfp_Olig_4

ofp_Olig_5

gfp_Olig_6

ofp_Olig_7

ofp_Olig_8

method. We showed construction of pETBlue-GFP
and pETBlue-RFP plasmids on our platform. For two-
fragment assembly, we loaded either two halves of gfp
or full-length rfp constructed by IHDC, and digested
pETBlue-1 plasmid, into the device’s input wells. We
transferred automatically to the reaction well 2 uL of each
fragment, 1 pL of digested backbone, and 5 pL of Gibson
Assembly mix (New England Biolabs). The scheme of the
automated program for Gibson assembly is shown in
Additional file 1: Figure S8. After the assembly reactions
were prepared, the reactions were incubated at 50 °C for
30 min on-chip. Circularized pETBlue-GFP and pETBlue-
RFP plasmids containing de novo synthesized GFP and
RFP DNA fragments, ready for transformation, result.

Table 3 rfp primers
rfp_Prm_1_F_int ttaagaaggagatatagatATGGCGAGTAGCGAAGACGTTATC

AAAGAGTTCATGCG

rfp_Prm_2_R TAGATGAACTCACCGTCTTGCAGGGAGGAGTCCTGGGTA
ACG

rfp_Prm_3_F TTACCCAGGACTCCTCCCTGCAAGACGGTGAGTTCATC

rfp_Prm_4_R_int cccgggcaggaattcgatT TAAGCACCGGTGGAGTGACGAC

CTTCAGCACGTTCGT
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Table 4 fp oligos

rfp_Olig_1 ATGGCGAGTAGCGAAGACGTTATCAAAGAGTTCATGCGTTTC
AAAGTTCGTATGGAAGGTTCCGTTAACGGTCACGAGTTCGAAA
TCGAAGGTGAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGA
CCGCTAAACTGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGC
TTGGGACATCCTGTCCCCGCAGTTCCAGT

rfp_Olig_2 TAGATGAACTCACCGTCTTGCAGGGAGGAGTCCTGGGTAACGG
TAACAACACCACCGTCTTCGAAGTTCATAACACGTTCCCATTTG
AAACCTTCCGGGAAGGACAGTTTCAGGTAGTCCGGGATGTCAG
CCGGGTGTTTAACGTAAGCTTTGGAACCGTACTGGAACTGCGG
GGACAGGATGTCCCAAGCGAACGGCAG

rfp_Olig_3 TTACCCAGGACTCCTCCCTGCAAGACGGTGAGTTCATCTACAAA
GTTAAACTGCGTGGTACCAACTTCCCGTCCGACGGTCCGGTTAT
GCAGAAAAAAACCATGGGTTGGGAAGCTTCCACCGAACGTATG
TACCCGGAAGACGGTGCTCTGAAAGGTGAAATCAAAATGCGTC
TGAAACTGAAAGACGGTGGTCACTA

rfp_Olig_4 TTAAGCACCGGTGGAGTGACGACCTTCAGCACGTTCGTACTGTT
CAACGATGGTGTAGTCTTCGTTGTGGGAGGTGATGTCCAGTTTG
ATGTCGGTTTTGTAAGCACCCGGCAGCTGAACCGGTTTTTTAGC
CATGTAGGTGGTTTTAACTTCAGCGTCGTAGTGACCACCGTCTTT
CAGTTTCAGACGCATTTTGATTT

Transformation to E. coli

We have transformed the newly assembled pETBlue-
GFP and pETBlue-RFP plasmids into E. coli host cells
Tuner (DE3) pLacl (Novagen). For each transformation
14 pL of the chemically competent E. coli cells and 1 pL
of the Gibson assembly mixture (i.e., pETBlue-GFP or
pETBlue-REP plasmids) were loaded into the microflui-
dic chip when it was cooled down to 0 °C. The compe-
tent E. coli cells were transferred to the wells containing
the DNA plasmids (Additional file 1: Figure S9). The
DNA and the cells were incubated for 10 min at 0 °C
and then the heat shock was performed at 42 °C for
45 s. Then the transformation mixture was cooled to
room temperature and the cells were incubated off-chip
with 100 pL SOC medium for a half an hour at 37 °C.
Ultimately all the cells were plated on LB-Amp agar
plates and incubated at 37 °C overnight to produce col-
onies of transformed E. coli containing desired plasmids.

Golden gate assembly

We have previously completed the construction of a 16-
variant DNA library on microfluidics platforms [16]. We
amplified all the DNA fragments, defined in the library:
Promoters, BCD_GFP and Plasmid backbone by PCR.
The methylated templates (plasmids) were digested by
Dpnl. All the amplified fragments designed with recog-
nition sites for Bsal. We digested the ends of the frag-
ments by Bsal and used these digested fragments with
sticky ends to construct a full combinatorial library
using the combinatorial assembly protocol (Additional
file 1: Figure S10) on our programmable microfluidic
platform. We created a protocol in PR-PR that describes
reagents flow for construction of combinatorial library
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with two variable fragments and one shared fragment by
the Golden Gate assembly method. Each reaction con-
tains three components: 1 pL Bsal-digested promoter
fragment, 1 pL Bsal-digested BCD variant fragment and
8 uL ligation reaction master mix containing 1 pL Bsal-
digested vector backbone, 1 pL of T4 ligase enzyme
(Thermo Scientific), 1 uL of T4 ligase buffer, and 5 pL
deionized water. The reactions were incubated for
30 min at room temperature. The chip was preloaded
with ligation reaction master mix in each reaction wells
and the promoters and BCD were transferred automatic-
ally according the protocol in combinatorial way. Given
the limited number of input and output wells available
on the microfluidic device, we executed the microfluidic
DNA assembly protocol twice, first assembling the first 8
constructs (pProm1_BCD1-GFP ... pProm2_BCD21-GFP)
and then assembling the last 8 constructs (pProm9_BCD
1-GFP ... pProm11_BCD21-GFP).

MBTH assay

To demonstrate an automated microbial product screen-
ing assay using our microfluidics platform, we grew E.
coli DH1 harboring plasmids pBbA5c-MevTIsa-MKco-
PMK and pTrc99A-NudB-PMD [25], induced the pro-
duction of isopentenol by adding different levels of
IPTG, and measured on-chip the isopentenol concentra-
tion using a colorimetric MBTH assay. For the MBTH
assay, 3 mg/ml 3-methyl-2-benzothiazol-inone hydra-
zone hydrochloride hydrate (MBTH) solution, and acid
solution (5 mg/mL sulfamic acid and 5 mg/mL ammo-
nium iron (III) solfate dodecahydrate), were prepared.
The isopentenol-production cell culture samples were
inoculated when OD600 reached 0.4 and induced with
IPTG to a final concentration ranging from 0.01 uM to
1 uM. 48 h after induction, cell cultures were centri-
fuged to obtain the supernatant. 10 pL of the superna-
tants of each of the six culture samples, and MBTH
solution and acid solution were loaded to designated
wells of the microfluidic platform, allowing automated
programed serial reactions. Firstly, 4 pL. MBTH solution
was transferred to the sample wells, incubated at room
temperature for 15 min. 10 uL acid solution was then
added to this mixture. After 20 min we observed devel-
opment of blue color of various intensities, indicating
production of isopentenol. After the two incubations, we
took a picture of the chip for image analysis (Additional
file 1: Figure S14) and also we took 2 pL samples of the
mixture and measure absorbance at 620 nm using the
Nanodrop (Thermo Fisher Scientific). The same protocol
was also used to obtain readings for the isopentenol
standards. The isopentenol standards were prepared by
5 times two-fold serial dilutions from 125 mg/L to
3.9 mg/L.
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Table 5 Plasmids used in this study
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JBEI Registry ID Name Details Source
JPUB_004942 pETBlue-RFP RFP cloned in pETBlue vector in the EcoRV cloning site This study
JPUB_004941 pETBlue-GFP GFP cloned in pETBlue vector in the EcoRV cloning site This study
JPUB_004940 pRS426-yeGFP pRS426 shuttle vector with URA3 marker and gfp JBEI
JPUB_004949 pRS426-Ptef1-100-yeGFP pRS426 with GFP and Ptef1-100 promoter This study
JPUB_004948 pPRS426-Ptef1-250-yeGFP pRS426 with GFP and Ptef1-250 promoter This study
JPUB_004947 pRS426-Pspo13-100-yeGFP pRS426 with GFP and Pspo13-100 promoter This study
JPUB_004946 pRS426-Pspo13-250-yeGFP pRS426 with GFP and Pspo13-250 promoter This study
JPUB_004945 pPRS426-Pleu2-250-yeGFP pRS426 with GFP and Pleu2-250 promoter This study
JPUB_004944 pRS426-Pgal1-100-yeGFP pRS426 with GFP and Pgal1-100 promoter This study
JPUB_004943 pRS426-Pgal 1-250-yeGFP pRS426 with GFP and Pgal1-250 promoter This study
JPUB_004939 pETBlue-1 The pETBlue vector allows blue/white screening and Novagen
also has T7lac promoter for expression of target genes
JPUB_004964 pProm11_BCD1-GFP Promoter11 with BCD1-gfp [16]
JPUB_004963 pProm9_BCD1-GFP Promoter9 with BCD1-gfp [16]
JPUB_004962 pProm2_BCD1-GFP Promoter2 with BCD1-gfp [é]
JPUB_004961 pProm1_BCD21-GFP Promoter1 with BCD21-gfp [16]
JPUB_004960 pProm1_BCD20-GFP Promoter1 with BCD20-gfp [16]
JPUB_004959 pProm1_BCD2-GFP Promoter1 with BCD2-gfp [16]
JPUB_004958 pProm1_BCD1-GFP Promoter1 with BCD1-gfp [16]
JPUB_004957 pProm11_BCD21-GFP Promoter11 with BCD21-gfp [16]
JPUB_004956 pProm11_BCD20-GFP Promoter11 with BCD20-gfp [16]
JPUB_004955 pProm11_BCD2-GFP Promoter11 with BCD2-gfp [16]
JPUB_004954 pProm9_BCD21-GFP Promoter9 with BCD21-gfp [16]
JPUB_004953 pProm9_BCD20-GFP Promoter9 with BCD20-gfp (6]
JPUB_004952 pProm9_BCD2-GFP Promoter9 with BCD2-gfp [16]
JPUB_004951 pProm2_BCD21-GFP Promoter2 with BCD21-gfp [16]
JPUB_004950 pProm2_BCD2-GFP Promoter2 with BCD2-gfp [é]
JPUB_004950 pProm2_BCD20-GFP Promoter2 with BCD20-gfp [16]
JPUB_004938 pTrc99A-NudB-PMD PMD cloned downstream NudB [25]
JPUB_004937 MevTsa-MKco-PMKco MevTsa with MKco-PMKco [25]

Amplification of yeast promoters

Template preparation: we picked a small colony of S.
cerevisiae by sterile pipette tip and washed it in 10 uL of
0.02 M NaOH in a PCR tube. The sample was boiled for
10 min at 99 °C. Amplification conditions: 50 puL PCR
reactions consisted of 2.5 puL. (2.5 uM) of each forward and
reverse primer, 1 uL template, 1 uL. dNTPs (10 mM),
0.5 pL high fidelity phusion polymerase (Thermo Fisher
Scientific), 10 pL 5x high fidelity phusion buffer, and
32.5 uL deionized water. PCR thermocycling conditions
were used: denaturation at 98 °C for 30 s, 30 cycles of
denaturation at 98 °C for 20s, annealing at 60 °C for 20 s,
and elongation at 72 °C for 30 s and a final extension at
72 °C for 3 min. The primers are shown in Table 6.

Digestion of pRS426-yeGFP plasmid by Eagl

50 pL Eagl (NEB) digestion reactions consisting of 20 pL
purified plasmid pRS426 (100 ng/pL), 5 pL CutSmart™
Buffer, Eagl-HF (20 units/puL) 1 pL and 24 uL deionized
water. The digestion mixture was incubated for 1 h at
37 °C. Eagl was deactivated at 65 °C for 20 min. Digested
samples were purified by PCR purification kit (Qiagen)
according to manufacturer’s protocol.

Assembly and transformation to yeast

As a backbone for in vivo DNA construction, we used
plasmid pRS426, which was linearized on-chip by Eagl
restriction enzyme. After restriction the purified plasmid
and each purified promoter amplicons separately were
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Table 6 DNA primers used to amplify yeast promoters

Pgal1-250 F GGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTG
GAGCACGAATCAAATTAACAACCA

Pgal1-100 F GGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGT
GGAGCATTTTCAGTTTGTATTACTT

Pgall-R TTGGGACAACACCAGTGAATAATTCTTCACCTTTAGA
CATTATAGTTTTTTCTCCTTGAC

Pleu2-250 F GGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGT
GGAGCGCATATACCTTTTTCAACTG

Pleu2-100 F GGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGT
GGAGCTTTTCCAATAGGTGGTTAGC

Pleu2-R TTGGGACAACACCAGTGAATAATTCTTCACCTTTAG
ACATTAGAATGGTATATCCTTGAA

Psp013-250 F GGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGT
GGAGCTATTTACACATCTAATTTTT

Pspo13-100 F GGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGT
GGAGCAAATAGCCGCCGACAAAAAG

Pspo13-R TTGGGACAACACCAGTGAATAATTCTTCACCTTTAG
ACATAATTATTCTCGACTCAACTT

Ptef1-250 F GGATCCACTAGTTCTAGAGCGGCCGCCACCGCGG
TGGAGCAAAAGAGACCGCCTCGTTTC

Ptef1-100 F GGATCCACTAGTTCTAGAGCGGCCGCCACCGCGG
TGGAGCTCAAGTTTCAGTTTCATTTT

Ptefl-R TTGGGACAACACCAGTGAATAATTCTTCACCTTTA
GACATTTTGTAATTAAAACTTAGAT

mixed with Salmon sperm DNA as a carrier (Clontech).
The yeast cells were grown overnight in 100 ml 2xYPAD
medium on a rotary shaker at 200 rpm and 30 °C,
washed twice in sterile water and re-suspended in 25 %
PEG 400 and 0.1 M lithium acetate (LiAc) solution. The
DNA mixture and cell solution were loaded to the input
wells on-chip. The competent S. cerevisiae cells were
transferred to wells with preloaded DNA mixture atomic-
ally according to the PR-PR protocol. After the cell trans-
fer, the chip was incubated for two hours at 42 °C. After
the incubation, the S. cerevisiae cells were plated onto rich
medium lacking uracil and cultured overnight to produce
colonies of cells expressing GFP.

Image analysis

Image analysis for phenotype screening assay

After construction of gfp and transformation into E. coli,
we estimated the GFP expression levels by the engi-
neered E. coli cells and analyzed the image of the chip
with 6 wells containing induced cells and 6 wells con-
taining non-induced cells. We measured the intensity
average over squares of size 21x21 pixels with centers in
wells (green circles) and then calculated the relative in-
tensities in linear space of the induced and non-induced
wells. We used only the Green value of (R,G,B). The
average brightness for induced wells was 0.326 and for
non-induced wells was 0.0377, an 8.6-fold difference.
The observed brightness data is shown in Table 7. Note

Page 13 of 15

Table 7 Observed brightness data for on-chip phenotype
screening assay

Induced

Well Num. Brightness
0.3527

3 03623

5 0.3003

7 0.3047

9 03138

1 0.3220

Average 0.3260

Non-induced

Well Num. Brightness

2 0.0298

4 0.0433

6 0.0273

8 0.0421

10 0.0394

12 0.0445

Average 0.0377

that while this image analysis (and that described im-
mediately below for the MTBH assay) both utilize pixel
intensities (scalar values), it would be possible to imple-
ment a colorimetric assay by comparative analysis of the
intensities of each R/G/B channel (vector values).

Image analysis for MTBH assay

After the MTBH assay, we captured bright field image
of the chip. To determine isopentenol concentrations,
produced by E. coli after the IPTG induction, based on
analysis of pixel intensities, we analyzed the image of the
chip after MTBH assay and measured the intensities
within a 21x21 pixel region in the center of each well
(blue circles, Additional file 1: Figure S14). Based on
image analysis we have built the MTBH assay calibration
curve: we found exponential function mapping the pixel
intensity ratios to the isopentenol concentrations (IC).

Table 8 Calibration curve data for on-chip isopentenol MTBH

assay

Intensity Isopentenol (mg/L)
0.0682 391

0.0287 7.81

0.0162 156

0.0086 31

0.0043 63

0.0035 130
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Table 9 Experiment results for on-chip isopentenol MTBH assay

IPTG uM Intensity Isopentenol mg/L
0.01 0.2028 00178

0.05 0.1011 1911

0.1 0.0575 14.2

0.2 0.0437 26.8

0.5 0.0155 97.8

1 0.0077 140

The function is IC = 6*107 9972 (1ntesity) The calibra-
tion curve data is shown in Table 8. The results of the
MTBH assay experiment are shown in Table 9.

Based on this mapping function we then calculated
the isopentenol concentration received from induced
production of isopentenol in E. coli strain by different
levels of IPTG: we measured the pixel intensities from
the image received after the MTBH assay on-chip and
calculated the isopentenol concentrations using the ex-
ponential function, factoring by 3.6 to compensate the
image brightness. Then we compared the results of our
image analysis method to a well-defined method of
isopentenol concentrations measurement, using OD620
absorbance after the MTBH assay: based on a calibration
curve we have found a function mapping the OD620
to isopentenol concentrations - IC = 3.2809¢”*°12'0P620
(Table 10) and calculated the actual isopentenol con-
centrations received after IPTG induction (Table 11). Both
measurement methods have shown similar correlation
between IPTG and isopentenol production by E. coli.

Experiment setup and workflow

1. Analysis of experiment and implementation of its
protocol as PR-PR script
a. Division of protocols into procedures and into
basic transfer steps
b. Writing the PR-PR script and compilation into
microfluidics program
2. Preparation of the microfluidics chip
a. Washing the chip with water

Table 10 Calibration curve data for off-chip isopentenol MTBH

assay

0D620 Isopentenol (mg/L)
0.052 39

0.101 7.81

0.188 156

0.296 313

0412 62.5

0487 125
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Table 11 Experiment results for off-chip isopentenol MTBH

assay

IPTG uM 0D620 Isopentenol mg/L
0.01 0014 36

0.05 0.079 59

0.1 0.127 845

0.2 0.179 125

0.5 0456 98.1

1 0.506 142

b. Loading the chip with reagents according to the
PR-PR script
3. Running the experiment
a. Automated execution of the experiment: reagents
transfer, incubation, and image capture
b. Collection of processed samples from the chip
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Platform schematic. Figure S2. Valve actuation and peristaltic liquid
movement. Figure S3. Construction of gfp. Figure S4. Construction of rfp.
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DNA Constructor syntax. Figure S7. EcoRV digestion of pETBlue < 1
plasmid. Figure S8. Gibson Assembly. Figure S9. Transformation. Figure
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Yeast promoter library transformation and assessment. Figure S12. Screen
for GFP < positive clones following pETBLUE < GFP transformation into E.
coli. Figure S13. Induction of GFP expression on < chip. Figure S14. MBTH
assay. Figure S15. Demonstration of a complete process imparting a
desired function into E. coli. (PDF 3879 kb)

Additional file 2: DNAConstructor scripts.zip. Zip file containing files
gfp_DNAConstructor.txt and rfp_DNAConstructor.txt, input script files for
DNA Constructor. (ZIP 1.7 kb)

Additional file 3: PR-PR scripts.zip. Zip file containing files
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