
REVIEW Open Access

The extracellular microscape governs
mesenchymal stem cell fate
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Abstract

Each cell forever interacts with its extracellular matrix (ECM); a stem cell relies on this interaction to guide
differentiation. The stiffness, nanotopography, protein composition, stress and strain inherent to any given ECM
influences stem cell lineage commitment. This interaction is dynamic, multidimensional and reciprocally evolving
through time, and from this concerted exchange the macroscopic tissues that comprise living organisms are
formed. Mesenchymal stem cells can give rise to bone, cartilage, tendon and muscle; thus attempts to manipulate
their differentiation must heed the physical properties of incredibly complex native microenvironments to realize
regenerative goals.
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Background
Stem cell fate was long assumed to rely solely on bio-
chemical messengers, yet the story of cellular differenti-
ation is now proving much more intricate than initially
theorized. As early as 1898 Councilman described cellu-
lar chemotaxis in the setting of acute interstitial neph-
ritis and postulated that soluble substances in certain
locations were responsible for the development of
lymphoid foci [1]. Later studies in the 1970’s identified
biochemical factors responsible for cellular migration in
cancer models [2], and further research in the following
decade described the molecular signals necessary for the
induction of differentiation in T cells and glial progeni-
tors, respectively [3, 4]. Still later studies demonstrated
the powerful capacity of a biologically-inspired chemical
signal gradient to induce cellular migration and differen-
tiation [5–7]. Because of this pattern of accumulated
knowledge, the potential for biochemical signals to
induce stem cell migration, differentiation and prolifera-
tion has been appreciated for many years and early inti-
mations regarding mechanically-directed behaviour drew
less notice [8].
Although historically less recognized, clues to the im-

portance of physical properties in tissue development

are ubiquitous in nature. Life uses malleable muscles to
lever tendons across rigid joints, it creates discreet
neuromuscular junctions from tissues with markedly
different physical properties and it protects an intricate,
delicate neural apparatus with rigid bony structure. But
perhaps most relevant to regenerative medicine, patho-
physiological states are often defined by an altered
mechanical microenvironment. Gliosis following a cere-
brovascular insult, fibrosis after a myocardial infarction
and collagen deposition after epithelial disruption all for-
ever alter the mechanical microenvironment experienced
by individual cells resident to those tissues [9]. This
shifting mechanical microscape makes it all the more
necessary for therapies intent on rectifying pathology to
prepare for the inductive properties inherent to the
pathophysiological environments they will encounter.
Specifically, the elasticity [10–13], nanotopography

[14, 15], protein composition [16, 17], and mechanical
strain [18] inherent to the extracellular matrix (ECM)
are all independent factors guiding stem cell lineage
commitment. Even more fascinating is recent work sug-
gesting stem cells retain mechanical memory for surfaces
previously encountered [19]. This has striking implica-
tions not only for the inherent validity of the conclu-
sions drawn from studies using in vitro models, but on
the understanding of the in vivo temporal changes
potentially implicit in aging. Understanding and decon-
structing this complex menu of signals is core among
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the current challenges faced by regenerative medicine as
each ECM inflicts a specific array of stressors on its resi-
dent cells. Factors such as cell density, shape and size
[20–22], as well as the degree and type of cell-cell inter-
action and the dimensionality experienced within each
tissue further complicate attempts to recapitulate these
environments ex vivo.
The implications for understanding the interaction be-

tween cells and their respective ECMs are critical and
far-reaching. The hopeful search for panacea in many
medical fields has focused significant energy on stem cell
therapy; from basic science to randomized clinical trials
[23–25]. While seemingly safe in their application [26],
medicine is marginally closer to sound and applicable
stem cell therapies in regenerative medicine [27, 28].
There are of course many reasons this large cumulative
effort has progressed slowly toward clinical resolution.
In part, bureaucratic engines always run slower than sci-
entific minds and funding for clinical trials in this field
is doubly wrought with financial and political mines
[29]. The emergent and rapidly expanding use of adult
stem cell sources has softened some of the political
stigma attached to the prefix ‘embryo’. Still, our lack of
understanding and our inability to control all biochem-
ical and biomechanical inputs that direct stem cell fate
is certainly rate-limiting. The global sum of all signals
encountered by a differentiating cell, whether chemical
or physical, past or present, act as one unique set of cir-
cumstances directing the commitment of each cell to-
ward a specific lineage [30]. Nature has replicated these
exquisite circumstances with innumerable diversity for
millennia; proof that such discretion is possible.
Mesenchymal stem cells (MSCs) are easily accessible

progenitors that can give rise to fat, muscle, tendon, car-
tilage and bone [31, 32]. The promise of a tool to com-
bat some of the most burdensome human pathologies,
including myocardial infarction, osteoporosis and osteo-
arthritis, makes this stem cell source particularly appeal-
ing to biomedical engineers [33]. The future of medicine
for an aging population may well depend on our ability
to understand and control those slow and seemingly in-
evitable processes that alter physical structures. This
review explores the guiding role of the ECM in MSC
differentiation and discusses attempts to deconstruct
and translate these ECM component signals for tissue
engineering in the search for regenerative therapies.

The physical world
Stiffness
The stiffness of infarcted fibrous heart tissue is much
greater than that of the adjacent healthy myocardium
[9, 34]. This clear physical demarcation has so far com-
plicated the ability of introduced stem cell therapies to
remodel and replace infarcted myocardium. Indeed

ECM stiffness (Young’s modulus) has been shown to
influence spreading [35, 36], migration [10], prolifera-
tion [37] and differentiation [17, 38] in multiple stem
cell lineages [11, 12], and is a key physical property
guiding stem cell behaviour (Fig. 1a). Tissue stiffness not
only dictates differentiation, but informs cytoskeletal ar-
rangement on a macro scale. Myotubes form myosin/actin
striations preferentially on those substrates that mimic the
passive stiffness of normal muscle [13, 39]. This is also
true of artificial environments that mimic rigid collage-
nous bone and soft neural tissue; where the absolute stiff-
ness in isolation directs osteogenic and neurogenic
differentiation respectively [11]. This realization has led to
the pursuit of substrates whose stiffness can be modulated
in both two [40] and three [41] dimensions under static or
dynamic conditions.
Collateral to dimensionality, efforts to create stiffness

gradients in both space (Fig. 1b) and time (Fig. 1c) have
added further pieces to our most accurate models of in
vivo stiffness conditions. Controlling stiffness gradients
in spatial planes has been accomplished with a variety of
methods, including repeated freeze-thaw cycles with li-
quid nitrogen and cylindrical polyvinyl alcohol columns
[42], heat gradients within polymerizing polydimethylsi-
loxane [37], polyelectrolyte monolayers with patterned
cross-linker [43], inclusion of rigid particles in a soft
hydrogel [44], and microfluidic mixing of different
polyacrylamide (PA) solutions. Still other methods have
employed photo-initiators and a patterned [40, 45, 46] or
moving [47–49] photomask overlying a polymerization
chamber to create stiffness gradients. However, tissues are
not static in time. Temporal control over synthetic sub-
strate stiffness is required to fully appreciate and simulate
in vivo environments [50]. Early successful attempts at dy-
namic control over substrate stiffness came using photo-
responsive elements embedded within those substrates
[51–53], or chemicals whose disparate molecular weights
stiffened hyaluronic acid hydrogels [54]. This approach
allowed external control over substrate stiffness and gave
researchers license to guide chondrogenic differentiation
with specific timing or mimic the development of mature
cardiomyocytes from mesodermal precursors. Building
from this approach, near-infrared photons used to excite
embedded gold nanorods have allowed researchers to
write custom stiffness patterns into synthetic hydrogels
[55], and still others have developed hydrogels that re-
spond to their biological environment by releasing metal-
loproteinase (MMP) inhibitors in response to the activity
of that enzyme group [56].
Just as tissues are not static in time, nor are they two-

dimensional. As methods to build three-dimensional
models of the ECM become more sophisticated, gains that
moved this field from static to dynamic to bio-responsive
are being incorporated into plant-inspired, 3D-printed
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hydrogels that not only respond to the chemical signals of
in vivo environments (i.e. MMPs) but to the very physical
properties resident cells are feeling [57].

Stress & strain
Lungs expand due to relative compartmental pressure
changes and recoil due to the innate elasticity of their
interstitium; hearts beat in rhythmic contraction-
relaxation cycles; tendons and cartilage bear the longitu-
dinal and compressive forces generated by ambulation.
Thus the strain and stress applied to culture environ-
ments are important considerations for ECM models
(Fig. 2a). Early studies with MSCs showed that uniaxial
strain will induce transient increases in collagen I expres-
sion and alignment along that axis [58]. Further, a 3-5%
tensile strain on a collagen I substrate can induce osteo-
genesis in MSCs [59], and biaxial stretching systems can
influence alignment of MSCs via mechanosensing [60].
Following from this, the imposition of cyclical tensile strain
to mimic the loading and unloading of the skeletal system
was shown to promote osteogenesis and angiogenesis on
three-dimensional collagen I scaffolds [61]. Conversely,
applying a coordinated tensile strain coupled with electrical
stimulation on a decellularized porcine myocardial ECM
scaffold sped up myocardial differentiation of MSCs seven-
fold [62]. MSCs co-cultured with intervertebral disc cells

will readily undergo chondrogenic differentiation under
cyclical compressive force [63]. Similarly, cyclic hydrostatic
pressure (mimicking compression) has also induced chon-
drogenesis in MSCs [64], and compression in the form of
applied gravity and low-density ultrasound have restored
collagen content and mineralized bone via osteogenic
differentiation of MSCs [65, 66].
These fascinating observations are testament to the

shear economy of differentiation; all available inputs are
synthesized to trigger fate decisions. Even fluid shear
stress modulated by β1 integrin and experienced by many
tissues in the body, has shown particular applicability to
MSC osteogenic differentiation [67]. Further, these effects
are not static or one-directional, as the ability of MSCs to
deform the ECM around them differs depending on devel-
opmental stage of those MSCs. Fetal, neonatal and adult
heart tissue all respond differently to ECMs that are evolv-
ing in composition through time [68]. This implies that
although inanimate, there is a developmental dependency
between stem cells and their ECM; a reciprocal guidance
developing in concert.

Nanotopography
The spicules are thinner and the spaces between them
greater in osteoporotic trabecular bone. This altered en-
vironment imposes new distance, surface area and

Fig. 1 Schematic representation of static and dynamic ECM stiffness. a stiffness influencing stem cell behaviour (soft on the left and stiff on the
right); (b) spatial dynamic; and (c) time dynamic changes of ECM stiffness (E: Young’s Modulus)
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volume parameters on its residents (Fig. 2b), and we
now know that this altered nanotopography also directs
MSC fate (aligning electrospun nanofibers in a synthetic
matrix will force increased mineralization of differenti-
ating osteoblasts) [69]. Concordantly, nanofibers mim-
icking the pattern of cartilage ECM encourages
chondrogenesis [70]. The fascinating detail with which
stem cells use their nanoenvironment to acquire cues is
perhaps best exemplified in by results showing that the
mere addition of Si-OH groups to a matrix scaffold can
induce osteogenesis of MSCs in the absence of growth
signal supplementation [71]. Thus, not all cues are
either biochemical or mechanical; some exist at the
boundary between and the causality of their inductive
property is less clear. The gross physical pattern of the
ECM can also provide a constraining environment thus
allowing more cytoskeleton tension within MSCs,
which in turn leads to greater osteogenic differentiation
[72], and the addition of a flow stimulus (albeit crossing
into the realm of shear forces) through specific nanoto-
pography modulates fibrochondrogenesis of MSCs [73].
Lastly, Yang et al. best exemplified the intertwined
nature of three-dimensional microenvironment and
the forces that environment imposes on resident cells
with their assays of stem cell mechanobiology on sub-
strates with built-in elastomeric microposts [15]. This
last citation relays the inherent difficulty in decon-
structing component physical cues of a given
microenvironment.

Protein composition
Skeletal muscle relies on an ECM dominated by laminin
while bone tissue is replete with collagen-containing
ECM. This stark difference between two descendants of
mesoderm tells us that ligand composition, density and
spatial arrangement is consequential (Fig. 2c). Undoubt-
edly, the interaction between stem cells and the ECM is
bidirectional and geography-dependent, so the potential
for interaction (i.e. the availability of binding sites) im-
pacts heavily on the ultimate fate of stem cells exposed
to these environments [16]. Specifically, the integrin
density connecting cells to the ECM will fate different
lineage commitments for MSCs residing in adipose or
skeletal tissue and helps in part to explain why adipo-
genesis proceeds despite the induction of osteogenic
stress in adipose tissue [74]. The density and spacing of
the cell-adhesive tripeptide arginine-glycine-aspartate
(RGD) can influence MSC fate, and for some time the
tethering of collagen linkage points across inherent
substrate pores was thought to guide differentiation (-
although this latter point is becoming somewhat conten-
tious) [62, 75, 76]. Finally, the nature of the ligand itself
can factor in the outcome of MSC differentiation; hya-
luronic acid (HA) has been shown to induce chondro-
genesis and chondroitin sulphate (CS) has been shown
to induce osteogenesis [77]. Analogous to previously
discussed silicon-hydroxide group addition and perhaps
most intriguing of all, is the ability of matrices to offer
physical binding sites for chemical and hormonal signals

Fig. 2 Schematic representation of (a) stress & strain; (b) nano- or micro-topography; and (c) protein composition or arrangement influencing
stem cell interaction with the ECM
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(in this case melatonin), thus acting as reservoirs that
blur boundaries between biomechanical and biochemical
induction of differentiation [78–80].

Rebuilding the native microenvironment
Tissue engineering is now faced with the challenge of
how to most accurately and reliably reproduce and
modulate each individual physical factor and then com-
bine them into one cohesive environment. The enormity
of this task is immediately realized when, for example,
we attempt to faithfully reconstruct the physical changes
wrought by myocardial infarction and seed those envi-
ronments with adipose-derived stem cells. Discrete stiff-
ness changes (Fig. 3a) coupled to an actively beating
bioreactor (Fig. 3b) must be platformed on multiple
gradients of stiffness, nanotopography and protein com-
position (Fig. 3c) in both two and three dimensions. The
shear complexity of this deconstructive approach there-
fore also demands the exploration of endogenous ECMs
to satisfy this same purpose. Indeed, recent studies have
shown that the matrix laid down by bone marrow- or
adipose-derived stem cells promotes the growth of those
cell lines more so than other cell types, even after decel-
lularization and reseeding. To this end, the induction of
small, high frequency deformations in osteogenic
cultures can elicit more efficient production of ECM for
MSC differentiation [81]. Further, these biologically syn-
thesized matrices promote differentiation to the lineages
that originally laid them down [82]. Even artificial three-
dimensionally-printed scaffolds seeded with differenti-
ated cells of a specific tissue (which are subsequently
removed) for the sole purpose of decorating that artifi-
cial matrix with biological ECM, create more effective

inductive matrices for MSCs [83, 84]. An artificial
collagen-polyglyconate scaffold seeded with smooth
muscle and urothelial cells has generated bladder tissue
sufficient for transplantation [27] and decellularized tra-
chea has been recolonized by recipient epithelial cells
after implantation [28]. Additional recommended re-
views in this field further explore the use of decellular-
ized or naturally-derived ECMs [85–88]. While the
collaborative regenerative power of resident cells in
native environments is clear, this research affirms the
idea that 3D printing with intricately designed biocom-
patible materials may offer promising solutions as these
technologies converge upon common applications [57].

Regenerative goals
Muscle
In the wake of much promise, early studies in cardiomyo-
cyte differentiation showed MSC osteoblastic differenti-
ation when exposed to infarcted fibrous heart tissue [9].
Although clinically disappointing, this outcome was scien-
tifically interesting and correlated with findings regarding
the absolute stiffness differences inherent to infarcted
heart tissue and healthy myocardium [34]. This work
served to punctuate the importance of local tissue stiffness
in cardiac stem cell therapy and heralded the need for a
deconstructive approach to better understand the conse-
quences of the individual forces experienced by stem cells
in vivo. Consequent of this realization, researchers have
recreated functional myotubes on striped surfaces of alter-
nating stiffness [12, 89], and shown that myoblast differen-
tiation is delayed in the setting of fibrosis [90]. The
capability to reintegrate this knowledge with therapy is
now beginning to take form. Jeffords and colleagues have

Fig. 3 Schematic model of a physical environment encountered by adipose-derived stem cells (ASCs) in infarcted myocardium; (a) discrete stiffness
changes; (b) dynamic strain; and (c) gradients in stiffness, shape/size and protein composition
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developed cardiac matrix hydrogels using a genipin cross-
linker to more accurately mimic the stiffness conditions
favourable for endothelial revascularization of infarcted
heart tissue [54, 91, 92]. Interestingly, the application of
an acellular ECM substitute composed of high stiffness
hyaluronic acid provided better cardiac function after
myocardial infarction (MI). In this case, simply altering a
pathological ECM allowed resident cells to effect superior
outcomes [93].

Tendon/ligament
MSC enhancement of potential tendon and ligament
grafts has centred on cyclical tension of a collagen scaf-
fold either artificially produced or decellularized from a
donor site, then re-impregnated with MSCs to promote
fibroblastic differentiation [94, 95]. This type of loading
elicited uniaxial alignment of MSCs on synthetic yarns
and promoted the production of collagen I [96], and a
3 % strain induced tendon-like gene expression profiles
in MSCs seeded on these scaffolds [97]. Tendon regener-
ation also exemplifies the extraordinary impact of as yet
unknown resident biomolecular cues [98]. The leap from
decellularized donor tissue to wholly synthetic grafts
hinges on this understanding [99], and highlights the
limitations of synthesizing a tissue with incomplete
knowledge of its components. Current steps in this dir-
ection employ co-electrospinning to form synthetic an-
terior cruciate ligament ECM with in-built mechanical
gradients for better integration when implanted [100], or
the application of combined mechanical loading of a 3D
ECM model to regenerate periodontal ligaments [101].

Cartilage
Existing at relatively unpredictable biological junctions,
cartilaginous tissue is a model for the combined impact
of tensile, shear, compressive and stiffness conditions
experienced by biological tissues and transmitted
through their respective ECMs. These component parts
have been deconstructed with some success and slowly
reintegrated to form a broader understanding of this tis-
sue’s development. Mimicking the native environment
experienced by cartilaginous tissue with cyclic hydro-
static pressure loading increases chondrocyte differenti-
ation of BMSCs [102–105]. Concurrent with these
results, cartilaginous differentiation is also upregulated
when MSCs are mechanically compressed in a gel matrix
[106], or forced to compress under low intensity pulsed
ultrasound [107]. As mentioned earlier, distortional
stress analogous to artificial gravity in a centrifuge sys-
tem can increase proliferation and proteoglycan/collagen
II production in an MSC population subjected to these
conditions [108]. Finally, an amalgamation of tensile,
shear and compressive forces meant to replicate joint
stress and strain has been shown to guide MSCs toward

chondrogenesis [109]. Just as tendon ECM serves as an
example of the importance of biophysical and biomolec-
ular integration of signals, cartilage ECM reveals the
importance of various interacting mechanical inputs
required for proper differentiation.

Bone
With osteogenic potential, bone regeneration is an obvi-
ous important application for MSCs. Stiffness [11],
mechanical loading [110] and three-dimensional pore
size [111] all impact osteogenic differentiation. When
considered, the nature of anatomical progression from
cortical to cancellous bone and the repetitive load-
bearing function of this tissue would hypothesize as
much. To investigate these ends, intermittent shear
stress and cyclic hydrostatic pressure have been shown
to elicit mechanosensitive gene profiles in MSCs and
further work has shown enhanced production of bone
ECM using pulsatile versus fixed hydrostatic shear flow
[112, 113]. Interestingly, high acoustic frequencies will
also guide MSCs toward osteogenesis and spare the
adipogenic induction seen at lower frequencies [114],
and larger three-dimensional pore size will elicit more
osteogenic differentiation [111]. Analogous to earlier les-
sons unveiled by Brietbach et al., endocardial valve ossi-
fication has been observed when MSCs encounter the
required inductive mechanical stress [9, 115]. This fur-
ther highlights the crossing and complicated differenti-
ation pathways that evolve from MSC therapy under
subtly different mechanical circumstances and empha-
sizes the importance of applying negative results to a
broader paradigm.
Fascinatingly, MSC osteogenesis illuminates a far-

reaching implication of the dynamic interaction between
stem cells and their ECM: aged MSCs tend to mineralize
their environment at a slower rate under the same
mechanical circumstances as their younger counterparts
because of a reduced ability to undergo mechanotrans-
duction [116]. This interaction implies a critical feedback
loop and cyclical regression of bone density with age.
Considering that osteogenesis from an MSC derivative
population is greatly enhanced after injury when titan-
ium implants are coated with a collagen matrix [117],
current joint replacement or fracture fixation techniques
may benefit from bio-regenerative therapy just as they
will be limited by the endogenous capacity of aging
MSCs to facilitate concordant repair.

Conclusions
Clearly the physical environment experienced by a resi-
dent mesenchymal stem cell through its ECM has much
to say regarding the ultimate fate of that cell. Absolute
stiffness (as well as patho- or physiological gradients in
ECM stiffness) guides development and dictates
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response to a disease insult. Nanotopography can blur
the boundary between geography and the physical forces
imposed by that microenvironment, and ligand density
can similarly blend biochemical signals with biomechan-
ical ones. Stress and strain experienced cyclically (heart),
sporadically (tendon) or constantly (bone) inform the
modelling, alignment and economy of materials in those
respective tissues. Further, all of these ECM components
evolve through time and are reciprocal in their inter-
action with resident cells: osteoblasts can form matrix
that stiffens their environment leading to further osteo-
genic differentiation; the formation of functional myo-
tubes leads to concerted beating that exacerbates the
cyclical stress imposed on that tissue; native alignment
of tendon tissue informs future recruits to that tissue as
to the appropriate function therein; and the decoration
and incorporation of growth signals in developing bone
ensures signals for future bone regeneration [98].
Effective regenerative medicine requires exquisite

models of the ECM; models that account for the infini-
tesimal fractional inputs accumulated across billions of
years of life interacting with its environment. The ruth-
less economy of evolution demands that whether bio-
chemical or mechanical, past or present, static or
dynamic, no force or dimension or bond is unnecessary.
Thus tissue engineering is proving complex beyond
imagination, but its stated goals are not unattainable.
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