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Abstract

Background: Escherichia coli is often used for recombinant protein production. The expression of recombinant
proteins negatively affects the microbial growth, thus, a balance between protein expression and biomass
formation is preferable to reach high product- and space-time-yield. Already in screening experiments, suboptimal
conditions causing too weak or too strong induction must be avoided. High-throughput screening devices such as
the BiolLector are often applied for screening experiments. The Biolector allows optical online monitoring of each
well in a continuously orbitally shaken microtiter plate via scattered light and fluorescence measurements. This
technique enables a fast identification of promising clones. However, to determine the expression performance of
non-fluorescent products elaborated offline analysis is often required.

Methods: A mathematical method is developed to distinguish between cultures, which are insufficiently, optimally
or too strongly induced. Therefore, just the temporal development of the scattered light intensity signal is
investigated. It is found that discrimination between the different intensities of induction is possible via principal
component analysis. By fitting an extended sigmoidal function to the trajectory of the scattered light over time,
two characteristic parameters are found. These are used in an empirical model to predict the expression
performance.

Results: The method was established for a wide range of culture conditions based on 625 E. coli cultures. Three E.
coli host strains (Tuner(DE3), BL21(DE3), and BL21-Gold(DE3)) expressing either flavin-mononucleotide-based
fluorescent protein (FbFP) or Cellulase celA2 were investigated. Cultures were conducted in two different types of
microtiter plates (48- and 96-wells), in two online measurement devices at four temperatures (28 °C, 30 °C, 34 °C,
and 37 °C). More than 95% of the predicted values are in agreement with the offline measured expression
performances with a satisfying accuracy of £30%.

Conclusions: The properties of cultures studied can be represented by only two characteristic parameters

(slope at and time of the inflection point) received from fitting an extended sigmoidal function to the respective
scattered light trajectory. Based on these two characteristic parameters, predictions of the standardized
expression performance are possible and for a first screen elaborated offline analysis can be avoided. To the best
of our knowledge, this is the first work presenting a method for the general prediction of expression
performance of E. coli based solely on the temporal development of scattered light signals.
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Background

As early as 1978, genetically modified Escherichia coli
was used for the synthetic production of human insulin
[1]. In the recent past, E. coli became one of the most
often used prokaryotic expression systems for produc-
tion of recombinant proteins. This can be attributed to
the today sequenced genome [2]. E. coli allows for an
easy introduction of foreign genes [2—4]. Furthermore,
this bacterium can grow fast on low-cost media reaching
high cell densities which is advantageous for economical
protein production [3].

In the literature, it is known that the production of re-
combinant proteins can negatively affect the microbial
growth by a process often termed metabolic burden [5].
To ensure sufficient biomass concentration for protein
production, the culture is often divided into a growth
phase and a subsequent production phase by applying
controllable expression systems. Such expression
systems are externally controlled, for example by
temperature shift [6], certain levels of the dissolved
oxygen tension [7] or chemical inducers [4]. The most
popular inducer molecule in laboratory scale is prob-
ably isopropyl p-D-1-thiogalactopyranoside (IPTG). It
was shown that the time-point of induction as well as
the amount of added inducing compound have signifi-
cant impact on the culture [8-10]. Thus, it is crucial
to find optimal induction parameters revealing a bal-
anced process. Insufficient or too strong induction
have to be avoided to achieve high product yield.
Unfortunately, optimal induction parameters found for
a specific system are not universally valid and, thus, a
direct transfer from bioprocess to bioprocess is not
possible. The optimal combination of induction time
and inducer concentration depend besides other fac-
tors on the E. coli host strain, the expression plasmid
or the recombinant gene [11-13]. For each bioprocess,
optimization of the induction parameters has to be
carried out. This results in numerous cultivations that
have to be conducted. Therefore, small-scale high-
throughput screening devices are often applied that
allow for cost-efficient studies of parallel cultures [14].

The BioLector is a meanwhile widespread high-
throughput screening device which is based on continu-
ously orbitally shaken microtiter plates (MTP) [15, 16].
This technology allows for optical online monitoring of
the scattered light and fluorescence in each well of a MTP.
If fluorescent proteins like the green fluorescent protein
(GFP) and its derivatives or the flavin-mononucleotide-
based fluorescent protein (FbFP) are used as fluorescence
tag, the product formation is directly accessible by means
of online fluorescence measurements. By combining a
BioLector device and liquid handling systems it be-
comes possible to set up a fully automated screening
platform (RoboLector) [10, 17]. For example, Huber et
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al. [10] developed an induction profiling method realiz-
ing an automated individual induction depending on
the online monitored biomass concentration. By using
the “biomass-specific induction”, only small relative
standard deviations from well to well were obtained for
the expressed FbFP.

However, the use of fluorescent protein tags is usually
unwanted in production scale. It is a question whether
the result of screen with a fluorescent tag fused to the
target protein can be directly transferred to a culture ex-
pressing the target protein without fluorescence tag.
Rahmen et al. [18] found that already a single amino
acid exchange in the recombinant protein and even only
a silent codon exchange [13] has an significant effect on
the metabolic burden of the E. coli host strain. It is
therefore, very unlikely that the removal of a fluores-
cence tag after screening does not affect microbial
growth. Thus, changes of the parameters found for opti-
mal induction have to be expected. For quantification of
products which are not accessible via fluorescence meas-
urement, samples taken during (or at least at the end of)
the culture have to be offline analyzed. Mithlmann et al.
[17] presented an extended RoboLector system including
an integrated downstream processing unit. Samples for
investigation of intracellular and secreted enzymes can
be prepared and analyzed with the demonstrated system
[17]. For cell separation, a microfiltration unit is used.
The activity measurement of the expressed enzymes via
assay was not fully included into the automated proced-
ure. Similar systems were used by Rohe et al. [19] and
Unthan et al. [20]. They applied centrifugation for cell
separation and, furthermore, integrated a photometer to
realize fully automated MTP assays [19, 20].

The integration and automation of up- and down-
stream as well as analytic units require technically
sophisticated systems. With each additional device, the
overall system becomes more complex, error-prone
and requires longer development time. Technical ef-
forts might be reduced by applying more advanced
mathematical methods. Recently, a system for online
multi-wavelength (2D) fluorescence spectroscopy in
each well of a MTP was presented [21]. By applying
chemometrics based on the acquired multi-wavelength
(2D) fluorescence spectra, models were developed to
predict the concentration also of non-fluorescent com-
pounds such as carbon sources and overflow metabo-
lites (glucose, acetate and glycerin) during the cultures
[21]. In stirred tank reactors, chemometrics are already
applied since longer time. For example, chemometrics are
used to monitor spore germination, metabolic activity or
monoclonal antibody production [22-24]. This indicates
the opportunities of this method. However, chemometrics
require deepened mathematical understanding and, there-
fore, are sometimes difficult to apply by standard users.
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In the present work, 625 cultures of three different E.
coli host strains conducted in two different types of
MTPs (48- and 96-well), at four temperatures (28 °C,
30 °C, 34 °C and 37 °C) are investigated with two online
measurement devices. An easy to use mathematical
method is developed to identify insufficient and too
strong induction. Just an extended sigmoidal function
has to be fitted to the temporal development of the scat-
tered light signal. Based on the fitting, two characteristic
parameters representing the entire culture are derived.
Using these two characteristic parameters, an empirical
model is developed to estimate a relative expression per-
formance of the corresponding culture. It becomes pos-
sible to predict the expression performance of E. coli
cultures and identify potential improvements without
elaborated offline analysis.

Results and discussion

Visualizing trends in the temporal development of the
scattered light to identify optimal induction

During cultivation, for example the scattered light inten-
sity signal is used to monitor the biomass concentration.
Scattered light intensity and biomass concentration
usually correlate directly. With increasing biomass
concentration, also the scattered light intensity signal
is increasing. Concentrations can only be determined
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by calibration, because the scattered light intensity
signal is a semi-qualitative measurement (arbitrary
units) [16].

Further information about the investigated process can
be obtained based on the temporal development of the
scattered light. For example, morphological changes of
the cells and the development of sub-populations can be
identified by means of changes in the scattered light sig-
nal [25, 26]. In the following, patterns of the temporal
development of the scattered light acquired during in-
duced E. coli cultures compared to non-induced culture
are considered to identify a general trend for prediction
of the expression performance.

In Fig. 1, cultures of an E. coli strain expressing flavin-
mononucleotide-based fluorescent protein (FbFP) after
IPTG-induction are presented. For clarity, only 61 cul-
tures of the entire dataset (303 cultures) are shown. The
online monitored signals of all 303 cultures are given as
Additional file 1: Figure S1. The time of induction was
varied between 0.5 and 16 h (gray shaded area in Fig. 1a)
with a maximum applied IPTG concentration of 1000 puM.
Due to the online fluorescence measurement, the FbFP for-
mation is directly accessible for online monitoring (Fig. 1b).
A color-coding, based on minimum and maximum final
expression performance of the entire dataset (303 cultures),
is used in Fig. 1 and Additional file 1: Figure S1. The
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Fig. 1 Monitored scattered light (a) and FbFP fluorescence intensity signals (b) during E. coli Tuner(DE3)/pRhotHi-2-Lacl-EcFbFP cultures with
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varying times of induction (0.5-16 h) and concentrations of IPTG (0-1000 uM). a The time span of induction is highlighted by the gray area. For
clarity, only 61 cultures of the entire data set (303 cultures, Additional file 1: Figure S1) are shown. b The final FbFP fluorescence intensity defines
the color-coding. The weakest expression (£ minimum final FbFP fluorescence intensity) is presented in blue and becomes more reddish with
increasing final fluorescence intensity. The maximum final fluorescence intensity is presented in pure red. The 303 cultures were conducted in a
total of eight MTPs. The investigated cultures are referred to as dataset A in Table 1. Cultivation conditions: 48 round deep-well MTP without
optodes, V. = 800 uL, n = 1000 rpm, shaking diameter dg = 3 mm, 30 °C
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weakest expression performance (2 minimum final FbFP
fluorescence intensity) is presented in blue and becomes
more reddish with increasing final fluorescence intensity.
The maximum final fluorescence intensity is decoded in
pure red. This color-coding is applied to both, the scattered
light intensity signal (Fig. 1a) and the FbFP fluorescence in-
tensity (Fig. 1b). Signals of the same culture are presented
with the same color.

It is clearly visible that cultures with more or less lin-
ear scattered light intensity increase between 6 and
30 h are the most reddish (Fig. la). Accordingly, the
highest final FbFP fluorescence intensities is measured
at the end of these cultures (Fig. 1b). In contrast, cul-
tures with an exponential increase after 12 h (in the fol-
lowing referred as “insufficient induction”) or cultures
with an extended lag-phase followed by an exponential
increase of the scattered light signal between 30 and
42 h (in the following referred as “too strong induc-
tion”) are mostly presented in blue (Fig. la). Cultures
belonging to the group “insufficient induction” do not
show any significant impact on biomass formation after
IPTG addition. Thus, the amount of IPTG added was
too low to induce all cells and (almost) unimpeded
growth occurred. The extended lag-phase of the cul-
tures belonging to “too strong induction” indicates that
the amount of IPTG added was too high or IPTG was
added too early to the culture broth. In this case, the
metabolic activity was more or less completely shifted
to protein expression instead of biomass formation. A
low number of cells expressing FbFP are present and,
thus, the overall culture time increases significantly.
Differences in the temporal development of the scat-
tered light of the three groups also become clear in Fig.
3b-d. In each figure, the scattered light signal of a
(non-induced) reference culture (gray dashed line) is
shown to allow for direct comparison. The scattered
light of a culture belonging to the group of insufficient
induction is presented in Fig. 3b (red line). The signal
for an optimal induction is shown in Fig. 3¢ (red line)
and too strong induction is represented by the pattern
in Fig. 3d (red line).

As mentioned above, the best expression perform-
ance was found for the cultures showing a linear
increase of the scattered light intensity signal after in-
duction. A linear increase of the scattered light inten-
sity signals represents the best compromise between
insufficient induction and too strong induction. This
leads to the presumption that optimal induction of E.
coli cultures is indicated by a (mostly) linear increasing
scattered light signal after induction. In the following
sections, classification and predictions of the expres-
sions performance by means of the scattered light
patterns are investigated on a more statistical and
mathematical basis.
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Clustering of E. coli cultures via principal component
analysis (PCA)

In the previous section, E. coli cultures were classified
based on the scattered light intensity patterns and their
final FbFP fluorescence intensity by applying a color-
coding for visualization. Three groups were identified:
“insufficient induction” (including non-induced cul-
tures), “optimal induction” and “too strong induction”.
To realize clustering following a mathematical ap-
proach, principal component analysis (PCA) is often
applied [27, 28]. PCA is a statistical method, which
converts a set of (probably) correlated variables to new
uncorrelated variables (principal component, PC). The
first PC represents the largest degree of variance and,
thus, carries the greatest amount of information about
the dataset. Each following PC is orientated orthogonal
to the previous PCs and carries less information than
the previous PC. As result, large datasets can often be
reduced to score values of just a few PCs. These PC
scores are key parameters used for classification.

Before calculating the PCs, it is recommended to per-
form scaling and centering to increase the quality of
the PCA [29]. Therefore, the scattered light intensity
signals are standard normal variate (SNV)-transformed
as described in Methods (Eq. 5). The SNV-transformed
scattered light intensity values over time of all 303 cul-
tures are presented in Fig. 2a. The color-coding intro-
duced in Fig. 1 is applied. Again, cultures showing
linear increase of the scattered light between 12 and
30 h turn out to be the most reddish and, thus, have
the best expression performance.

Based on the SNV-transformed temporal development
of the scattered light (Fig. 2a), the PCA is calculated.
The online monitored FbFP fluorescence intensities are
not used for PCA calculation. The first and second PCs
account already for 92.7% of the total variance of the
dataset (Fig. 2b). The remaining PCs explain only 7.3%
of the total variance (Fig. 2b). Consequently, the first
two PCs are expected to be sufficient for discrimination
between the three above-mentioned groups (insufficient,
optimal and too strong induction).

In Fig. 2c, results of the PCA are presented by plotting
the scores of the second PC over the scores of the first
PC. Each data point represent one entire culture. To
make the expression performance of the corresponding
culture visible, the color-coding introduced in Fig. 1 is
used again (Fig. 2c). Furthermore, classification into in-
sufficient, optimal and too strong induction is indicated
by different symbols. Non-induced cultures, which are
more or less just a special case of insufficient induced
cultures, are highlighted by open circles in Fig. 2c. It be-
comes clear, that cultures belonging to different groups
of induction are locally separated (Fig. 2c). The scores of
the first PC indicate the shape of the scattered light
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omponent analysis (PCA). a For data pre-processing, the standard normal
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of the scattered light intensity pattern: no induction, insufficient induction

pattern. Score values of the first PC smaller than 2 tend
to follow unimpeded biomass formation (insufficient in-
duction). Too strong induction is indicated by score
values greater than 4 in the first PC. For cultures with
optimal induction, score values of the first PC close to 3
are obtained. In Fig. 2c, the score value of 3 in the first
PC is highlighted by a gray dashed vertical line. The in-
formation contained in the score values of second PC
correlates with the maximum final FbFP fluorescence

intensity. Cultures having a positive value in the second
PC tend to show good expression performance (mostly
reddish). In contrast, negative score values indicate a
poor expression performance (mostly bluish).

The investigations presented in Fig. 2 clearly show that
a classification of E. coli cultures based on the temporal
development of the scattered light is possible by means
of PCA. Only the first two PCs are required. It is very
likely that a correlation between the scores of the first
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two PCs and the expression performance of the corre-
sponding culture can be found. However, there are some
drawbacks in using PCA-regression in the present case.
The PCA is calculated based on the temporal develop-
ment of the scattered light, which has discrete time
intervals. For the chosen measurement conditions, the
temporal development of the scattered light during cul-
ture is represented by 448 single scattered light values
over time (measurement cycle time of 6 min). If less
wells are monitored in parallel, the cycle time can be
reduced to increase the data density and more data pre-
processing becomes necessary to equalize the time vec-
tor. If the culture temperature is reduced, the overall
culture time will increase, leading to an extended abso-
lute culture time. This change must also be staved by
the data pre-processing. Finally, that would result in a
more and more complex procedure to achieve general
validity allowing transfer of the PCA-model to other sys-
tems. Since standard users are often interested in as sim-
ple as possible methods, the mathematical evaluation
should not include many pre-processing steps. There-
fore, a more mechanistic approach has to be followed
which is described in the following.

Clustering of cultures based on characteristic parameters
received from fitting an extended sigmoidal function to
the temporal development of the scattered light

In the previous section, just the scores of the first two
PCs were required to classify cultures according to the
intensity of induction based on their scattered light tra-
jectory. To apply the PCA-model to different systems,
identical conditions (culture time, measurement setup
and discrete time steps) are essential. Otherwise, a more
complex data pre-processing is required. To overcome
this restriction a more general procedure, which can be
applied to any scattered light (respectively biomass con-
centration) monitoring device and various measurement
conditions, is to be developed.

The application of a (purely) mechanistic model
based on Monod kinetics is not possible, because in-
formation about substrate and (potential) overflow me-
tabolite concentrations during culture is not accessible
and required kinetic parameters such as the biomass
yield coefficients are unknown. Furthermore, the ef-
fects due to induction are difficult to represent by
Monod kinetics and the resulting model as well as the
evaluation method would become more complicated.
Instead, a simple four-parametric sigmoidal model,
which was applied by Tichopad et al. [30] to study the
kinetic parameters of a polymerase chain reaction, is
extended with a fifth parameter to fit the online moni-
tored temporal development of the scattered light
intensity signal:
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In Eq. 1, SLs(t) [a.u] is the value of the function com-
puted at the time ¢ [h]. a [a.u.] is the lowest scattered
light intensity, b [a.u] is the difference between mini-
mum and maximum scattered light intensity, ¢ [h] is the
time of the inflection point of the curve and d [h] repre-
sents a parameter inversely proportional to the slope of
the sigmoidal fraction. The meaning of each parameter
is visualized in Fig. 3a. This function can easily be trans-
formed by its parameters in two extremes: a step-
function or a continuous linear increasing function.

In the past, sigmoidal functions were already often
used to describe biomass formation during culture [31].
The parameters of a sigmoidal function are usually
mathematical parameters and do not provide any
mechanistic parameter of biological interest. Zwietering
et al. [31] modified several model equations (Logistic,
Gompertz, Richards, Schnute, and Stannard) so that
each parameter contains biological relevant information
(maximum growth rate and duration of the lag-phase).
However, this modification led to more complicated
mathematical expressions. Such a kind of modification
was not carried out in the present work, because the
target of this study is not the determination of kinetic
parameters. Instead, this work aims at an easy to use
mathematical method to identify insufficient, optimal
and too strong induction. In addition, an empirical
model to predict the relative expression performance
should be derived just based on the scattered light
intensity trajectory. Therefore, a modification (and
complication) of the applied fitting function is not
necessary.

The equation of the extended sigmoidal function
(Eq. 1) includes five parameters (a- e). In Fig. 3a, the
function over time is shown and the meaning of each
parameter is illustrated. Additionally, the inflection
point of the sigmoidal curve is highlighted. In Fig. 3b-d,
the scattered light signal of exemplarily cultures belonging
to insufficient induction (Fig. 3b), optimal induction
(Fig. 3c) and too strong induction (Fig. 3d) are pre-
sented (red lines). As reference in each figure, gray
dashed lines present the temporal development of the
scattered light of a non-induced culture. The corre-
sponding fits of SLg,(£) are shown as black lines. In the
upper left corner of each figure, the fitting parameters
found are given. It is clearly visible that the fits repre-
sents the online monitored temporal development of
the scattered light very good.

Correlations between two variables are easily detect-
able by means of scatter plots. In the present work, scat-
ter plots are used to identify whether any parameter of
SL;(t) correlates with the final FbFP fluorescence
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intensity. Therefore, SL;(f) was fitted to the temporal
development of the scattered light of each of the 303
cultures. For the following investigations, only data of
fits with regression coefficients (R?) greater than 0.96 are
used. This restriction results in exclusion of 4 cultures
and, thus, 299 cultures remain in the dataset. In Fig. 4,
the obtained fitting parameters are plotted over the final
FbFP fluorescence intensity. Fig. 4a-e correspond to the
fitting parameters a- e. Again, the color-coding intro-
duced in Fig. 1 was applied.

Parameter a (Fig. 4a) decreases slightly with increasing
final FbFP fluorescence intensity. However, the scatter is
very large compared with the overall decrease. In
addition, parameter a represents the minimum scattered
light intensity (compare Fig. 3a) and from a theoretical
point of view, a correlation does not make sense. With-
out any measurement errors and (non-influenceable)

external disturbances, the minimum scattered light in-
tensity should be the same for all cultures.

Parameter b (Fig. 4b) indicates the hub of the scat-
tered light intensity during cultivation. Since the hub in
scattered light intensity over time represents the overall
biomass formation, a correlation is very likely and
found in Fig. 4b. The final FbFP fluorescence intensity
is increasing with decreasing values of parameter b. In
cultures with smaller hub (small values of parameter b),
the overall biomass formation is reduced. This means
that the consumed carbon source is increasingly used
for product expression instead of biomass formation.
However, at low values of parameter b, the correlation
becomes noticeably worse.

Parameter ¢ (Fig. 4c), d (Fig. 4d) and e (Fig. 4d) are ob-
viously non-correlated with the final FbFP fluorescence
intensity. Especially, for parameter d this finding is
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Fig. 4 Investigation of correlations between the final FbFP fluorescence intensity and parameters of the extended sigmoidal function (Eg. 1). In
each plot, every symbol represents one complete E. coli Tuner(DE3)/pRhotHi-2-Lacl-EcFbFP culture (dataset A). Four single cultures of the initial
dataset of 303 cultures introduced in Fig. 1 were removed due to bad fit to the extended sigmoidal function. For all remaining 299 fits, regression
coefficients (R?) higher than 0.96 are reached. The color represents the final FbFP fluorescence intensity and corresponds to the color-coding in Fig. 1.
a-e Values of the five parameters (a-e) of the extended sigmoidal function for each culture (Eq. 1). f Calculated slope at time of the inflection
point (parameter ¢) for each culture (Eq. 3). The slope is standardized according to Eq. 7. The black dotted line represents a linear regression
(R? = 0.66). Cultivation conditions: 48 round deep-well MTP without optodes, V| = 800 uL, n = 1000 rpm, shaking diameter do = 3 mm, 30 °C

surprising because parameter d is inversely proportional
to the slope of the sigmoidal fraction. With decreasing
values of parameter d, the slope is increasing and, thus,
the curve rises more quickly. Increasing values of par-
ameter d result in a more linear rise of the sigmoidal
fraction of SLg(t). The effect of parameter d on the
slope of the sigmoidal fraction also can nicely be seen in
Fig. 3b-d by the respective model parameters in the
upper left of each figure.

To determine the slope of the extended sigmoidal func-
tion at any time (¢) the first derivative of Eq. 1 is calculated:

b
N 2~d-cosh(— %) +2.d te @)

SLyy,(t)

SL}it(t) [a.u. h™'] is the derivative of the extended sig-
moidal function (SLg(?); Eq. 1) at the time ¢ [h] and,
thus, represents the slope of the function at any time (%).

The slope at the center of the sigmoidal fraction is
probably the best representative to identify whether the

sigmoidal fraction is rising moderate (linear) or fast
(exponential). A small slope at that point indicates
moderate (linear) increase, while a great slope represent
an exponential rise. The center of the sigmoidal frac-
tion is equal to the time of the inflection point (param-
eter ¢). Thus, the slope at the time ¢ needs to be
determined (SLJ}lt(c) ), which is expected to correlate
with the final FbFP fluorescence intensity. At the inflec-
tion point (¢ = c), Eq. 2 simplifies with cosh(0) =1 to:

SLiale) = 4 g+ e Q

SLﬁg(C) depends on the online measurement device be-
cause the slope is given in arbitrary units per hour (a.u. h™).
To overcome the dependency on the online measurement
device, SLﬁt(c) is standardized to a (non-induced) reference
culture and a dimensionless characteristic parameter is re-

ceived (SL]:it(C)Standardized ; Eq 7) In Flg 4f; SL)it(C)SMndardized
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is presented over the final FbFP fluorescence intensity. As
expected, with decreasing SLﬁt(c)Smdmdized the measured

final FbFP fluorescence intensity is increasing. The black
dashed line represents a linear correlation.

Clustering, as it was conducted via PCA (Fig. 2c), re-
quires two characteristic parameters. Thus, a second
characteristic parameter needs to be found to distinguish
between the different groups. At that point, it is worth
to reflect which information is contained in each of the two
PCs. The score values of the second PC contain informa-
tion about the expression performance (Fig. 2c). Exactly this
information is also covered by SLﬁt(c)Smndmdmd (Fig. 4f).
For discrimination between the different group of induc-
tion, whether the culture belongs to insufficient, optimal or
too strong, turned out to be contained mostly in the score
values of the first PC. Consequently, a second characteristic
parameter based on SLg,(f) should also represent this
information. The most obvious differences between the
three groups is the time when the inflection point
appears (compare Fig. 3). This information is directly
given by parameter ¢ of SL;(f). To achieve a more
general validity for comparison between cultures con-
ducted at different culture conditions, parameter c is
standardized to (non-induced) reference culture ac-
cording to Eq. 6. Like SL]}lt(c) Standardized CStandardized 1S @

dimensionless characteristic parameter.

With SLﬁt(c) Standardized AN CStandardizea tWO characteris-
tic parameters are found which can be used for cluster-
ing. These two parameters offer the advantage to be
easily computable after fitting the monitored temporal
development of the scattered light intensity by SLg(f).
Advanced statistical or mathematical knowledge is not
required. Furthermore, a dependency on the measure-
ment system and the culture conditions is neglected by
standardizing the values to (non-induced) reference cul-
tures. To confirm the general validity, six additional
datasets were investigated (in total 322 additional E. coli
cultures). The overall dataset (621 cultures) consists of
data received from two BioLector devices, at four temper-
atures (28 °C, 30 °C, 34 °C, and 37 °C), three E. coli host
strains (Tuner(DE3), BL21(DE3), and BL21-Gold (DE3))
and two investigated products (FbFP and Cellulase
(celA2)). For each culture, SL;(t) was fitted to the tem-
poral development of the scattered light. Subsequently,
SLﬁt(C) Standardized 25 Well @S Csyanaaraizea Were calculated.

In Fig. 5, SLﬁt(c) Standardized 1S Presented over Csiuudardized
for all 621 cultures. Each point represents one whole
culture. A color-coding, similar to the color-coding used
in the previous figures is used. Pure red indicates the
best expression performance and blue represents a weak
expression performance. Because enzyme activity and
FbFP fluorescence intensity cannot directly be compared
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with each other and, the fluorescence itself depends on
the temperature [32], each dataset was decoded separ-
ately. The datasets are distinguishable by different sym-
bols. All cultures follow an obvious general trend. The
best relative expression performance is obtained in cul-
tures showing the following properties:

L SLﬁt(C)Smndzzrdized <025
2. 11< CStandardized < 1.9

The area of non-induced cultures as well as cultures
with insufficient, optimal, and too strong induction are
highlighted and labeled in Fig. 5. Discrimination between
non-induced cultures and cultures with insufficient in-
duction is not readily possible based on this method.
Optimal induction is defined for cultures meeting the
two criteria above. Cultures showing values of SLJ}M

() standardizea  Sreater than 0.25 and csuundardizea Smaller
than 1.1 tend to be insufficient induced. For those cul-
tures, an increased amount of inducer concentration
and/or an earlier induction are expected to result in bet-
ter expression performance. Too strong induction is
found for cultures with c¢siupaardizea greater than 2. In
this case, it is advisable to reduce the induction level
and/or to use at later point in time for induction.
Although no direct proposal for absolute changes of the
induction parameters (time-point of induction or IPTG
concentration) can be given based on this method, valu-
able information for process optimization are obtained.
Especially in strain screening experiments, non-optimal
induction parameters can easily be identified. Optimized
induction parameters might result in significantly in-
creased expression performance of the corresponding
clone and too early exclusion of this clone could be
avoided.

Prediction of standardized expression performance based
on SL;Tr(c)Standardized and Csandardized

In the previous section, clustering of E. coli cultures
into insufficient, optimal and too strong induction
SLg,
(©) standardized ANd CStandardizea- The values are obtained
just by fitting an extended sigmoidal function to the
temporal development of the scattered light. A model
that is able to predict the expression performance of
an E. coli culture would be very valuable. Such a
model would particularly be helpful if the determin-
ation of the product concentration requires elabo-
rated laboratory examination. In addition, it would
become possible to assess whether, and if so, in which
order of magnitude the expression performance can
be improved by optimizing the induction parameters
without additional experiments.

was performed based on the values of
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Dataset A (299 cultures)
Dataset B (96 cultures)
Dataset C (46 cultures)
Dataset D (45 cultures)
Dataset E (45 cultures)
Dataset F (45 cultures)
Dataset G (45 cultures)
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Fig. 5 Classification of expression performance based on parameters obtained from fitting the extended sigmoidal function (Eq. 1) to scattered
light intensity datasets. Standardized slope at the inflection point (SLg, (€)siandardiesi EG- 7) is plotted over the standardized time at the inflection
pOiNt (Csiandardized; EQ. 6). Cultures were conducted under quite different conditions in two BioLector devices, two types of microtiter plates
(48-well and 96-well) and at four temperatures (28 °C, 30 °C, 34 °C and 37 °C) with three different £. coli host strains (Tuner(DE3), BL21(DE3)
and BL21-Gold(DE3)). The detailed culture conditions are given in Table 1. In total 621 different cultures are presented and each symbol represents
one complete culture. Within each dataset, red represents the best expression performance while blue indicates bad expression performance.
The cultures were classified in accordance to Fig. 2c in four clusters: no induction, insufficient induction, optimal induction and too strong
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In Fig. 4f the linear correlation (black dashed line)
already represents a very simple model to predict the ex-
pression of FbFP of E. coli Tuner(DE3) at 37 °C. As indi-
cated by the low regression coefficient (R*) of 0.66 (Fig. 4f),
based on SLj'it(c) Standardizea JUSt @ rough prediction of the
final FbFP fluorescence intensity is possible. To improve
the quality of the prediction model, in addition the second
characteristic parameter (Cs;zdardized) Will be used.

For the development of the empirical prediction model,
all datasets (A-G) are used. As indicated in Table 1, a wide
range of culture condition is covered by these datasets.
However, the fluorescence intensity is temperature
depended [32] and different culture temperatures are
investigated (compare Table 1). The expressed product is
either directly measurable via fluorescence (FbFP) or the
enzyme activity (Cellulase celA2) has to be detected via
offline assay. To allow for comparison of all datasets,
the introduction of a standardized expression perform-
ance (EPsiundardizea) is necessary. Weak (or almost
none) expression performance will be indicated by
EPg;pnaaraizea-values close to 0. The best-measured

expression performance should be represented by a
value of 1 by EPsi,udardizea- As basis for the empirical
model, an equation including main effects, linear and
quadratic interactions is applied. The coefficients were
determined using the method of least squares. The fol-
lowing equation was found to predict EPsyndardized

n ; nd SL, :
based o CStandardized ds ﬁt(c)Smndardized

EPStandardized =0.76 + 0~37'CStandardized
-0.14 'CStandardized2 -1.14 SLth (C)
+0.27 *CStandardized ‘SL}jt (C)

Standardized

Standardized
(4)
Because the quadratic interaction of the standardized

2y .

Standardized ) did not
improve the model quality, this factor is not included in
the model (Eq. 4). The regression coefficient (R*) was de-
termined with 0.74 and, thus, is significantly better than
the linear regression (R* = 0.66), presented in Fig. 4f which
is just based on SLﬁt(c)

slope at the inflection point (SLII%(C)

Standardized’
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Table 1 Summary of the investigated datasets
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Dataset Cultures MTP E. coli host train Product Temp. ID-No of Device Source

A 303 48-well Tuner(DE3) FbFP 30 °C 1 Wandrey et al.
[33]

B 96 96-well BL21(DE3) FbFP 37 °C 2 Huber et al.
[10]

@ 46 48-well Tuner(DE3) FbFP 28 °C 2

D 45 48-well Tuner(DE3) FbFP 30 °C 2

E 45 48-well Tuner(DE3) FbFP 34 °C 2

F 45 48-well Tuner(DE3) FoFP 37 °C 2

G 45 48-well BL21-Gold (DE3) Cellulase (celA2) 37 °C 2

In Fig. 6, EPs;undaraizea Predicted according to Eq. 4 is
plotted over the measured EPs;,,4urdizeq- All 621 cultures
are shown. The datasets are indicated by different sym-
bols. Again, the color-coding introduced in Fig. 5 is
used. Red represents the best expression performance
and becomes more bluish with decreasing expression
performance. The color-coding corresponds to values of
EPgyndardizea Detween O (pure blue) and 1 (pure red).
More than 95% of the measured standardized expression
performances fit to the calculated values with an accur-
acy of 30% (gray dashed lines indicate a standard devi-
ation of +30%).

It is clearly visible that it is possible to predict the
standardized expression performance of E. coli cultures
just based on the temporal development of the scattered
light (Eq. 4). This method is particularly useful if the
expressed product cannot directly be measured via fluor-
escence. Complex HPLC analysis, ELISA or enzyme
assays can be avoided for a first screen and the experi-
mental evaluation becomes much easier and faster.
Because the empirical prediction model is based on stan-
dardized dimensionless characteristic parameters of the
temporal development of the scattered light, the model
can be applied to different BioLector devices, different E.

represents one complete culture. Red represents the best expression perfo
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Fig. 6 Comparison of predicted (Eq. 4) and measured standardized expression performance based on the standardized slope and time at the
inflection point as defined in Fig. 3a. The expression performance is calculated according to the empirical correlation (Eq. 4). The highest
expression performance is represented by a value of 1 and the lowest expression performance is indicated by 0. The dashed lines indicate a
standard deviation of +30%. The detailed culture conditions are given in Table 1. In total 621 different cultures are presented and each symbol

rmance while blue indicates bad expression performance
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coli strains and expressed products and with various cul-
ture conditions.

Conclusions

In a first approach, correlation between the temporal de-
velopment of the scattered light during E. coli cultures
and the amount of expressed fluorescent protein (FbFP)
was identified via visualization. It turned out that good
expression performances are indicated by linear increas-
ing scattered light intensities after induction. Due to
principal component analysis (PCA) it was found that
already the score values of the first two principal compo-
nents (PCs) are sufficient, to represent an entire culture.
The scores of the first PC allow for discrimination be-
tween insufficient, optimal and too strong induction.
The scores of the second PC mostly give information
about the expression performance.

The PCs were calculated based on scattered light mea-
surements with equal discrete time steps and, thus, the
PCA-model depends to a certain extent on the measure-
ment setup and the chosen culture conditions. To over-
come this restriction, a more mechanistically approach
was followed. Therefore, an extended sigmoidal function
(SL(t)) is fitted to the temporal development of the
scattered light of each culture. Based on the result of the
fits, two characteristic parameters are found: csuu,aardizea
and SLﬁt(c)Smdmdized. CStandardized 1S the standardized
time of the inflection point of the sigmoidal fraction.
SLﬁt(c)Sm”dardized is the standardized slope of the scat-
tered light intensity signal at the inflection point. As ref-
erence for standardization, the temporal development of
the scattered light of a non-induced culture is used.
These characteristic parameters can be used for cluster-
ing the cultures by their quality of induction as well as
for prediction of a standardized expression performance
(EPStandardized)' More than 95% of EPSmndardized were in
agreement with the measured values with an accuracy of
30%. Considering the fact that data from very different
cultures were evaluated, this accuracy can be consid-
ered as satisfactory. Due to the standardization to a
(non-induced) reference culture, a more general validity
is achieved and the method was successfully applied to
numerous E. coli cultures with various culture condi-
tions. In total, the temporal development of the scat-
tered light of 625 E. coli cultures (three host strains:
Tuner(DE3), BL21(DE3), and BL21-Gold (DE3)) expressing
either FbFP or cellulase (celA2) was investigated. The com-
bined datasets include cultures conducted in two different
online measurement devices with two types of MTPs (48-
and 96 wells), at four temperatures (28 °C, 30 °C, 34 °C,
and 37 °C). To the best of our knowledge, this is the first
work presenting a method for the general prediction of ex-
pression performance of E. coli based solely on the
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temporal development of scattered light signals. The
presented methodology is well suited to enhance induc-
tion optimization and speed-up bioprocess develop-
ment. In future, it has to be investigated whether this
methodology can be extended also to auto-induction
media and even to other gram-negative or gram-
positive expression host strains.

Methods

Dataset used for investigation

In this work, seven datasets (A-G) were investigated.
Partially, datasets have already been published before.
The cultures contained in dataset A were published by
Wandrey et al. [33]. Dataset B was obtained from Huber
et al. [10]. Dataset C-G were not published before. For
online monitoring of the cultures contained in dataset
C-G, the same online measurement device as presented
by Huber et al. [10] was used. The number of investi-
gated cultures as well as the culture conditions of each
dataset are summarized in Table 1.

Microorganism and media

For the investigations in dataset A and C-E, Escherichia
coli Tuner(DE3)/pRhotHi-2-Lacl-EcFbFP was cultivated
in 48-well FlowerPlates (MTP-48-B, lot 1404 & 1509,
m2p-labs, Baesweiler, Germany). Two pre-cultures (first:
complex TB medium; second: synthetic Wilms-MOPS
medium) were conducted in 250 mL shake flask (37 °C;
shaking frequency (n): 350 rpm; shaking diameter (d,):
50 mmy; filling volume (V7): 10 mL). Synthetic modified
Wilms-MOPS medium with 20 g L™ glucose was used
for main culture. Further details about the media com-
position is given elsewhere [33, 34].

In dataset G, cultures of Escherichia coli BL21-Gold
(DE3) pET-t7-CelA2 were investigated. Again, two pre-
cultures (first complex, second synthetic medium) and
synthetic modified Wilms-MOPS medium with 20 g L™
glucose for main culture were used. The time of induc-
tion was chosen between 1 and 10 h with IPTG concen-
trations between 50 and 1000 pM.

In dataset B Escherichia coli BL21(DE3) pRhotHi-2-
EcFbFP was investigated. Synthetic MDG mineral
medium [35] with 5 g L™ glucose as carbon source was
used for the main cultures in a 96-well MTP (uClear,
Greiner Bio-One, Frickenhausen, Germany). Further in-
formation are given elsewhere [10].

Measurement setup

All cultures were online monitored by measurement
devices according the BioLector concept [15, 16]. This
technology allows for fluorescence and scattered light
measurements through the transparent bottom in each
well of continuously orbitally shaken MTPs. Because
the shaking movement is not interrupted during
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measurement, the risk of (temporary) oxygen limita-
tions and cell sedimentation is significantly reduced. As
indicated in Table 1, two different measurement devices
with varying optics were utilized. The setup of “device
1” was developed in-house and is described in more de-
tail by Wandrey et al. [33]. Up to four parallel MTPs
can be monitored in parallel with this device. Details of
“device 2” are given by Huber et al. [10]. In this custom
made setup, the BioLector is integrated into the worktable
of a liquid handling system allowing process automation.
For a comparison of the scattered light level measured
with this device and optical density, a proportionality fac-
tor of 4 must be considered. For example, a scattered light
level of 20 a.u. corresponds roughly to an optical density
(ODggonm) of 5. Due to the different optical measurement
systems, variations of the measured absolute values (arbi-
trary units) in scattered light and fluorescence are
unavoidable. However, to enable comparison of data re-
ceived from both online measurement devices, mathemat-
ical methods to standardize the results are applied as
described in the following sections.

4-MUC assay

The final endoglucanase activity of Cellulase (celA2) in
dataset G was offline measured by means of the
fluorescence-based 4-methylumbelliferyl-pB-D-cellobio-
side (4-MUC) assay [36]. Small changes, as reported by
Mihlmann et al. [17] were applied. The 4-MUC assay
was conducted after reaching the stationary phase (in-
dicated by the scattered light signal) and, thus, the
time-point of analysis varied due to different culture
conditions between 10 and 24 h.

Software

All calculations were performed in MATLAB (Version
R2016a 9.0.0.341360, The MathWorks, Inc., Natik, USA).
Figures were created with OriginPRO 2016G (Version
b9.3.226, OriginLab Corperation, Northampton, USA).

Standard normal variate transformation

To enhance the quality of data used for principal com-
ponent analysis (PCA), data pre-processing is often
conducted. In the literature, different methods for data
pre-processing are presented and discussed [29, 37, 38].
In this contribution, the standard normal variate (SNV)
transformation is applied to the scattered light intensity
signals that were acquired during cultivation [39]. The
scattered light intensity signal of each culture is proc-
essed individually. From each measured scattered light
value (SL(¢)) the scattered light intensity signal mean of
the entire cultivation (SL) is subtracted and divided by
the standard deviation of the scattered light intensity
signal of the entire cultivation (std(SL)):
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SL(t)-SL

SNV(SL(t)) == D

(5)

Standardization of characteristic model parameters by
referencing to a non-induced culture
As already mentioned above, data obtained from two
online measurement devices were investigated in this
work. Even if the identical sample is investigated in
both devices different absolute values (arbitrary units)
are measured due to different optics. Furthermore, the
type of applied MTPs (48-well and 96-well plates) influ-
ence the course of the light beam and, thus, influence
the measurement. From dataset to dataset, also differ-
ent culture conditions are investigated. These changes
have significant impact on the cultivation. For example,
a temperature decrease extends the lag phase of the
culture. Therefore, the measured data needs to be stan-
dardized to realize a comparison between all investigated
datasets. A non-induced culture is used as reference. The
dimensionless standardized time of the inflection point
(CStandardizeq) 18 calculated according to Eq. 6:
CStandardized = B — (6)
Cron-induced

Con-induced 1S the time of the inflection point (param-
eter ¢ of the extended sigmoidal function; see Fig. 3a) of
a non-induced culture (reference).

Following the same approach, the dimensionless stan-
dardized slope at the time of the inflection point (SLﬁt

() standardizea) 15 calculated according to Eq. 7:

SLﬁt ' (C)
SLﬁt ' (C) non—induced

SL];it(C)Standardized = (7)

SLJ;;t(c) [au. h™'] is the slope at the inflection point of
the curve of the currently investigated culture. SLJ;”
(€),on-induces 120 h7'] is the slope at the inflection point
of the curve of a non-induced culture (reference
culture).

Additional file

Additional file 1: Figure S1. Monitored scattered light (A) and FbFP
fluorescence intensity signals (B) during 303 E. coli Tuner(DE3)/pRhotHi-2-
Lacl-EcFbFP cultures with varying times of induction (0.5-16 h) and
concentrations of IPTG (0-1000 uM). (A) The time span of induction is
highlighted by the gray area. (B) The final FbFP fluorescence intensity
defines the color-coding. The weakest expression (2 minimum final FbFP
fluorescence intensity) is presented in blue and becomes more reddish
with increasing final fluorescence intensity. The maximum final fluorescence
intensity is presented in pure red. The presented cultures were conducted
in a total of eight MTPs. The investigated cultures are referred to as dataset
A'in Table 1. Cultivation conditions: 48 round deep-well MTP without
optodes, VL =800 pL, n = 1000 rpm, shaking diameter d0 = 3 mm, 30 °C.

(PDF 437 kb)
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Abbreviations

4-MUC: 4-methylumbelliferyl-3-D-cellobioside; a: Lowest scattered light
intensity of extended sigmoidal fit function [a.ul; b: Difference between
lowest and maximum scattered light intensity of extended sigmoidal fit
function [a.ul; c: Time of inflection point of extended sigmoidal fit function
[]; Coon — induces: Time of inflection point of extended sigmoidal fit function of
a (non-induced) reference culture [h]; Csiandardized: Standardized time of
inflection point of extended sigmoidal fit function []; d: Parameter inversely
proportional to the slope of the sigmoidal fraction of the extended
sigmoidal function [h]; do: Shaking diameter [mm]; e: Slope of the linear
fraction before and after the extended sigmoidal function [a.u. h'l;

FbFP: Flavin-mononucleotide-based fluorescent protein; GFP: Green
fluorescent protein; IPTG: Isopropyl 3-D-1-thiogalactopyranoside;

MTP: Microtiter plate; n: Shaking frequency [rpm]; PC: Principal component;
PCA: Principal component analysis; t: Time [h]; SL(t): Temporal development
of the scattered light during culture [a.ul; SL: Scattered light intensity signal
mean of an entire cultivation [a.ul] SLf,,() Extended sigmoidal function to fit
scattered light intensity signal [a. u SLﬂr(t) Derivative of the extended
sigmoidal function (SLs(®) [a.u. h™'] SLm( ): Slope of the extended sigmoidal
function at the inflection point [a.u. h™'J; SLa:" (Onon — induced: Slope of the
extended sigmoidal function at the inflection point of a (non-induced)
reference [a.u. h™']; Sy (C) suumgardizes Standardized slope of the extended
sigmoidal function at the inflection point [-]; SNV(SL(t)): Standard normal
variate (SNV) transformation of the scattered light intensity signal [-];
std(SL): Standard deviation of the scattered light intensity signal of an entire
cultivation [a.u; V;: Filling volume [mL]
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