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Abstract

Background: The antibiotic methylenomycin A is produced naturally by Streptomyces coelicolor A3(2), a model
organism for streptomycetes. This compound is of particular interest to synthetic biologists because all of the
associated biosynthetic, regulatory and resistance genes are located on a single cluster on the SCP1 plasmid, making
the entire module easily transferable between different bacterial strains. Understanding further the regulation and
biosynthesis of the methylenomycin producing gene cluster could assist in the identification of motifs that can be
exploited in synthetic regulatory systems for the rational engineering of novel natural products and antibiotics.

Results: We identify and validate a plausible architecture for the regulatory system controlling methylenomycin
production in S. coelicolor using mathematical modeling approaches. Model selection via an approximate Bayesian
computation (ABC) approach identifies three candidate model architectures that are most likely to produce the
available experimental data, from a set of 48 possible candidates. Subsequent global optimization of the parameters
of these model architectures identifies a single model that most accurately reproduces the dynamical response of the
system, as captured by time series data on methylenomycin production. Further analyses of variants of this model
architecture that capture the effects of gene knockouts also reproduce qualitative experimental results observed in
mutant S. coelicolor strains.

Conclusions: The mechanistic mathematical model developed in this study recapitulates current biological
knowledge of the regulation and biosynthesis of the methylenomycin producing gene cluster, and can be used in
future studies to make testable predictions and formulate experiments to further improve our understanding of this
complex regulatory system.

Keywords: Synthetic biology, Antibiotics, Gene regulation, Methylenomycin, Mathematical modelling, Approximate
Bayesian computation, Global optimization

Background
There is currently an increasing demand for research
and development of new antibiotics as their overuse,
along with many other factors, has led to increased resis-
tance. Streptomycetes produce approximately 70% of all
commercial antibiotics currently available [1]. The bac-
terium Streptomyces coelicolor A3(2) has emerged as
the model organism for studying streptomycetes, initially
thanks to the production of colored metabolites that
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facilitated genetic studies, and more recently thanks to
the sequencing of its entire genome [2]. These bacte-
ria have a 8,667,507 base pair single linear chromosome
containing protein coding genes of which over 12% are
thought to be regulatory [2]. These predicted transcrip-
tional regulators are thought to mediate antibiotic synthe-
sis through the production of microbial hormones, as well
as influence structural and metabolic cellular responses
[3]. The linear SCP1 plasmid (∼ 356 kb) and the circu-
lar SCP2 plasmid (∼ 31 kb) are both present within the
S. coelicolor genome and have also both been sequenced
[4]. This genome sequencing has revealed many cryp-
tic and ‘silent’ gene clusters: sets of genes predicted to
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produce a natural product, but whose product has not
been observed. Silent gene clusters have been awak-
ened through geneticmanipulation of regulatory elements
[5, 6]. Thus, characterization of the regulatory system
that mediates the production of specialized metabolites
is key to discovering new natural products. Developing
improved understanding of the regulatory architectures
that underlie natural product biosynthesis can also accel-
erate the design of novel regulatory systems in synthetic
biology.
The antibiotic methylenomycin A is a natural prod-

uct of S. coelicolor A3(2) and is of particular interest
since all of the 21 biosynthetic, regulatory and resistance
genes, located in a cluster on the SCP1 plasmid [4, 7],
have been studied in detail [8], and a series of knock-
out mutant strains has been generated [9]. The regulation
of methylenomycin biosynthesis is mediated by the tran-
scriptional repressor MmfR, a TetR-family homodimeric
protein consisting of an N-terminal DNA-binding domain
and a C-terminal ligand-binding domain (Fig. 1a) [10, 11].
In the initial growth phase of S. coelicolor, the MmfR
N-terminal domain is thought to be bound to the DNA
at the methylenomycin auto-regulatory response element
(MARE) causing the transcriptional repression of down-
stream genes. MmfR holds the system in this repressed
state until the advent of the small signaling molecules,
methylenomycin furans (MMFs) [12]. MMFs bind specif-
ically to the C-terminal domain of the MmfR, forming
an MmfR:MMF complex that results in a conformational
change in the MmfR. Consequently, MmfR is released
from the MARE, negating the repression and triggering
gene transcription. The biosynthesis of MMFs is con-
trolled by the MmfLHP enzymes which are, themselves,

repressed by MmfR, thus forming a feedback control loop
that governs the dynamical properties of the system. A
second repressor, MmyR, is homologous to MmfR yet its
role in methylenomycin regulation is currently less under-
stood. There is, however, clear evidence that the impact of
MmyR is particularly significant, since S. coelicolor strains
with the mmyR gene knocked out have been found to
overproduce methylenomycin [9].
Homologous architectures to that of the methyleno-

mycin regulatory system have been identified across
a plethora of microorganisms [13], regulating different
classes of natural products and thus indicating the util-
ity of this specific type of regulatory architecture [12].
Responding to environmental changes is of paramount
importance to these bacteria. The soil they live in presents
a harsh environment with considerable competition for
resources and it is therefore vital that they possess
sophisticated, tightly regulated mechanisms to turn on
the expression of specific genes when required. Hence,
obtaining a detailedmechanistic understanding of the reg-
ulatory system controlling the biosynthetic pathway to
this antibiotic has the potential to elucidate a host of other,
less tractable, biosynthetic gene clusters and help stan-
dardize one of themost important regulatory networks for
the development of new antibiotics.
Recent mathematical modeling investigations have

generated new insights into the operation of numer-
ous systems of interest to synthetic biologists [14–17].
Such models not only provide the capability to accurately
simulate synthetic systems during the design and devel-
opment phase, but are also effective tools for the
prediction of system responses to variations in environ-
mental conditions [18]. Here, we develop the first detailed

a b

Fig. 1 a Schematic diagram of the MmfR binding mechanism. Binding of MmfR to DNA at the MARE represses gene transcription and therefore
negates system output. In the presence of MMF ligand, an MmfR:MMF complex is formed which releases MmfR from the MARE and triggers gene
transcription. b Schematic diagram of the methylenomycin gene cluster whereby fpm and apm represent the DNA binding motifs recognized by
MmfR and MmyR proteins. The fpm controls the expression ofmmfR,mmyR andmmfLHP genes while apm regulates the expression of themmy
biosynthetic genes
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mathematical model of the MMF-dependent regulatory
system involved inmethylenomycin production in S. coeli-
color, firstly, through a rigorous statistical analysis of the
plausibility of multiple candidate model architectures and,
secondly, via global optimization of the relevant model
parameters against available experimental data. We also
validate our candidate model architecture against a range
of selection criteria devised in light of experimental obser-
vations on methylenomycin production in several mutant
S. coelicolor strains.

Results and discussion
Formulation of candidate model architectures
The various binding interactions and protein expression
summarized in Fig. 1 inform the formulation of our can-
didate model architectures. MmfR is thought to bind to
three distinct intergenic regions on the gene cluster [9].
However, we combine the region associated with MmyR
biosynthesis together with the region associated with both
MmfR andMMF biosynthesis to form a single DNAmod-
ule responsible for the biosynthesis of all three molecules
(the furan producing module, fpm). That is, we use the
term fpm to refer to five distinct genes that provide control
over three distinctmolecular products:MmyR,MmfR and
MMF. The genesmmfL,mmfH andmmfP are coregulated
in an operon and are directly responsible for the produc-
tion (assembly) of MMF molecules; the mmfR and mmyR
genes control MmfR and MmyR production respectively
[9, 12] (Fig. 1b). The third distinct intergenic region is rep-
resented by our second DNA module which we consider
responsible formethylenomycin (MMY) biosynthesis only
(the antibiotic producing module, apm). Therefore, our
model architectures all consist of two fundamental DNA
modules that can both be bound by MmfR, and that have
production of their respective proteins repressed as a con-
sequence. Due to its effect on the gene cluster and its
homology to MmfR, in this study we hypothesize that
MmyR also binds both modules in a similar manner.
Our base architecture accounts for reversible MmfR

and MmyR binding to both the fpm and apm to form
four complexes: fpm:MmfR, fpm:MmyR, apm:MmfR and
apm:MmyR. MMF binds MmfR reversibly at these com-
plexes in order to trigger gene expression; MMF bind-
ing MmfR in solution is also accounted for since we
have been able to co-crystallize MmfR:MMF complexes
and solve the 3D-structure through experimentation void
of target DNA modules (data not shown). MmfR:MMF
complexes that dissociate from the MAREs return free
MmfR andMMF back into the system irreversibly. MmyR,
MmfR and MMF production is controlled by the fpm. We
account for an initial repressed system state by impos-
ing non-zero initial concentrations upon the fpm:MmfR
and apm:MmfR complexes; all remaining model variables
have initial concentrations equal to zero. MmfR, MmyR,

MMF andMMY all undergo degradation at constant rates
(Fig. 2).
This model architecture represents the extent of our

current mechanistic understanding, however there are
certain details that require further investigation. For
example, although we believe that the MMF releases
MmfR from the fpm:MmfR and apm:MmfR complexes
and also binds free MmfR in solution, it would be insight-
ful to examine the dynamical influence of each binding
mechanism in isolation. Similarly, although we believe
there is no interaction between the MMF and MmyR
within the system (data not shown), the binding interac-
tions of MMY are not as well documented. It may there-
fore be possible that MMY is able to inhibit the action of
both MmfR and MmyR either through dissociation from
their respective fpm and apm complexes or binding in
solution. Consequently, the aim of our modeling investi-
gation is to examine the effect of three key mechanistic
properties on model performance:

1. MMF-MmfR interactions occur at existing
DNA:MmfR complexes (C), in solution (S) or via
both mechanisms (B).

2. MMY-MmfR interactions occur at existing
DNA:MmfR complexes (C), in solution (S), via both
mechanisms (B) or do not occur at all (N).

3. MMY-MmyR interactions occur at existing
DNA:MmyR complexes (C), in solution (S), via both
mechanisms (B) or do not occur at all (N).

This set of possible molecular interactions results in 48
distinct candidate model architectures for the methyleno-
mycin regulatory system. Each candidate architecture is
given a three letter name corresponding to the interac-
tions accounted for with respect to each of the three
properties listed above. The order of the letters in each
name corresponds strictly to the numerical order of these
properties. For example, our base architecture (described
above) is given the name BNN since it accounts for both
mechanisms (B) regarding property 1, for no interactions
at all (N) regarding property 2 and for no interactions at
all (N) regarding property 3.
Each of the 48 candidate architectures presents a dis-

tinct reaction network and set of biochemical equations
that can be used to derive a dynamical mathematical
model. We apply mass action kinetics to the biochemi-
cal equations comprising each reaction network to derive
a corresponding system of ordinary differential equations
(ODEs). Each ODE describes the rate of change in con-
centration corresponding to each model variable (cel-
lular entity). The solution to each system of ODEs is
determined numerically due to the non-linearity of the
equations and provides a deterministic output that can
be used to simulate and predict in vivo system dynamics
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Fig. 2 Schematic diagram of the reaction network comprising the base (BNN) model architecture. Reversible and irreversible reactions are depicted
by double and single arrows respectively; reaction rate constants are denoted by the corresponding numbered k. The empty set depicts protein
degradation, with rate constants denoted by the corresponding numbered γ . Solid arrows depict reactions that are common to all 48 model
architectures, whereas dashed arrows depict those that are subject to adaptation. Cellular entities with non-zero initial concentrations are underlined

in silico. For example, the BNN model architecture is
comprised of the following biochemical equations:

fpm + MmyR
k1−−⇀↽−−
k−1

fpm:MmyR (1)

fpm + MmfR
k2−−⇀↽−−
k−2

fpm:MmfR (2)

fpm k7−→ MmyR + fpm (3)
fpm k8−→ MmfR + fpm (4)
fpm k9−→ MMF + fpm (5)

fpm:MmfR + MMF
k3−−⇀↽−−
k−3

fpm:MmfR:MMF (6)

fpm:MmfR:MMF k11−→ fpm + MmfR:MMF (7)

apm + MmyR
k4−−⇀↽−−
k−4

apm:MmyR (8)

apm + MmfR
k5−−⇀↽−−
k−5

apm:MmfR (9)

apm k10−→ MMY + apm (10)

apm:MmfR + MMF
k6−−⇀↽−−
k−6

apm:MmfR:MMF (11)

apm:MmfR:MMF k12−→ apm + MmfR:MMF (12)
MmfR:MMF k13−→ MmfR + MMF (13)

MmfR + MMF
k14−−⇀↽−−
k−14

MmfR:MMF (14)

MmyR γ1−→ ∅ (15)
MmfR γ2−→ ∅ (16)
MMF γ3−→ ∅ (17)
MMY γ4−→ ∅ (18)

from which we derive the following system of model
ODEs:
d[MmyR]

dt
= k7[ fpm]−k1[MmyR] [ fpm]+ k−1[ fpm:MmyR]

− k4[MmyR] [ apm]+k−4[ apm:MmyR]

− γ1[MmyR] ,

(19)

d[MmfR]
dt

= k8[ fpm]−k2[MmfR] [ fpm]+ k−2[ fpm:MmfR]

− k5[MmfR] [ apm]+k−5[ apm:MmfR]

+ k11[ fpm:MmfR:MMF]+k12[ apm:MmfR:MMF]+
k13[MmfR:MMF]−k14[MmfR] [MMF]

+ k−14[MmfR:MMF]−γ2[MmfR] ,

(20)

d[ fpm]
dt

= k11[ fpm:MmfR:MMF]−k1[MmyR] [ fpm]

+ k−1[ fpm:MmyR]+k−2[ fpm:MmfR]

− k2[MmfR] [ fpm] ,

(21)

d[ apm]
dt

= k12[ apm:MmfR:MMF]−k4[MmyR] [ apm]

+ k−4[ apm:MmyR]+k−5[ apm:MmfR]

− k5[MmfR] [ apm] ,

(22)

d[ fpm:MmyR]
dt

= k1[MmyR] [ fpm]−k−1[ fpm:MmyR] , (23)

d[ apm:MmyR]
dt

= k4[MmyR] [ apm]−k−4[ apm:MmyR] , (24)

d[ fpm:MmfR]
dt

= k2[MmfR] [ fpm]−k−2[ fpm:MmfR]

− k3[ fpm:MmfR] [MMF]+
k−3[ fpm:MmfR:MMF] ,

(25)
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d[ apm:MmfR]
dt

= k5[MmfR] [ apm]−k−5[ apm:MmfR]

− k6[ apm:MmfR] [MMF]+
k−6[ apm:MmfR:MMF] ,

(26)

d[ fpm:MmfR:MMF]
dt

= k3[ fpm:MmfR] [MMF]

− k−3[ fpm:MmfR:MMF]

− k11[ fpm:MmfR:MMF] ,

(27)

d[ apm:MmfR:MMF]
dt

= k6[ apm:MmfR] [MMF]

− k−6[ apm:MmfR:MMF]

− k12[ apm:MmfR:MMF] ,

(28)

d[MMF]
dt

= k9[ fpm]−k3[ fpm:MmfR] [MMF]

+ k−3[ fpm:MmfR:MMF]+k−6[ apm:MmfR:MMF]

− k6[apm:MmfR][MMF]+k11[ fpm:MmfR:MMF]+
k12[ apm:MmfR:MMF]+k13[MmfR:MMF]

− k14[MmfR] [MMF]+k−14[MmfR:MMF]

− γ3[MMF] ,

(29)

d[MMY]
dt

= k10[ apm]−γ4[MMY] , (30)

d[MmfR:MMF]
dt

= k11[ fpm:MmfR:MMF]+k12[ apm:MmfR:MMF]

− k13[MmfR:MMF]+k14[MmfR] [MMF]

− k−14[MmfR:MMF] ,

(31)

where square brackets denote concentration and the reac-
tion rate constants translate to model parameters. Reac-
tions associated with reversible DNA:protein binding (k1,
k−1, k2, k−2, k4, k−4, k5 and k−5), the production ofMmyR,
MmfR, MMF andMMY (k7, k8, k9 and k10) and each indi-
vidual protein degradation reaction (γ1,2,3,4) are common
to all of our candidate model architectures. Other reac-
tions that are associated with the release of MmfR from
existing DNA:MmfR complexes or the sequestration of
MmfR andMmyR via binding in solution are not common
to all models and are thus subject to investigation through
our computational simulations.
Model simulations are provided by the numerical solu-

tions to the relevant model ODEs, which are calculated
using the ODE solver ode45 in MATLAB. We are inter-
ested in examining the dynamics of methylenomycin pro-
duction in each of the 48 candidate models and therefore
analyze the simulations of MMY provided by numerical
solutions to the corresponding ODE (30).

Available experimental data
Methylenomycin production by S. coelicolor has been
shown to adopt a typical dynamical profile [19, 20]. Once

expression is initiated, usually by environmental condi-
tions that are thought to establish MMF production, it
increases relatively quickly towards a global maximum
level. Expression then decreases from this maximum,
reaching a relatively low level at steady-state. This profile
aligns with the premise that the system is initially held in a
repressed state until MmfR is released by MMF to trigger
methylenomycin expression, which then increases quickly
until free MmfR and MmyR cause secondary repression
and eventual equilibrium of the feedback loop.
We consider the binding affinity ofMmfR to the fpm and

apm to be strong, based on experimental data regarding
binding interactions between a similar protein, SAV2270,
and its associated DNA motifs (our unpublished data).
We characterized the binding of this protein to Strepta-
vidin Immobilized oligonucleotides using a Biocore T200
SPR instrument. Our data reveal that the association and
dissociation rates of this protein:DNA binding are on the
order of 105 M−1s−1 and 10−2 s−1 respectively. As a result,
we fix the model parameters relating to MmfR association
and dissociation from both the fpm and apm at 105 and
10−2 respectively (k2 = k5 = 105; k−2 = k−5 = 10−2).
The dimensionality of our experimental measurements
agree with the corresponding parameters in our dimen-
sional model and we are therefore able to apply these
values directly. We assume that MmyR binding interac-
tions are identical to that of MmfR and hence the same
values are fixed for the parameters describingMmyR asso-
ciation and dissociation from the fpm and apm (k1 = k4 =
105; k−1 = k−4 = 10−2).
Mutant strains of S. coelicolor that account for specific

gene knockouts reveal qualitatively different methyleno-
mycin production dynamics (Table 1). The mutant strain
accounting for mmyR deletion, �mmyR, has been shown
to exhibit increased methylenomycin expression com-
pared to the wildtype; in the absence of MmyR, the
overall capacity of the system to repress methyleno-
mycin production is reduced and therefore the produc-
tion of the antibiotic is increased. The �mmfLHP strain
exhibits a complete cessation of methylenomycin expres-
sion; in the absence of the mmfLHP genes, the system

Table 1 The effects of knocking out certain genes and
combinations of genes observed experimentally, adapted from
[9]

S. coelicolor strain Methylenomycin production

Wildtype +

�mmyR +++

�mmfLHP -

�mmfLHP+�mmyR+�mmfR +++

�mmfLHP+exogenous MMF +

The wildtype strain is allocated a single ‘+’ to denote typical methylenomycin
expression. Over-expression and the cessation of expression are denoted by ‘+++’
and ‘-’ respectively
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is locked in the apm:MmfR complex since the expres-
sion of MmfR, MmyR and particularly MMF is prevented
and thus the bound MmfR cannot be released. The
�mmfLHP+�mmyR+�mmfR strain exhibits increased
methylenomycin production compared to the wildtype; in
the absence of MmfR and MmyR, both initially and as a
result of any subsequent production by the fpm, the apm is
able to produce methylenomycin in an unrestricted man-
ner. The �mmfLHP strain with exogenous MMF exhibits
relatively similar methylenomycin expression to that of
the wildtype; in the absence of endogenous MMFs, exoge-
nous MMF permits the release of MmfR and, in turn,
methylenomycin expression. Experimentation with the
�mmfR strain has thus far yielded inconclusive results
and, as such, presents the opportunity for mathemati-
cal modeling simulations to inform future experimental
studies.

Model selection via approximate Bayesian computation
In order to assess the potential of the 48 candidate archi-
tectures to reproduce the known characteristics of the
system, we perform model selection based on approx-
imate Bayesian computation (ABC) using the ABC-
SysBio software package. ABC-SysBio combines Bayes’
rule with sequential Monte Carlo (SMC) approaches to
solve parameter inference and model selection problems
in systems biology [21–23]. The procedure determines
the model, from a set of candidate models, that is most
likely to have produced the associated experimental data.
Extensive quantitative data regarding methylenomycin
expression is lacking in the literature, however a time
series expression profile is reported in [20]. We therefore
provide ABC-SysBio with a dataset designed to repli-
cate this profile (Fig. 3), with two important exceptions.
Firstly, we specifically account for the dynamical series
of data points in the 40 hour interval between hours
54 and 94 of the time series. This is because the 54
hour experimental time point is when methylenomycin
expression commences and translates to the 0 hour time
point in our simulations. The time points that precede
54 hours record the repression of methylenomycin pro-
duction prior to the environmental trigger and are hence
excluded when fitting a model that accounts purely for
the dynamical response of the system. Secondly, we incor-
porate additional uniformly distributed ‘synthetic’ data
points, increasing the size of the dataset from 5 points to
41, in order to provide a more rigorous data fitting task to
the ABC-SysBio algorithm.
ABC-SysBio also requires a prior probability distri-

bution on each model parameter subject to inference
in order to establish the parameter space within which
to locate acceptable parameter sets. The prior distribu-
tions chosen for all parameters associated with each of
the 48 candidate models are uniform distributions on

Fig. 3 Experimental data representing current biological knowledge
of typical methylenomycin expression in S. coelicolor. Real
experimental data points taken from [20]. Synthetic data points are
added uniformly between real data points to increase the rigor of
model selection and parameter inference

the interval [ 10−4, 104], that is, all candidate models are
given an equal parameter space in attempting to identify
parameter values capable of replicating our experimen-
tal dataset. We consider uniform priors to be the most
suitable for model selection given the complete uncer-
tainty surrounding the parameters subject to inference,
and hence all potential parameter values require an equal
probability of selection. We also impose prior distribu-
tions on the initial conditions of the necessary state vari-
ables due to the lack of experimental data regarding the
physical quantity of DNA in the system: the prior distribu-
tions are uniform distributions on the interval [ 0, 1] and
are assigned only to the MmfR:fpm and MmfR:apm com-
plexes, all other initial conditions are set equal to zero.
ABC-SysBio convergence is dependent on the sequen-
tial satisfaction of a predefined series of decreasing error
thresholds by a predefined number of solutions (see
Methods). Here, the number of solutions required to sat-
isfy each error threshold is 500 [24] in order to reduce
the time frame required for convergence; the number of
models subject to selection coupled with the inability to
parallelize the process presents a particularly time con-
suming computational workload. The user-defined error
function designed to measure the accuracy of simulations
takes the mean absolute value of the difference between
model outputs and data values:

E = 1
41

41∑

i=1
|xi − di|, (32)
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where E is the error and xi, di are the model outputs and
data values at each of the 41 corresponding time points, ti,
respectively.
The results of our model selection are shown in Fig. 4.

The final probability distributions reveal that the model
most likely to have produced the experimental data is
BNN, the model formulated based on our current knowl-
edge (Fig. 4a). The BNN model achieved a 0.916 prob-
ability of producing our data which is vastly superior
to the remaining models, 36 of which were statistically
eliminated through the selection process. This suggests
that the most plausible network of molecular interactions
underlying this system should account for MMF-MmfR
interactions both at existing DNA:MmfR complexes and
in solution, no MMY-MmfR interactions at all and no
MMY-MmyR interactions at all, as depicted in Fig. 2.
In order to verify that the addition of synthetic data

points does not restrict the emergence of other viable
candidate models, we repeated the model selection proce-
dure using only the 5 real experimental data points taken
from [20]. Mean absolute error generally increases with
decreasing numbers of data points which subsequently
increases the difficulty for each population of solutions

to meet the same error thresholds. Hence, the acceptance
rate decreases and the process becomes more time con-
suming; this run took longer than the original run andmet
7 thresholds compared to the previous 11 (Fig. 4b). The
probability distribution across all models clearly identified
the most likely models as early as P2, which converged
further at P4 and P6 to suggest that BNN was a likely
model architecture, in agreement with our initial result.
However, P3, P5 and P7 identified a different distribution
which suggested that models SCS and SNS were also likely
candidates. Given that ABC-SysBio appeared to present
two alternating probability distributions, it is probable
that additional local minima were identified in this case.
To further investigate the set of plausible models iden-
tified using this Bayesian inference framework, we next
employed global optimization methods, as well as analysis
of mutant versions of the candidate models, as described
in the following sections.

Parameter inference via global optimization
ABC-SysBio performs parameter inference by produc-
ing probability distributions on the numerical values
that comprise accepted parameter sets during the model

a

b

Fig. 4 ABC-SysBio model selection results. a Histograms showing the probabilities of producing the full dataset for the 48 candidate models. b
Histograms showing the probabilities of producing the real experimental dataset for the 48 candidate models. The numbers above each histogram
denote the population number, the error threshold ε (square brackets) and the acceptance rate (parentheses) respectively. The number of accepted
solutions required to satisfy each error threshold is 500
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selection process. For example, the distributions on
the initial conditions imposed on the fpm:MmfR and
apm:MmfR complexes reveal that statistically these val-
ues can be approximated to be 0.6 and 0.5 respectively
(Fig. 5). These distributions are insightful, but cannot pro-
vide complete clarity over the numerical values inferred
in all cases. Other parameter inference methods, such
as global optimization, place greater focus on the iden-
tification of specific numerical parameter sets capable of
minimizing the user-defined error function. The genetic
algorithm (GA), is a particularly powerful global optimiza-
tion tool and is exploited regularly in biological model
parameter inference [25, 26]. The GA converges to the
solution providing the global minimum error within the
allocated parameter space by evolving an initial popula-
tion of randomly generated solutions over a large number
of generations. This process is based on natural selection,
giving the best solutions in the population the best chance
of creating the next generation of solutions (seeMethods).
In our case, the error function minimized by the

GA is the same absolute mean error function used for
ABC-SysBio model selection (32). We also allocate the
same parameter space to the GA by imposing lower and
upper bounds on the inferred parameters of 10−4 and
104 respectively. Again, the initial conditions imposed
on the model variables are zero with the exception of
those regarding the fpm:MmfR and apm:MmfR complexes
which we approximate to be 0.55 in light of our ABC-
SysBio probability distributions and given that we require
both initial concentrations to be equal. The results of our
global optimization are shown in Fig. 6. The BNN model
is capable of accurately matching the experimental time-
course data when optimized within the same parameter
space used for model selection. The optimal parameter
set identified by the GA is listed in Table 2 and pro-
vides an absolute mean error of 6.12 × 10−6. The four
parameter values describing protein degradation (γ1,2,3,4)
vary by one order of magnitude at most; the remaining
parameter values all describe protein:protein association
and dissociation and vary by three orders of magnitude
at most. Hence, we conclude that the numerical ranges of

Fig. 5 ABC-SysBio parameter inference results. Histograms show the
probability distributions on the two parameters describing the initial
concentration of the fpm:MmfR and apm:MmfR complexes

Fig. 6 Genetic algorithm global optimization results. The BNN model
is able to fit the experimental data using the optimal parameter set
identified by the GA. The absolute mean error provided by this
optimal solution is 6.12×10−6. The optimal fits provided by the SCS
and SNS models are similar and are not as accurate as the BNNmodel.
The absolute mean error provided by both of these optimal solutions
is 2.39×10−5

these optimal parameter values are reasonable within this
biological context.
To investigate further, we also optimized the parameters

of the SCS and SNS models against the experimental data
using the GA, in an identical manner to that previously

Table 2 Optimal parameter values for our BNN model

Reaction Value (M−1s−1) Reaction Value (s−1)

k3 3.6119 k−3 0.1092

k6 0.9079 k−6 5.7766

k14 0.0065 k−14 0.2208

− − k7 2.6978

− − k8 0.8902

− − k9 5.8903

− − k10 0.1101

− − k11 0.6296

− − k12 0.5307

− − k13 0.0880

− − γ1 0.9470

− − γ2 2.7057

− − γ3 0.2248

− − γ4 0.1646

This optimal parameter set is dimensional, with parameters in the first and second
reaction columns taking the units M−1s−1 and s−1 respectively based on standard
mass action kinetics
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done for the BNNmodel. This revealed that neither model
was able to achieve the same quality of fit to the data as
the BNN (minimum error of 2.39 × 10−5 for both SCS
and SNS compared to 6.12 × 10−6 for BNN). In addition,
neither the SCS or SNS models were able to even qualita-
tively replicate the non-monotonicity in the response that
is clearly exhibited in the experimental data.

Monte Carlo simulations of methylenomycin production in
mutant strains
We performed additional model validation by testing
the BNN model against our qualitative data regard-
ing methylenomycin production in mutant S. coelicolor
strains. We employ Monte Carlo simulations to examine
methylenomycin production under four distinct condi-
tions corresponding to the mutant strains described in
Table 1. By examining the dynamical response to specific
gene knockouts against the wildtype strain, represented
by the optimal BNN model output in Fig. 6, we are able
to investigate the qualitative effect of adapting our BNN
model to emulate these mutant strains.
When simulating MMY production in the different

mutant strains, we account for �mmyR by simply set-
ting the parameter describingMmyR production from the
fpm, k7, to zero. However, �mmfR strains are incapable
of producing MmfR and therefore cannot be simulated in
the initial repressed state comprised of the fpm:MmfR and
apm:MmfR complexes. Hence, the parameter describing
MmyR production from the fpm, k8, is set to zero and
the allocation of initial concentrations is adapted to
exclude the fpm:MmfR and apm:MmfR complexes. The
�mmfLHP strain is simulated by setting the initial con-
centration of the fpm and its associated complexes to
zero, since the entire DNA module has been knocked
out. The addition of exogenous MMF involves allocating
this variable an initial concentration of 0.55 to align with
the initial concentrations allocated to the relevant vari-
ables, that is, no new model parameters are introduced to
describe production of exogenous MMF. Mutant strains
comprising combinations of gene knockouts are simulated
by combining the appropriate adaptations.
Specifically, in order to simulate the �mmyR strain we

set k7 = 0. To simulate the �mmfLHP strain the initial
concentration of 0.55 is imposed on the apm:MmfR com-
plex only, all other initial concentrations are set equal to
zero. To simulate the�mmfLHP+�mmyR+�mmfR strain
we set k7 = k8 = 0 and all initial concentration are
set equal to zero with the exception of the apm which is
set equal to 0.55. To simulate the �mmfLHP+exogenous
MMF strain initial concentrations of the apm and MMF
are set equal to 0.55, and all other initial concentrations
are set equal to zero.
Monte Carlo simulations assign random values in the

interval [ 10−4, 104] to all model parameters, excluding

those that retain their fixed values assigned for previous
model selection and parameter inference purposes, as we
continue to examine dimensional dynamic responses. We
run a total of 104 Monte Carlo simulations to allow for
substantial sampling of the parameter space within a feasi-
ble time frame. Each simulation outputsMMYproduction
for each of the four mutant strains and calculates the ratio
of the mean value to that of the optimal wildtype simu-
lation. We utilize these ratios to investigate the ability of
our model to satisfy the following four criteria, which cap-
ture the experimentally observed responses of the mutant
strains:

1. �mmyR
wildtype > 1.1,

2. �mmfLHP
wildtype < 0.9,

3. �mmfLHP+�mmyR+�mmfR
wildtype > 1.1,

4. 0.9 <
�mmfLHP+MMF

wildtype < 1.1,

where overproduction translates to an increase in mean
MMY production of < 10%, cessation translates to a
decrease in MMY production of < 10% and comparable
production translates to a maximum increase or decrease
in MMY production of less than 10%. The results of our
Monte Carlo simulations are shown in Fig. 7. Param-
eter sets were identified for BNN that are capable of
satisfying each of the four criteria, within the same dimen-
sional solution space as the optimized wildtype model
(Fig. 7a). Given the uncertainty regarding the effect of
gene knockouts on the reaction kinetics and MMY pro-
duction of the system, this qualitative agreement offers
further validation of the replication and prediction capa-
bilities of the BNN model.
The SCS and SNS models are also able to simulate the

responses observed experimentally for the �mmyR and
the �mmfLHP+�mmyR+�mmfR knockout strains, but
not for the �mmfLHP and �mmfLHP+exogenous MMF
knockouts (Fig. 7b and 7c). This is likely due to the most
significant mechanistic property separating them from
BNN, i.e. the interaction of MMY with one or both of
MmyR and MmfR. This interaction results in decreased
repression of the apm since the MMY is negating the
action of either or both regulators and hence the apm
is less restricted in producing MMY, which causes an
overproduction of the antibiotic for the �mmfLHP and
�mmfLHP+exogenousMMF knockouts that has not been
observed experimentally (Fig. 7b and 7c). We therefore
conclude that the BNNmodel remains themost likely can-
didate model to explain all the available experimental data
for this system.

Experimental design for future studies
We are able to inform the design of future experimen-
tal studies in light of our results. For example, we are
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a

b

c

Fig. 7Monte Carlo simulation results. a The BNN model is able to
simulate the qualitative data regarding four mutant S. coelicolor
strains when adapted to replicate the corresponding gene knockouts.
b The SCS model is unable to simulate qualitative data regarding the
�mmfLHP and �mmfLHP+MMF knockout strains. c The SNS model is
unable to simulate qualitative data regarding the �mmfLHP and
�mmfLHP+MMF knockout strains

interested in quantifying the response of the �mmyR
and �mmfLHP + �mmyR + �mmfR strains in order to
verify our model prediction that the five gene mutant
elicits a more rapid and significantly greater overproduc-
tion of MMY. This has implications both in terms of
improving product yields for industrially relevant natural
products, and also regarding the potential adverse effects
this might cause in the cells, such as toxicity. The result

of these experiments would subsequently reveal whether
the �mmfLHP + �mmyR + �mmfR is the most effective
knockout for improving antibiotic production in novel
synthetic regulatory systems.
In the event that directly quantifying MMY production

is inconclusive, we would be interested in replacing the
gene controlled by the apm with a reporter gene coding
for fluorescence or luminescence such as green fluores-
cent protein (GFP) or lux genes respectively. This output
may enable us to measure the response of the different
mutant strains with greater clarity, since experiments of
this nature are already well characterized, particularly in
the related bacterium S. venezuelae.
Finally, we are also interested in examining the

�mmfLHP+MMF mutant in order to establish the quan-
tity of exogenous MMF and the specific time point of
induction that provides optimal MMY production. Our
model predicts a narrow production window for this
strain which may suggest that direct MMY quantifica-
tion is not straightforward and that, again, experimen-
tal designs incorporating reporter genes would provide
improved results.

Conclusions
We have developed a plausible model architecture for
the regulatory system controlling methylenomycin pro-
duction in Streptomyces coelicolor. This architecture was
found to most closely reproduce the various dynamical
responses described by experimental time series data for
this system, when tested against 47 other candidate archi-
tectures. Global optimization of the model parameters
produced close agreement with the experimental data.
Appropriate adjustments to the proposed model architec-
ture allow it to replicate observed changes in the dynamics
of methylenomycin production in a number of mutant S.
coelicolor strains.
The mechanistic details captured in the proposed regu-

latory architecture provide useful insights for the design of
future experiments to further investigate the operation of
this system, and demonstrate the potential of mathemat-
ical models to elucidate the design principles of complex
biological control systems. We expect that the emergence
of further quantitative experimental data for this system
will inform further model development and validation,
and allow for the generation of optimized models that are
capable of accurately predicting the dynamical responses
of one of the most prevalent and important gene regula-
tory networks in nature.

Methods
ABC-SysBio model selection
ABC-SysBio is a Python software package that is designed
specifically for parameter inference and model selec-
tion in biological systems research using the approach
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of approximate Bayesian computation (ABC) [21]. The
program enables ABC inference of mathematical models
via sequential Monte Carlo (SMC) approaches [21–23].
Monte Carlo approaches to computational simulations
involve generating random candidate solutions, testing
their fitness against a desired output and repeating until a
viable solution can be identified. In this way, vast numbers
of randomly selected parameter sets can be examined in
building an accurate approximation to the posterior dis-
tribution defined by conditional probabilities known as
Bayes’ theorem:

P(A|B) = P(B|A)P(A)

P(B)
, (33)

where P(B) > 0. The ABC-SMC approach proceeds in
the following manner: the first ‘population’ of accepted
solutions or ‘particles’ is generated randomly based on
the prior distributions imposed on the model parame-
ters. Each particle gives rise to a simulated dataset, D�,
which is compared to the fixed experimental dataset,
D, by an appropriate distance function and its fitness is
scored accordingly. Acceptance of a particle is dependent
on a decreasing sequence of error thresholds, ε, set to
correspond with each population. That is,

d(D�,D) < εi, (34)

where ε1 > ε2 >. . .> εn and d is the distance function.
Each subsequent population is obtained by perturbing
particles from the previous population in accordance with
a predetermined perturbation kernel, proceeding until the
model is unable to produce particles of sufficient fitness to
satisfy the immediate threshold.
An array of model-specific criteria are required to allow

the ABC-SysBio package to run efficiently: the sequence of
decreasing error thresholds, ε, must be provided whereby
only the particles capable of providing error less than
that of the threshold will be accepted by the algorithm.
Each ε must be satisfied in succession until the parti-
cles are unable to satisfy the next threshold. Satisfaction
of an individual threshold is dependent on the number
of particles accepted; the number of acceptable parti-
cles required before passage to the next threshold must
also be predetermined. The larger the number of parti-
cles, the higher probability of significant inference and the
longer the duration of algorithm to reach convergence.
Each individual parameter subject to inference requires
a prior probability distribution in order to establish the
parameter space within which to locate acceptable parti-
cles. Sequences of numerical values representing the rele-
vant experimental data and the corresponding time points
must also be provided; the number of data points and
time points must be equal. Time series data is currently

the only supported data format. One or more distinct
datasets can be supplied and can be fitted to any individual
model variable or combination of variables. Convergence
of the algorithm is dependent on all of the aforemen-
tioned factors and hence it may require several trials to
establish the appropriate performance criteria. To achieve
credible results, it is advised that identical parameter
inference and model selection tasks are repeated multi-
ple times due to the random nature of the Monte Carlo
simulations that drive the algorithm. Note that all mod-
els submitted to the ABC-SysBio package must be written
in Systems Biology Markup Language (SBML), a sys-
tems biology programming language based on Extensible
Markup Language (XML).

Global optimization
We employ the genetic algorithm function in MATLAB
in order to optimize our model against our experimental
data. The reaction rate constants ki are chosen as opti-
mization variables with the exception of those fixed in
light of our kinetic data. The GA mimics natural selec-
tion; converging to the global minimum within the allo-
cated parameter space by evolving an initial population of
randomly generated solutions over a large number of gen-
erations. The probability of obtaining the global optimum
solution is maximized by selecting the largest popula-
tion size and number of generations possible. However,
increasing the computational workload in this manner
also greatly increases the time frame required for the algo-
rithm to converge. Establishing an effective compromise is
key for successful deployment. We ran the GA under the
following conditions:

• Population: 1000
• Generations: 1000
• Bounds imposed on parameter values: [10−4, 104]

The default GA population size in MATLAB is 200 for
inference of over 5 parameters however, we selected a
population size of 1000 for inference of 17 parameters
since a single time series dataset presents a relatively low
computational workload and thus allows optimal solu-
tions for large populations to be obtained in feasible time
frames. We selected a large parameter space due to our
focus on establishing optimal model performance in light
of the lack of documentation regarding reaction rates.
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