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Abstract

Background: Liver disease contributes significantly to global disease burden and is associated with rising incidence
and escalating costs. It is likely that innovative approaches, arising from the emerging field of liver regenerative
medicine, will counter these trends.

Main body: Liver regenerative medicine is a rapidly expanding field based on a rich history of basic investigations

into the nature of liver structure, physiology, development, regeneration, and function. With a bioengineering
perspective, we discuss all major subfields within liver regenerative medicine, focusing on the history, seminal

publications, recent progress within these fields, and commercialization efforts. The areas reviewed include
fundamental aspects of liver transplantation, liver regeneration, primary hepatocyte cell culture, bioartificial
liver, hepatocyte transplantation and liver cell therapies, mouse liver repopulation, adult liver stem cell/progenitor cells,
pluripotent stem cells, hepatic microdevices, and decellularized liver grafts.

Conclusion: These studies highlight the creative directions of liver regenerative medicine, the collective efforts of
scientists, engineers, and doctors, and the bright outlook for a wide range of approaches and applications which will

impact patients with liver disease.

Keywords: Liver transplantation, Liver regeneration, Primary hepatocyte cell culture, Bioartificial liver, Hepatocyte
transplantation, Liver cell therapies, Mouse liver repopulation, Liver cell therapies, Adult liver stem cell/progenitor cells,
Pluripotent stem cells, Hepatoxicity and engineered devices, Decellularized liver grafts

Background

The increasing global burden of liver disease

The incidence and prevalence of chronic liver disease
(CLD), manifested by the presence of fibrosis/cirrhosis
and end stage liver disease, is reaching epidemic propor-
tions worldwide, with 50 million affected. In developed
countries, like the US, UK, Spain, and France, CLD
rates have risen such that it is a leading cause of death
(UK national statistics, https://www.gov.uk/govern-
ment/statistics). In the US, more than 5 million Ameri-
cans are living with CLD and by 2020, cirrhosis is
projected to be the 12th leading cause of mortality [1].
The increased prevalence of CLD is linked to several
factors, including non-alcoholic fatty liver disease
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(NAFLD) and associated nonalcoholic steatohepatitis
(NASH) [2], Hepatitis B and C [3], and alcoholic hepa-
titis [4]. Furthermore, hepatocellular carcinoma (HCC),
one of the leading causes of death worldwide, is rapidly
increasing in incidence, and advanced HCC is treated
with liver transplantation, and is thus relevant to liver
regenerative medicine [5].

Liver functions and liver mass

The liver is the largest internal organ and bears the
unique ability to regenerate itself, whilst performing cen-
tral metabolic, detoxification, synthetic, digestive, endo-
crine, immunoregulatory, and exocrine functions (Fig. 1).
The parenchymal cell of the liver, the hepatocyte, is a
complex, energetically intensive, polarized epithelial cell.
The mass of the liver is central to its function.

The human adult liver weighs approximately 1.4—1.7 kg,
with a hepatocyte density of 1.1-1.6 x 10° cells /g [6], and
has an estimated number of 2 x 10" or 200 billion hepa-
tocytes. A 7-10 week old Sprague-Dawley adult female
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Fig. 1 Hepatocyte culture and functions. a Hepatocyte culture configurations are critical to modeling in vitro functions. Several techniques are
known to support not only increased levels of liver-specific gene expression, but also metabolic and physiological functions in long term culture.
i) Sandwich culture provides long term physiological morphology and function and maintains epithelial structure and lateral, basal, and apical
membrane domains. ii) Heterogeneous cell co-culture provides critical cell-cell heterotypic interactions between hepatocytes and supporting
cells, like NIH 3T3-J2 fibroblasts that represent stellate cells and endothelial cells that represent liver sinusoidal endothelial cells, which together
promotes liver functions. iii) Same as ii) except controlled cell co-culture, often using selective cell adhesion, micropatterning and microfabrication
technology. iv) Liver cell aggregate culture (homogenous) enhances cell-cell contacts compared to cell matrix contacts and promotes liver
function. v) Same as iv) except heterogeneous aggregate containing multiple supporting cell types that promote heterotypic cell-cell contacts.

b Hepatocyte functions in culture. The liver is responsible for a number of important physiological and biochemical functions that can be analyzed
within in vitro cultures. We depict two hepatocytes with preserved cell-cell junctional complexes, and membrane domains, including the basal, lateral,
baso-lateral, and apical (bile canalicular) domains. The hepatocyte on the left demonstrates various metabolic activities of the liver, including protein,
fat and carbohydrate metabolism. Glycogen storage, glycogenolysis, and gluconeogenesis refer to different metabolic processes for regulating whole
body glucose levels, as well as the uptake and release of glucose for cellular metabolism. Lipids are also oxidized in the liver, and triglycerides are
metabolized to produce energy. Lipoproteins, are also synthesized in the liver. Further, the liver regulates the deamination and transamination of
amino acids (AA) into carbon skeletons and also regulates the removal of ammonia (N2) by urea synthesis. The liver contains many mitochondria that
reduce oxygen and generate cellular energy via the electron transport chain. The liver has many other functions not shown. The cellular medium is
critical, and must contain hormones, and growth factors that support these functions. The hepatocyte to the right depicts key hepatocellular functions like
the synthesis and secretion of albumin, the expression of P450 microsomal enzymes for drug metabolism, expression of low density lipoprotein receptor
(LDL), the expression of asialoglycoprotein receptor (ASGPR) for clearing asialyated proteins, and the expression of integrins for engaging extracellular
matrix, particularly collagen Type IV in the basement membrane. The liver also synthesizes a majority of the clotting factors needed in blood coagulation
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rat, with a weight of 150-200 g and liver weight of about
7.7 g, bears approximately 1 x 10° or 1 billion hepatocytes
[6]. An adult 8—10 week old BL6 adult female mouse, with
a weight of 16 g and a liver weight of 1.25 g, bears ap-
proximately 1.5 x 10® or 150 million hepatocytes [6]. A
key point is that replacing about 10% of liver function,
which is still a large mass of cells, can support liver func-
tion in acute disease [7].

Liver transplantation
Despite the increasing need for liver tissue and a short-
age of available donor livers, the current standard of care

for end stage liver disease is liver transplantation.
Approximately 20,000 orthotopic liver transplants are
conducted annually worldwide. In the US, the 1 year
survival rate is 85%—88%, the 5-year survival rate is 74%,
and 2000 patients die annually waiting for a donor liver
[8]. Orthotopic liver transplantation was aggressively in-
vestigated following successful transplantation of the
bone marrow and the kidney in the mid 1950’s [9]. Years
of basic and preclinical research led to reduced compli-
cations and increased survival rates, such that currently,
the most common risk factor resulting in liver failure
post-transplantation is poor quality of the donor liver.
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Scarcity of healthy donor livers is being addressed by in-
creasing the donor pool, improving preservation of the
graft, and minimizing time of post-harvest survival prior
to transplant. Machine perfusion of the donor liver is a
promising approach for increasing the donor pool [10].
This approach can function either by reducing complica-
tions associated with traditional storage and transplant-
ation, or by metabolic reconditioning livers which are
considered marginal. Living donor liver transplantation
introduces alternate techniques for harvesting of living
liver tissue followed by transplantation, without the need
for cryopreservation with subsequent liver ischemia.
This approach is particularly relevant for pediatric pa-
tients, due to limited donor size for living donors [11].
Collectively, liver transplantation is successful because
technical and scientific aspects have been addressed, but
the procedures themselves are expensive, and patients
require lifelong immunosuppression.

Liver regeneration

Liver regeneration stemming from the loss of hepatic
tissue due to injury is a unique property among the in-
ternal organs [12, 13]. The hepatocyte is the parenchy-
mal cell of the liver, and is mature, quiescent, and
expresses a vast array of differentiated genes to support
its extensive functions (Fig. 1). In spite of its mature dif-
ferentiated functions, the hepatocyte cell cycle is acti-
vated in response to acute liver injury, such as two
thirds hepatectomy. During liver regeneration, synchro-
nized replication of hepatocytes [14], followed by coordi-
nated replication of nonparenchymal cells, leads to rapid
and complete replacement of liver mass, function, and
microarchitecture. Importantly, during regeneration, he-
patocytes express over 1000 genes while sustaining es-
sential liver functions that ensure survival of the
organism [13]. Despite this robust regenerative re-
sponse in acute disease, regeneration is dysfunctional in
cirrhosis, and in this case, does not appreciably restore
normal hepatic tissue homeostasis, microarchitecture
and function.

Early studies in liver regenerative medicine

The roots of modern liver regenerative medicine
began in part with development of an apparatus to
study the basic science and biochemistry of isolated
perfused rat livers [15, 16]. Here, the whole liver can
be removed from the intact organism, bathed, main-
tained to improve viability, and perfused under
pseudo-physiological conditions. These techniques, to-
gether with improved analytical capabilities, helped un-
cover liver physiology and biochemistry. While these
whole organ techniques were extremely informative,
further study required isolation of the viable hepato-
cytes [17, 18]. Availability of hepatocytes furthered
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mechanistic studies, and provided a cell source for in
vivo hepatocyte transplantation studies. However, despite
these advances, new challenges were apparent, as isolated
hepatocytes were unable to be cultivated in vitro for more
than twenty-four hours using traditional seeding on tissue
culture-treated plastic.

Development of long term primary hepatocyte culture
Hepatocyte culture

Although isolated hepatocytes were initially the mainstay
of basic liver studies, the inability to cultivate hepatocytes
long term, with physiological functions, limited potential
applications (Fig. 2). Initial investigation of primary hepa-
tocytes, employing cell adhesion to tissue culture plastic,
resulted in a flat, rather than cuboidal, morphology, char-
acterized by dedifferentiation. Based on initial findings,
scientists developed co-cultivation approaches based upon
extracellular matrix composition, with a focus for main-
taining liver morphology and functions long term [19-21].
The culture of primary rat hepatocytes in a double gel, or
sandwich, configuration, was the first experimental culture
system displaying physiological functions for greater than
3 weeks [22]. In these seminal studies, the measurement
of albumin production rate was utilized as a metric for
liver synthetic function, and measured ~5 pg/h per 2 mil-
lion plated hepatocytes. Urea, a product of ammonia me-
tabolism related to hepatocyte catabolism of proteins and
amino acids, measured ~4 pg/h per 2 million cells after
2 weeks of culture. The analysis of the functionality of
liver specific cytochrome P450 (CYP) enzymes, which par-
ticipate in metabolism of drugs and toxic compounds,
showed increased activity. In addition, hepatocytes excrete
bile across the apical domain of the cell membrane. Early
studies highlighted the detection of bile canaliculi proteins
and hepatocyte bile secretions in the double gel culture
systems. These seminal studies opened up further areas of
in vitro investigation, regarding the hepatocyte’s biochem-
ical and metabolic responses to oxygen, lipids, and plasma
exposure in the setting of bioartificial design [23-26].

In vitro hepatocellular organization, as a function of
microenvironment, has been investigated with careful
application of engineering tools and technologies.
When cultivated on biomechanically soft surfaces, he-
patocytes form three dimensional clusters, or aggre-
gates. Interestingly, these aggregates also lead to stable
hepatocyte functions and are an alternate culture con-
figuration [27, 28]. Studies demonstrate that the advan-
tages of aggregate culture, synonymous with spheroid
or organoid culture, include increased cell-cell homoty-
pic interactions, and ease of manipulation of tissue
units. The disadvantages of aggregate culture include
transport limitations, cellular heterogeneity, and lack of
cord like liver microstructure. Thus each culture system
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Fig. 2 Liver cell therapy and liver repopulation. a The various types of liver cell therapies. Liver cell therapy utilizes a wide range of cells, from
different stages of liver development and different tissue types, to treat acute or chronic liver disease. The liver develops from the liver bud
(embryonic liver, E8.5) to form the fetal liver (fetal hepatocytes), neonatal liver, followed by adult liver (hepatocytes, liver progenitor cells, (LPC),
biliary tree stem cells (BTSC)). Adult bone marrow (bone marrow-derived mesenchymal cells(BM-MSC), and other bone marrow cells) are also used
as a cell source. Human pluripotent stem cells (hPSC) are used for differentiation towards hepatocyte-like cells. In encapsulation, shown below,
therapeutic cells are placed within microcapsules to improve cell viability upon transplantation by protecting therapeutic cells. Delivery to the
liver is often via the portal vein. b Liver Repopulation. Liver repopulation is an experimental procedure performed in transgenic mice. Activation
of transgene in the liver injures or kills endogenous hepatocytes. Because of the regenerative capacity of the liver, the remaining injured cells
would normally replicate within the liver to replace, or repopulate any empty areas. Because the endogenous hepatocytes are injured, they are
unable to repopulate the liver. At the same time, if healthy hepatocytes are injected into the spleen, they will outcompete the native hepatocytes
and will repopulate the liver. This assay can be used to assess the regenerative function of adult hepatocytes. Furthermore, it can be used to
create a chimeric mouse with new hepatocytes, which may carry a disease causing gene and be used for disease modeling. Finally, if the host
mice are both transgenic and immunodeficient, the animals can be used to bear human hepatocytes within the mouse liver, to create a human
in-liver mouse. This can be used for disease modeling or testing hepatotoxicity or drug metabolism of human hepatocytes in mice. These
transgenic animals can be used to expand primary hepatocytes, which typically don't expand in culture
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can be chosen based on the question being asked and
tailored to the desired application [29].

In parallel with development of culture systems,
scientists explored the integration of engineered bioma-
terials with hepatocyte culture. Investigation into the
science behind hepatocyte morphology and function
demonstrated that aggregate size, scaffold topography,
mechanochemical interactions, and ligand presentation
distinctly modulate hepatospecific functions [30-33].
To model multicellular cords in the liver, bioengineers
developed multilayering approaches based on thin poly-
electrolyte films [34, 35] which maintain hepatocellular
functions. Collectively, these studies highlighted the
complex effects of extracellular matrix on hepatocyte
morphology and function, and led to the development
of key hepatocyte culture and biomaterials design
principles.

Hepatocyte coculture
Another avenue of hepatocyte cell culture research
focused upon the recapitulation of the normal

hepatocellular milieu by examining cell-cell interactions
(Fig. 1). The functional unit of the liver is the hepatic si-
nusoid, which is comprised of liver capillaries or sinu-
soids lined by specialized, liver sinusoidal endothelial
cells, which contain unique pores (fenestrations) that
facilitate material exchange. Between the endothelial
lining and the microvilli-bearing hepatocyte, is an
extracellular space known as the Space of Disse, and
specialized supporting cells known as hepatic stellate
cells. Hepatic stellate cells are present on the basal (si-
nusoidal facing) surface of the hepatocytes. Bile canalic-
uli combine to form intrahepatic ducts, lined by
hepatobiliary duct cells, which carry the bile produced
by the hepatocytes. Not surprisingly, initial hepatic co-
culture studies demonstrated stable hepatic functions
[36, 37]. Building on this, three dimensional coculture
systems sprang forth which relied specifically on both
aggregate hepatocyte culture and interactions between
hepatocytes and liver sinusoidal endothelial cells [38].
A third coculture approach utilized a transwell config-
uration to mimic not only the appropriate sinusoid cell
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types, but also the actual sinusoid geometry [39]. The
choice of coculture cell type and configuration was
found to differentially modulate hepatic specific func-
tions [40]. In fact, cocultivation of hepatocytes and
liver sinusoidal endothelial cells, in specific culture ori-
entations, led to 10 times higher albumin function and
20 times higher CYP 1A1/2 cytochrome activity com-
pared to controls [41]. interactions between hepatocytes
and endothelial cells interactions have been shown be me-
diated by both growth factors [38] and intercellular amino
acid transport [42].

With the success of cocultures but the need for en-
hanced cellular organization, engineers began to apply
microfabrication technology for high level control of
cellular level processes, such as cell-cell, nonparenchy-
mal cell-cell (heterotypic), and cell-matrix interactions.
These approaches served to preserve, modulate and en-
hance hepatocyte-specific functions [43, 44]. Further,
these new techniques enabled further investigations of
the science behind cellular interactions, which was pos-
sible through precise engineering and cell surface
modification [45, 46]. These seminal studies primarily
focused on fibroblast cocultivation, particularly with
the specialized, NIH 3T3-J2 cell line, which uniquely
boosts hepatic specific functions through cell-cell con-
tacts with potential mechanisms explored [47, 48].
These microfabricated coculture systems have shown a
great deal of utility in disease modelling [49, 50] and
therapeutic applications [51].

Bioartificial liver

Acute hepatic failure is accompanied by the loss of hep-
atic specific functions and disruption of basic liver physi-
ology leading to complications and eventually death
(Fig. 3). As early as the 1950, scientists experimented
with a bioartificial liver (BAL) for support of hepatic fail-
ure [52]. The first BAL consisted of cross hemodialysis
between blood from a living dog and an encephalopathic
dog. Subsequently, a cirrhotic patient with hepatic coma
was cured by a similar system [52]. Modern BAL sys-
tems contain hepatocytes in an extracorporeal support
system, and design parameters include device structure
and design, species of cell (human or xenogeneic), cell
type (primary vs. transformed vs. cancer line), hepato-
cyte configuration (adherent vs. immobilization vs. en-
capsulation), cell mass, perfusate contents (whole blood
versus plasma) and perfusion duration [53-56]. As
stated above, the mass of hepatocytes required is 10% of
liver weight [7]. Other core engineering concepts include
cryopreservation of hepatocytes and of BAL devices
[57-59], mass transport within the device, blood constit-
uents, and their effects on liver function [25, 60], and in-
tegration of microfabrication technology with bioreactor
design [61]. The studies in patients have been limited,
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but positive. For example, a BAL comprised of primary
porcine hepatocytes demonstrated no toxic effects and
functioned as a bridge to transplantation when used
intermittently in patients [62]. A prospective, random-
ized, multicenter clinical trial of microcarrier attached,
porcine hepatocytes demonstrated no difference between
study groups, but again demonstrated safety, in addition
to improvements in patient subsets of fulminant/sub-ful-
minant failure [63]. Finally, a promising recent preclinical
BAL utilizing pig hepatic spheroids in a porcine acute liver
failure model demonstrated that BAL support improved
survival [64]. These studies indicate the BAL is a safe and
promising temporary support for acute liver failure, and
continued re-engineering of design, as well as randomized,
double blinded clinical studies, are needed to demonstrate
efficacy.

Hepatocyte transplantation

The establishment of techniques for hepatocyte isola-
tion, together with the development of animal models of
liver failure, led to experimental hepatocyte transplant-
ation (HCT). A detailed analysis of HCT has been
reviewed elsewhere [65, 66]. HCT has utility for both
temporary support for acute liver failure, and potentially
for long term functional replacement for chronic liver
diseases (Fig. 2). Initial attempts at liver transplantation
of partial autografts, or portions of the liver, demon-
strated lack of vascularization, cellular death and
scarring [67, 68]. In contrast, initial studies of HCT
demonstrated feasibility and therapeutic effect when de-
livered via portal vein in Gunn rats, which lack the liver
enzyme uridine diphosphate glucuronyl transferase [69].
These Gunn rats function as a model of Crigler Najjar
Syndrome, a rare congenital, autosomal recessive dis-
order of bilirubin metabolism. Positive benefits were
identified not only in the Gunn rat model, but also in
other acute liver failure models [70]. While initial studies
employed intraportal and intraperitoneal injection,
intrasplenic HCT also developed as an alternative trans-
plant location [71]. The mechanism by which HCT
worked was by the manifestation of liver nodules by
transplanted hepatocytes, with maintained cellular ultra-
structure [72]. Further characterization of these nodules
was possible with suppression of endogenous hepatocyte
replication by retrorsine after HCT and partial hepatec-
tomy. These studies quantified the growth kinetics of
donor hepatocyte cell clusters as they form intrahepatic
nodules. 20-50 cells per cluster were present after two
weeks, 100 cells per cluster were present at 1 month,
and up to several thousand cell per cluster (representing
40-60% of hepatic mass) were present at 2 months. Fur-
ther the investigation of regeneration demonstrated that
soluble factors from supernatants of hepatocyte cultures
can reverse liver injury, indicating complex and
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Fig. 3 Engineered liver devices. a Bioartificial liver. Engineered liver devices are at different scales and have a wide range of applications. The
Bioartificial Liver (BAL) is a bioreactor system which bears hepatocytes in a variety of formats (hollow fiber vs. spheroid vs. monolayer culture).
A large number of hepatocytes, approximately 10% of the adult liver, are needed to provide appropriate level of functions. Typically, the BAL
is used for acute liver disease. In this case, it can be used a bridge to transplant, or as a way to regenerate acutely injured liver. The main
challenges and applications are as shown. b Machine Perfusion. This is a technique used for several applications in animal models. The whole
liver is connected to the perfusion device and perfusate is oxygenated and pumped to perfuse the whole liver under hypothermic or normothermic
conditions. The technique is used to preserve organs after harvest, as opposed to storage of organs without flow in organ preservation solution. Machine
perfusion is also used to condition marginal livers, for example by adding medium components to reverse fatty liver disease in a donor liver. Finally,
machine perfusion can be used to understand complex, whole liver metabolic functions by measuring metabolites at inlet and outlet of the device under

various experimental conditions. The main challenges and applications are as shown. ¢ Hepatocyte Microdevices. This is a technique in which the
hepatocytes are placed within miniature microfabricated devices so that they display physiological functions. Both animal and human liver on a chip
applications are possible, and are valuable for assessing hepatotoxicity, drug metabolism, and pharmacokinetics, in the setting of drug discovery. These
devices can potentially replace animals in the drug discovery pipeline. Patient-specific hepatocytes can be used to understand how genetic variations effect
drug metabolism. Multiple cell types can be used in a circuit to better model the human body. The main challenges and applications are as shown

compensatory liver regeneration mechanisms [73]. To
improve HCT for long term function, investigators at-
tached hepatocytes to microcarriers [74], which could then
be encapsulated [75, 76], as another HCT approach for liver
disease. The identification and development of transgenic
mouse disease models furthered the field, including the
Gunn Rat, and the analbuminemic (albumin deficient) mice
for measuring albumin production solely from transplanted
hepatocytes, and immunodeficient animals for human
HCT in rodents. Biomaterials and chemical technologies
have also been used to improve HCT. Encapsulation is a
technique in which cell mass can be incorporated into a
semipermeable biopolymer droplet, often with a protective
coating [77]. Encapsulation of hepatocytes [78], enables
immunoisolation and intraabdominal cell transplantation
[79], with maintained hepatocellular functions [80, 81].
Based on strong preclinical research, several clinical tri-
als of HCT have been completed, indicating favourable

regulatory approval and safety. Patients with acute liver
failure benefit from hepatocyte infusions that provide
weeks to months of support, as borne out by studies of
auxiliary liver transplant in acute liver failure [7]. On the
other hand, HCT in end stage liver disease, is likely hin-
dered by the underlying pathology, including portal hyper-
tension and highly abnormal tissue architecture. These
cell transplantation studies demonstrate that efficient cel-
lular delivery and engraftment are essential to improved
therapeutic outcomes. The wide range of transplant loca-
tions used include intraperitoneal, intrasplenic, and intra-
portal and may affect cell engraftment [82].

Mouse liver repopulation with hepatocytes

A series of studies with transgenic mice led to detailed
analysis of hepatocyte repopulation ability within the liver
of transgenic hosts (Fig. 2). Albumin-uroplasminogen ac-
tivator (Alb-uPA) mice, which bear a hepatotoxic
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(uPA) gene, was the first model used [83]. Homozy-
gous Alb-uPA mice died due to neonatal hepatocellu-
lar injury, while hemizygote Alb-uPA mice displayed
hepatic nodules with liver function due to transgene
inactivation. Each hepatic nodule was clonal, derived
from a single hepatocyte lacking Alb-uPA gene ex-
pression. Transplanted adult hepatocytes in neonatal
(1-2 week old) Alb-uPA mice demonstrated liver re-
population capacity at 5-7 weeks [84]. In this study,
transgenic (genetically marked) hepatocytes were
transplanted in the spleen and identified in in ex-
cised liver tissues. Liver nodules of the donor hepato-
cytes were generated at the expense of Alb-uPA
expressing, injured, endogenous hepatocytes. Ap-
proximately twelve population doublings (~80% liver
replacement) occurred per transplanted hepatocyte.
In comparison, one or two doublings occur after
hepatectomy/regeneration, and less than twenty-eight
doublings replace total mouse hepatocyte mass in
mice. This indicates the enormous repopulation cap-
acity of primary hepatocytes.

Further investigation of repopulation was enabled by
continued development of transgenic models, one of
which was the Fah —/- mouse, a model of hereditary tyr-
osinemia type 1 [85, 86]. Fah —/- mice normally die
from neonatal, hepatocellular injury, due to fumaryl
acetoacetate hydrolase (Fah) deficiency, but are rescued
with NTBC (2-(2-nitro-4-trifluro-methylbenzoyl)-1, 3-
cyclohexanedione), which blocks tyrosine metabolism.
NTBC treatment enables Fah —/- adult mice to main-
tain health, but when NTBC is withdrawn, adults die of
liver failure in two months. In this model, when
Fah + wildtype hepatocytes are transplanted intrasple-
nically and NTBC is withdrawn, they outcompete the
endogenous Fah —/- hepatocytes and repopulate the
Fah -/- liver. Moreover, NTBC administration sup-
presses the repopulation effect. In these seminal stud-
ies, the minimum number of cells required for liver
repopulation was 1000 cells, and repopulation occurred
between 4 and 8 weeks after transplantation. In fact,
the repopulation capacity of hepatocytes was shown to
be sixty-nine and eighty-six doublings in the Fah -/-
model [86], enough repopulations to account for several
livers. Furthermore, Fah gene delivery in these Fah —/-
mice resulted in Fah + hepatocyte repopulating nodules.
The crossing of this mouse with immunodeficient mice
resulted in the FRG (Fah —/- Rag 2 —/- Il12rg —/- mouse).
In FRG mice, human hepatocyte repopulation was dem-
onstrated, leading to generate chimeric, human in mouse
(HIM) livers [87]. In these HIM livers, human albumin
serum levels and P450 enzymatic activity were found to
correlate with percent of human hepatocyte repopulation.
Other transgenic models were developed and furthered
our understanding of liver repopulation including the TK-
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NOG (albumin thymidine kinase transgenic-NOD-SCID-
interleukin common gamma knockout) mouse [88], and
the AFC8 (FKBP-Caspase 8 gene supported by albumin
promoter) mouse. Thus far, these HIM liver models are
powerful tools for the study of human drug metabolism
[89], hepatitis [90], malaria [91] and familial hypercholes-
terolemia [92], amongst others. Most recently, these trans-
genic systems have been applied to generate large animal
(swine) models with repopulated livers [93].

Not surprisingly, these HIM models have been com-
mercialized for these numerous applications. Yecuris
(Tualatin, OR, www.yecuris.com) was founded in 2007
to commercialize the FRG technology. Hera Bio Labs
(Lexington, KY, http://www.herabiolabs.com) founded
in 2015, performs precision toxicology services with
gene edited animal models, and is currently developing
rat analogs of transgenic mouse liver repopulation
models. IMODI (France, http://www.imodi-cancer.org)
is a French consortium which uses the TK-NOG liver
humanized model, for generating human specific pro-
files of chemotherapeutics. KMT Hepatrhc (Edmonton,
Alberta CA, http://www.kmthepatech.com) developed
the KMT Mouse™, uses the uPA+/+/SCID mouse to
generate a chimeric mouse with a humanized liver. These
preclinical HIM tools are being widely utilized for drug
discovery, development and preclinical.

Cell-based liver therapies

The growth in adult and pluripotent stem cell (PSC)
biology and the boom in cell therapies has reinvigorated
the field of liver cellular therapy. Identifying a robust
hepatocyte cell source is a significant bioengineering
challenge within the field of liver cell and tissue therapy.
A wide range of cell types in preclinical and clinical
models have thus far been utilized (adult hepatocytes,
fetal hepatocytes, bone marrow-derived cells, adult
stem/progenitor cells) (Fig. 2). Donor variability and
marginal donor sources are major impediments to
obtaining transplantable hepatocytes. Primary hepato-
cytes are needed in large quantities, and do not replicate
in vitro. However, recent studies demonstrate appre-
ciable in vitro hepatocyte expansion [94-96], but these
approaches have not yet been adopted for widespread
use. Another solution is the immortalization of primary
hepatocytes which confers proliferative capability, via con-
ditional or constitutive upregulation of immortalization
genes [97, 98]. Although these immortalized hepatocytes
exhibit unlimited replication and represent a uniform cell
source, they exhibit decreased hepatic functions and carry
increased risks for tumorigenesis [98—100]. Xenogeneic
(porcine) hepatocytes are an additional hepatocyte cell
source. However, differences between physiological
functions and responsiveness of porcine hepatocytes
in a human environment is a major concern [101],
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although they also represent an endless supply of iso-
genic and uniform hepatocytes. Further, these hepato-
cytes can be either genetically engineered [102] or
encapsulated [76], to evade the immune system. Fetal
liver progenitor cells (hepatoblasts) have also emerged
as an alternative to primary hepatocytes given their
proliferative capacity and predisposition to develop
into both hepatocytes and cholangiocytes (Fig. 2)
[103]. They have been used to repopulate the liver of
immunosuppressed rats and mice [104], and used in
clinical studies. However, to be valuable as a cell
source, these fetal progenitor cells need to be uniform
with respect to age, proliferative capacity, and donor
matching.

Adult liver stem/progenitor cells

Adult, resident, liver stem/progenitor cells (LSC) are also
candidates for liver cell therapy in preclinical and clinical
studies (Fig. 2). Normally, quiescent, self-renewing adult
stem cells reside in tissues and play a key role in replen-
ishing tissues and maintaining tissue homeostasis, in tis-
sues like the bone marrow, intestine, and skin. In acute
liver injury, hepatocytes contribute to normal liver
homeostasis through replication, functioning like a stem
cell. However, in chronic injury, particularly in rat and
in human liver, not only do hepatocytes replenish liver
tissue, but also LSC may play a greater role. LSC take
the form of bipotent, small, oval shaped, progenitor cells
which express cytokeratins and give rise to cells from
the hepatic and biliary lineage [105]. Foxll has been
shown to be a marker in this bipotent stem cell popula-
tion [106]. Further, the cells lining the intrahepatic and
extrahepatic duct contain Sox9 positive progenitor cells,
and contribute to bile duct and hepatocyte homeostasis
as shown by lineage tracing in mouse models [107]. An-
other key LSC population is biliary tree stem cells
(BTSC), which are quiescent, self-renewing stem cells
that reside in the peribilliary glands, and may give rise to
hepatic/stem progenitor cells [108]. Clinical liver cell
therapy studies with these BTSC, marked by Lgr5
(Leucine-rich repeat-containing G-protein coupled re-
ceptor 5), EpCAM (Epithelial cell adhesion molecule),
and pluripotency genes like Oct4, Sox2, are in progress.
Collectively, these studies of LSC subtypes demonstrate
several investigators contributions to animal models of
hepatocellular injury, the subtleties of the responses in
the different models, the difficulty of tracking and ana-
lyzing small numbers of multipotent cells, and the
promise for liver therapies [108].

Pluripotent stem cell (PSC) technologies

The advent of pluripotent stem cell (PSC) technologies
has greatly accelerated the development of a self-
renewable liver cell source (Fig. 4). The origins of PSC
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technologies began with the development of nuclear
transfer techniques that enabled cloning of organisms,
termed reproductive cloning. In seminal studies, the nu-
cleus from a frog blastomere was transplanted into enu-
cleated frog oocytes and generated early cleavage
embryos [109], and building on this, an adult, somatic
nucleus was reprogrammed to a pluripotent state [110].
A blastocyst generated by this reprogrammed, somatic
nucleus was transplanted into a pseudopregnant mouse,
giving rise to a clone with a genome of the donor nu-
cleus [111]. These techniques enabled the production of
cloned animals, and eventually, transgenic mice, and fur-
thered our understanding of pluripotency. The next sci-
entific contribution was the isolation of a pluripotent,
self-renewing cell population derived from the inner cell
mass of the mouse blastocyst [112, 113], called mouse
embryonic stem cells (mESC). Demonstrating their plur-
ipotency, mESC can give rise to all three germ layers in
vitro and to a teratoma when transplanted ectopically in
vivo. Further, when incorporated into chimeric blasto-
cysts that are transplanted into pseudopregnant mice,
the mESC genome can be passed through the germline
to form new clones. Success of mESC derivation led to
derivation of mESC from other species, including rat,
cow, and pig. Similarly, human ESC were isolated from
human embryos, normally discarded from in vitro
fertilization centers and culture techniques were estab-
lished [114]. Scientists then determined the culture con-
ditions for ESC to self-renew and maintain pluripotency
in vitro. Despite their potency, hESC brought about
ethical issues because of their association with discarded
human embryos.

The development of techniques to reprogram adult
cells to PSC developed [115], as this would bypass
ethical issues and improve patient-specific treatments
(Fig. 4). In one approach, termed cell fusion, adult fi-
broblasts are fused with ESC, resulting in activation
of pluripotency in the somatic nucleus. However, the
resulting pluripotent cell is a heterokaryon [116]. In
parallel, a potent, widely used approach developed for
generating self-renewing, patient-specific PSC, from
any donor cell type. Reprogramming of mature, som-
atic cells by introduction of 4 transcription factors
simultaneously, resulted in induced pluripotent stem
cells (iPSC). Since these iPSC could be generated without
destroying human embryos, a new field within PSC
biology [117, 118]. Nevertheless, both ESC and iPSC could
be interchangeably used in PSC differentiation protocols.

The usefulness of PSC for liver differentiation is based
upon fundamental studies of soluble factors and tran-
scription factors that govern mouse liver organogenesis
[119], as PSC in vitro follow highly regulated, develop-
mental programs that normally occur in vivo. Liver dif-
ferentiation protocols, based on these pathways, directed
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ces, basic studies, and cell therapy protocols

mouse ESC towards liver-like cells [120-122]. In these
studies, stable transplantation of cells into liver tissue
and enhanced survival of animals in liver disease models
[123-125]. Further studies focused on the nature of the
earliest progenitors of the liver, the definitive endoderm,
from mouse and human PSC studies, about which little
was known [125-129]. The study by Parashurama et al.
[128] was one the first demonstrating that mESC-
derived endoderm progenitor cells, upon transplant-
ation, can give rise to three dimensional, vascularized
tissues, and the study by Cho et al. [125] was the first
to demonstrate a specific technique for rapid mESC-
derived endoderm expansion. hPSC studies (hESC or
hiPSC) used similar approaches [130] based upon
original mouse differentiation protocols, with the cre-
ative use of small molecules [96] reprogramming ap-
proaches [131], and extracellular matrix systems. Not
only could PSC be differentiated towards the liver
lineage, but also other approaches were developed.

Transdifferentiation, or directed reprogramming of
hepatocytes from fibroblasts, was established using
key liver specific transcription factors [115, 132].
Directed differentiation protocols resulting in liver dif-
ferentiation demonstrated liver specific morphology
and gene expression [130]. However, limitations have
been the lack of fully mature hepatocyte functions, in-
cluding albumin secretion, P450 activity, urea func-
tion, and the inability to fully repopulate the liver
upon transplantation in transgenic liver injury models.
Despite their lack of maturity, PSC-derived hepatic-
like cells have successfully been employed in ap-
proaches to model liver diseases in vitro [133].

Hepatotoxicity and engineered microdevices

Cell based systems are useful for applications requiring
in vitro models that mimic liver functions (Fig. 3).
Pharmaceuticals which mediate drug induced liver in-
jury (DILI) are a major public health problem with
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heightened focus in recent academic and industrial re-
search [134]. The liver is a central player in drug me-
tabolism, and employs the Phase I system which is a
mixed function oxidase system, including the P450 en-
zymes, and Phase II involving conjugation for improved
solubility and drug excretion. Not surprisingly, hepato-
toxicity is the number one reason that medications are
withdrawn worldwide [135]. Traditional models of hep-
atotoxicity testing employs isolated microsomes which
contain key detoxification enzymes, liver cancer cell
lines, isolated primary hepatocytes, and liver slices
[136]. However, several approaches applying bioengin-
eering principles are in development to improve hep-
atotoxicity testing. Real commercially available products
of engineered hepatocyte based systems are offered by sev-
eral companies, including Regenemed (http://www.regen-
emed.com, San Diego, CA), InSphero (https://
www.insphero.com, Schlieren, Switzerland), and Hepregen
(http://www.hepregen.com, Medford, MA). These com-
panies employ co-culture, plate based two dimensional, or
three dimensional systems, characterized by various cul-
ture configurations composed of hepatocytes and nonpar-
enchymal cells.

While these techniques can be considered static,
more dynamic systems exist which employ cell culture,
microfluidic technology, and bioreactor approaches.
Flow-based systems which mimic oxygen and nutrient
transport, and waste exchange, demonstrate improved
cell culture parameters [137]. Cell Asic (Hayward, CA)
[138, 139] uses microfabricated porous channels which
function as artificial endothelial barriers to protect
hepatocytes from shear effects with improved nutrient
exchange. Similarly, a device by CN Bio Innovations
Ltd. (http://cn-bio.com/cn-bio-launch, Oxfordshire, UK)
pumps medium from a reservoir to a reaction chamber,
which bears cocultured hepatocytes. Hurel (http://hurel
corp.com, Beverley Hills, CA) cocultures hepatocytes in
microfluidic small scale cell culture analogs (uCCA).
These uCCA can be integrated in microfluidic flow sys-
tems, with chips bearing other cell/tissue types, to better
model whole body metabolism mediated by the liver.
These devices show an in-vivo like metabolism in re-
sponse to various drugs [140]. 3D printing approaches,
which have the benefit of reduced cost and increased
ability to generate layered systems, are being developed
for a new generation of liver based devices. Organovo
(http://organovo.com, San Diego, CA), employs 3D
printing with devices bearing tissue-tissue interfaces
and spatio-temporal diffusion of bio-chemicals, within
a mechanically robust micro-environment [141]. Another
innovation in drug metabolism studies has been at the
level of cell source. The HepRG cell line is a bipotent liver
cell line that, when differentiated further, better mimics
hepatocytes, compared to comparable cancer cell lines. It
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offers uniformity of gene expression and drug metabolism,
and functions as a key alternative [142, 143].

Engineering considerations of hepatocytes within devices
Whether hepatocytes are cultivated within bioreactors
or microdevices, in vitro bioprocessing of mature hepa-
tocytes involves considerations of cell seeding, hepato-
cellular, and extracellular matrix configuration (Fig. 3).
Viability, morphology, and function are major consider-
ations within the microenvironment of these devices. In
addition to monitoring changes in temperature and pH,
growth factors, oxygen, and nutrients, are essential for
maintained hepatocellular functions, as is removal of waste
products. Flow-based systems improved physiological
modeling of liver functions, but associated biomechanical
forces within these engineered microenvironments will
affect cells. Hydrodynamic shear stress associated with
spinning bioreactors and shear stress associated with capil-
lary motion of cells in liver cell microchips naturally im-
pacts cell behavior. Preclinical models of the BAL have
determined how flow affects primary rat hepatocytes
(cocultured with 3 T3) functions [144]in a microchannel
bioreactor system. Shear stress calculations showed that
low wall shear stress for the bioreactor (0.01 to
0.33 dyn/cm?) hepatocyte function measured in albu-
min and urea synthesis rates, were 2.6 to 1.9 times,
respectively, greater than those at higher wall stresses
(5 to 21 dyn/cm?). A follow up study validated the det-
rimental effects of shear stress on hepatic function,
while developing grooved substrates that protect hepa-
tocytes from shear under high flow/oxygen delivery
conditions [61]. These studies highlighted shear stress
effects but lacked the cellular content and geometry
that is present in the liver sinusoid. Du et al. [145] cre-
ated a model of the liver sinusoid, complete with a fluid
channel for flow lined by liver sinusoidal endothelial
cells (LSEC) and Kupfer cells lying on a porous mem-
brane. These pores lead to a second channel with primary
hepatic stellate cells and primary hepatocytes. These
studies demonstrated that shear flow (0.1-0.5 dyn/cm?)
enhanced albumin, HGF secretion, as well as drug metab-
olism, but not urea secretion. However, oxygen transport
was not modeled in this study. Overall, micro-engineered
organ on a chip technology that integrates defined 3D
microarchitecture, hepatocytes, microscale interactions,
and microfluidics, report enhanced liver functions in the
presence of oxygen and shear flow.

Decellularized liver grafts

A new approach in liver regenerative medicine is gener-
ating three dimensional tissue with a decellularized,
native liver bioscaffold, that can be re-seeded with ap-
propriate parenchymal and nonparenchymal cells (Fig. 3).
This whole organ approach may enable scientists to
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salvage marginal livers, or perhaps even xenogeneic
livers for therapeutic use. Although decellularization has
been used since the 1980’s [146], the first report of
whole organ decellularization and recellularization re-
sulted in a functional heart and opened up a new field in
bioengineering and medicine [147]. Using similar tech-
niques, scientists generated the first decellularized, and
recellularized liver [148]. Here, ischemic liver decellulari-
zation with perfusion of sodium dodecyl sulfate (SDS)
detergent preserved the chemical composition and struc-
ture, with structurally intact vessels, and bile ducts, and
was recellularized with hepatocytes as well as micro-
vascular endothelial cells under perfusion. The recellu-
larized graft was transplanted for eight hours in vivo,
perfused ex vivo for twenty hours, and demonstrated
mature liver functions. Follow up studies demonstrated
multistep cell seeding with proliferative hepatocytes,
the presence of the biliary tree, a milder decellulariza-
tion cocktail, the use of a cryopreserved, rather than
ischemic, donor liver [149], and further process im-
provements [150, 151]. In bringing the approach to
clinical scale, pig livers have been processed in a simi-
lar way [152]. These studies point towards success in
the preclinical small and large animal studies, and fun-
damental limitations, such as seeding and in vivo sur-
vival, that are actively being addressed.

Conclusions
In this review, we summarize the history and key
publications within liver regenerative medicine. We
summarize seminal studies in areas as diverse as liver
perfusion and hepatocyte isolation, liver regeneration,
bioartificial liver, liver transplantation, and cell therapies.
These subjects have in part forged the field liver regenera-
tive medicine. The largest discriminating factor in liver re-
generative medicine is the shear mass of the liver, as it is a
solid organ with ~2 x 10" cells in a 70 kg male. Its vast
size together with complex hepatocellular functions, in-
cluding detoxification, whole body metabolism, digestion,
and protein synthesis, naturally constrain in vitro models
and therapeutic solutions. Below we analyze aspects of
liver regenerative medicine some future areas of growth.
In terms of liver transplantation, the lack of donor
livers has focused attention upon increasing donor pool
through advancing living donor related transplantation,
reconditioning marginal livers using machine perfusion,
and whole organ decellularization. We speculate that
improvement in this area could be achieved, conceptu-
ally, by combining transplantation technology, with liver
regeneration fundamentals, and organ preservation tech-
nology. If donor tissue can be divided surgically into
smaller transplantable units, could make several hepa-
tectomized transplants available. If this hepatectomized
transplant can be appropriately anastamosed to the
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hepatobiliary ducts, and both the portal and the systemic
circulatory systems in a matched organ transplant
recipient, then more transplants from an initial donor
organ might be available. Approximately 10% of liver mass
may be needed to maintain liver functions. Here, perhaps
improved knowledge of liver regeneration could be used
to grow the miniature transplant in the patient. The other
transplantable units could be maintained through storage
techniques and transplanted either at the same time in
matching patients or at a future time. Further, perhaps
transplantable units could be regenerated ex vivo using
perfusion technology (see below). This approach could be
used to salvage donor tissue, and potentially preserve tis-
sue for multiple operations. As it stands now, donor limi-
tations are a major problem and will continue to be.

A major area of potential, continued growth will likely
be machine perfusion technology [153]. Storage under
perfusion could reduce serial aspects of organ injury that
occur during storage and transplantation [154]. Further,
changes in donor pool, reflected by organs from older pa-
tients, donors with more concomitant disease, donors
with steatohepatitis, and donors from non-heart beating
donors, could all have a higher risk of delayed graft func-
tions, [153]. and thus machine perfusion could address
this problem [155]. Most liver transplant centers are not
yet equipped with this technology. Opportunities in this
area could be methods for making the process inexpensive
and extending perfusion time. Furthermore, the roles of
the perfusate type, oxygenation and temperature of per-
fusate, pressure versus flow based control of perfusate,
length of perfusion, and assessment of metabolic parame-
ters measured all are under investigation [153]. Machine
perfusion has also been used to generate decellularized
livers and potentially recellularized livers which is a likely
growing application of this technology [156].

Although BAL technology for acute liver failure is
again reaching the pre-clinical stage, there remain many
challenges for clinical implementation. Here, the BAL
could serve as a bridge to transplantation, or as a thera-
peutic intervention to improve symptoms. From a prac-
tical point of view, if a patient is diagnosed with acute
liver failure (ALF) in a community hospital, rapid hepa-
tocellular injury and subsequent encephalopathy would
occur on a time scale of a week (hyperacute) to a month
(subacute) [157]. Therefore, the patient would likely
need to be sent to a liver specialty center and receive a
BAL within days of diagnosis. The greatest limitation
here is that a large cell mass, approximately 2 x 10
functional hepatocytes, would need to be readily avail-
able. In the Glorioso et al. study [158], allogeneic por-
cine hepatocytes were used, and each swine that
received BAL therapy required one swine donor liver to
generate the high density hepatocyte culture within the
BAL. If high density hepatocyte spheroid cultures can
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be rapidly deployed within 24 h as they were in the
Glorioso et al. study, then perhaps this approach can be
utilized clinically, because it fits with time in which pa-
tient’s with ALF develop symptoms. Probably porcine
hepatocytes, or even better, human hepatocytes could
be used in this BAL approach. Obtaining a large num-
ber of human hepatocytes in such a short amount of
time would be problematic. However, liver repopulation
has been accomplished in mice, rats, rabbits, and pigs
[93]. It may be possible to also repopulate human hepa-
tocytes in immunodeficient large animals as is done in
mouse. If these animals, or the cells within them can be
transported rapidly, it would be possible to obtain a
large amount of hepatocytes that would be needed for a
BAL to function.

There remains to be potentially valuable contributions
for cellular therapies and stem cells in liver regenerative
medicine. An effective use of HCT is acute liver failure. A
major impediment is large numbers of an allogeneic hep-
atocyte cell source that would be required, and associated
immunosuppression. As mentioned above, the only way to
expand human hepatocytes to large quantities is with in
vivo liver repopulation within immunodeficient, transgenic
large animals. However, human hepatocytes would have to
be recovered without any associated pig antigens, and at
this time it is not 100% clear if this is possible. Genetically
modified pigs, perhaps without hepatocyte MHC I or
without cell surface carbohydrates that induce a hyper-
acute immune reaction, could also be potentially be used
as a source of hepatocytes for human transplantation.
However, associated immunosuppression would be re-
quired. The advantage of this approach compared to the
BAL for acute liver failure would be cost, ease of applica-
tion, and the fact that human hepatocytes from the same
swine donor liver could potentially be used for another pa-
tient simultaneously.

hPSC are promising because they are self-renewable,
and thus hPSC-based approaches to generate mature
hepatocytes or mature liver tissue are advantageous.
This would impact several major fields within liver re-
generative medicine. As a central cell source for de-
vices, like the BAL and human liver on a chip, and a
source for hepatocyte cell therapy, this would be a
major achievement in liver regenerative medicine. New
methods to differentiate hPSC to hepatocyte-like cells
[159] or to improve maturation of hepatocytes are
likely to be important to generating fully functional he-
patocytes [160]. These types of studies will be a key de-
velopment within liver regenerative medicine. The fact
that several hepatocyte-based approaches have led to
several commercialization efforts, indicate that there is
an indeed a “market” for liver cells/tissue at a time
when liver diseases are escalating. As scientists, engi-
neers, and physicians continue to work together on
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creative solutions, we expect further development of
new technologies that will advance the field for im-
proved patient care of patients with liver disease.
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