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Abstract

As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP
(BNP), C-type NP (CNP), dendroaspis NP and urodilatin, with NP receptor-A (guanylate cyclase-A), NP receptor-B
(guanylate cyclase-B) and NP receptor-C (clearance receptor). These peptides are genetically distinct, but structurally
and functionally related for regulating circulatory homeostasis in vertebrates. In humans, ANP and BNP are encoded
by NP precursor A (NPPA) and NPPB genes on chromosome 1, whereas CNP is encoded by NPPC on chromosome
2. NPs are synthesized and secreted through certain mechanisms by cardiomyocytes, fibroblasts, endotheliocytes,
immune cells (neutrophils, T-cells and macrophages) and immature cells (embryonic stem cells, muscle satellite cells
and cardiac precursor cells). They are mainly produced by cardiovascular, brain and renal tissues in response to wall
stretch and other causes. NPs provide natriuresis, diuresis, vasodilation, antiproliferation, antihypertrophy, antifibrosis
and other cardiometabolic protection. NPs represent body’s own antihypertensive system, and provide
compensatory protection to counterbalance vasoconstrictor-mitogenic-sodium retaining hormones, released by
renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). NPs play central roles in
regulation of heart failure (HF), and are inactivated through not only NP receptor-C, but also neutral endopeptidase
(NEP), dipeptidyl peptidase-4 and insulin degrading enzyme. Both BNP and N-terminal proBNP are useful
biomarkers to not only make the diagnosis and assess the severity of HF, but also guide the therapy and predict
the prognosis in patients with HF. Current NP-augmenting strategies include the synthesis of NPs or agonists to
increase NP bioactivity and inhibition of NEP to reduce NP breakdown. Nesiritide has been established as an
available therapy, and angiotensin receptor blocker NEP inhibitor (ARNI, LCZ696) has obtained extremely
encouraging results with decreased morbidity and mortality. Novel pharmacological approaches based on NPs may
promote a therapeutic shift from suppressing the RAAS and SNS to re-balancing neuroendocrine dysregulation in
patients with HF. The current review discussed the synthesis, secretion, function and metabolism of NPs, and their
diagnostic, therapeutic and prognostic values in HF.
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Background
As a family of hormones with pleiotropic effects, natri-
uretic peptide (NP) system includes atrial NP (ANP), B-
type NP (BNP, also called brain NP), C-type NP (CNP),
dendroaspis NP (DNP) and urodilatin, with three recep-
tors: NP receptor-A [guanylate cyclase (GC)-A or NPR-
A], NP receptor-B (GC-B or NPR-B) and NP receptor-C
(clearance receptor or NPR-C) [1]. These peptides are
genetically distinct, but structurally and functionally
related for regulating circulatory homeostasis in verte-
brates, and each of them has a 17-amino acid (aa) cyclic
structure constructed with an disulfide bond [2]. In
humans, ANP and BNP are encoded by NP precursor A
(NPPA) and NPPB genes on chromosome 1, whereas
CNP is encoded by NPPC on chromosome 2 [3]. NPs
are synthesized and secreted through certain mecha-
nisms by cardiomyocytes, fibroblasts, endotheliocytes,
immune cells (neutrophils, T-cells and macrophages)
and immature cells, such as embryonic stem cells,
muscle satellite cells and cardiac precursor cells (CPCs)
[4]. They are mainly produced by cardiovascular, brain
and renal tissues in response to wall stretch and other
causes. NPs provide natriuresis, diuresis, vasodilation,
antiproliferation, antihypertrophy, antifibrosis and other
cardiometabolic protection [5, 6]. More importantly,
NPs represent body’s own antihypertensive system,
and provide compensatory protection to counterbalance
vasoconstrictor-mitogenic-sodium retaining hormones,
released by renin-angiotensin-aldosterone system (RAAS)
and sympathetic nervous system (SNS) [7]. NPs are inacti-
vated through not only NPR-C, but also neutral endopep-
tidase (NEP), dipeptidyl peptidase-4 (DPP-4) and insulin
degrading enzyme (IDE). There is urinary excretion of
NPs as well [3]. The current review discussed the synthe-
sis, secretion, function and metabolism of NPs, and their
diagnostic, therapeutic and prognostic values in heart
failure (HF).

Synthesis and secretion
Synthesis and secretion of ANP
ANP is mainly produced and stored in atrial granule,
and normal ventricle actually produces little ANP [8].
Failing ventricle secretes ANP in patients with HF, and
becomes a main part of plasma ANP [9]. NPPA gene has
the following exons: exon 1 [5’-untranslated region (5’-
UTR, a 25-aa signal peptide) and 16 aa of proANP
sequence], exon 2 (most of proANP sequence) and exon
3 [terminal tyrosine and 3’-untranslated region (3’-
UTR)] (Fig. 1). Proximal 5’-flanking region (5’-FR) of
NPPA gene can regulate its spatio-temporal expression
[10]. Mechanical stretch of cardiomyocytes, exercise,
hypoxia, cold, angiotensin, endothelin, vasopressin,
catecholamine or glucocorticoid induces transcription
factor GATA to bind promoters, suggesting an active

involvement of neurohormonal system in the regulation
of NP synthesis. ANP mRNA is translated to 151-aa pre-
proANP, and 126-aa proANP is produced and stored
after removing 25-aa signal peptide. ProANP is cleaved
upon secretion by transmembrane serine endoprotease
(corin) into the active carboxy-terminal (C-terminal) 28-
aa α-ANP with relatively short half-life, which can bind
to receptor and have biologic function, and the inactive
98-aa amino-terminal (N-terminal) proANP (NT-
proANP) more stable with relatively long half-life [11].
ANP secretion is caused by atrial and ventricular wall
stretch due to transmural pressure or volume overload,
and also affected by age, sex, heart rate and renal func-
tion [2]. ANP is distributed into coronary sinus, and
then to various target organs. Meanwhile, human β-
ANP, an antiparallel dimer of α-ANP, is present in failing
heart, and has elevated levels in patients with severe HF
[12]. Additionally, urodilatin is a 32-aa NP of renal
origin with local function in regulating renal sodium and
water excretion through interacting with NPR-A. It is
produced as N-terminal 4-aa-extended form of α-ANP
like γ-ANP after the cleavage of proANP by an unknown
protease in renal distal tubules [13].

Synthesis and secretion of BNP
Firstly discovered in porcine brain, BNP is stored in atrial
granule with ANP, but not in granule in ventricle [14].
BNP is mainly secreted by normal atrium [15]. However,
as a hallmark for maladaptive remodeling of left ventricle
(LV), BNP is mainly secreted in ventricle when LV func-
tion is insufficient and cardiac wall is stretched due to
transmural pressure or volume overload [16]. BNP has
more obviously elevated levels than ANP in patients with
HF [17]. NPPB gene has the following exons: exon 1 (5’-
UTR, a 26-aa signal peptide, and 15 aa of proBNP
sequence), exon 2 (most of proBNP sequence) and exon 3
(terminal tyrosine and 3’-UTR) (Fig. 1). Various causes,
such as tissue hypoxia, transmural pressure or volume
overload, induce the transcription of NPPB gene in endo-
plasmic reticulum to produce 134-aa preproBNP [18].
Pro-inflammatory cell factors, including interleukin-1β,
interleukin-6 and tumor necrosis factor-α, induce BNP
synthesis in cardiomyocytes, suggesting an active involve-
ment of immune system in the regulation of NP synthesis
[19]. Repeated AUUUA in 3’-UTR of BNP mRNA make it
easier to be degraded than ANP mRNA. After removing
26-aa signal peptide, 108-aa proBNP is produced and then
cleaved upon secretion by furin (or corin) into the active
BNP1-32 (or BNP4-32), and the inactive 76-aa N-terminal
proBNP (NT-proBNP) [20].

BNP-32 and proBNP-108
Not only proBNP and O-Glycosylated proBNP, but also
BNP and NT-proBNP, are present in blood [14]. Current
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immunoassays for BNP-32 also recognize proBNP-108,
and plasma BNP in HF rather includes proBNP-108 and
O-Glycosylated proBNP-108 [21]. There is an elevated
ProBNP-108/BNP-32 ratio in patients with HF [22].
ProBNP-108/BNP-32 ratio increases in response to ven-
tricular overload rather than atrial overload in patients
with HF [23]. Moreover, proBNP-108 has much less abil-
ity to induce the synthesis of cyclic guanosine monopho-
sphate (cGMP) than BNP-32 in vascular smooth muscle
and endothelial cells [24]. Despite high levels of plasma
BNP, there is an attenuation of BNP bioactivity in pa-
tients with HF [25]. In mild to moderate HF, plasma
cGMP levels increase in proportion to HF severity. How-
ever, plasma cGMP levels have an attenuated increase
relative to disease state, and no longer correlate with

BNP levels in severe HF [26]. Even relatively small in-
crease in proBNP-108/BNP-32 ratio, if it lasts for a long
time, can sufficiently reduce total potential of cGMP
production and attenuate compensatory benefit of
plasma BNP, thereby leading to HF progression.

O-Glycosylation and proBNP-108
O-Glycosylated proBNP-108 levels correlate with HF
severity [24]. Within Golgi apparatus of ventricular
myocytes, proBNP-108 is post-translationally glycosyl-
ated to various extent at seven sites of N-terminal
region: threonine (Thr)36, serine (Ser)37, Ser44, Thr48,
Ser53, Thr58 and Thr71 [27]. Within trans-Golgi
network, O-Glycosylated proBNP-108 is cleaved into
BNP-32 and NT-proBNP [23]. O-Glycosylation has

Fig. 1 Synthesis, metabolism and function of natriuretic peptides. Abbreviations: ANP: atrial natriuretic peptide; BNP: B-type natriuretic peptide;
cGMP: cyclic guanosine monophosphate; CNP: C-type natriuretic peptide; DPP-4: dipeptidyl peptidase-4; GC: guanylate cyclase; GTP: guanosine
triphosphate; IDE: insulin degrading enzyme; NEP: neutral endopeptidase; NPR: natriuretic peptide receptor; NT-proANP: N-terminal proANP;
NT-proBNP: N-terminal proBNP; NT-proCNP: N-terminal proCNP; PDE: phosphodiesterase; PKG: protein kinase; RAAS: renin-angiotensin-aldosterone
system; SNS: sympathetic nervous system
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potential effect on the secretion and processing of
proBNP-108. Thr71 is near to cleavage site of proBNP-
108, and O-Glycosylation at Thr71 inhibits processing of
proBNP-108 in human embryonic kidney (HEK) 293
cells and human leukemia 1 cells [28, 29]. Mechanisms
governing cardiac secretion and peripheral metabolism
of proBNP-108 remain unclear in patients with severe
HF [30]. Venous furin-like enzyme activity has been
proposed to correlate with NTproBNP/proBNP-108
ratio, and cleave proBNP-108 into BNP-32 and NT-
proBNP in peripheral blood of patients with acute HF
[31]. However, it has also been reported that proBNP-
108 has similar levels between peripheral vein and
artery, and is unlikely to be metabolized in peripheral
blood and tissue. These inconsistent results may be
caused by the diversity between in vivo and in vitro
settings, between glycosylated and non-glycosylated
proBNP-108, and between clinical status of patients with
HF [32].

New forms of BNP
Many new plasma forms of BNP with low molecular
mass are present, but BNP-32 is nearly absent in
patients with HF [33]. DPP-4 cleaves N-terminal serine-
proline dipeptide from BNP1-32 in blood to produce
BNP3-32 and BNP5-32, which are more rapidly de-
graded and have much less abilities to induce beneficial
responses than BNP1-32 [34]. DPP-4 also cleaves N-
terminal histidine-proline dipeptide from proBNP1-108
to produce proBNP3-108. Current immunoassays can
not distinguish these forms in blood [35]. Patients
using DPP-4 inhibitors have exhibited an increased
risk of HF hospitalization in Saxagliptin Assessment
of Vascular Outcomes Recorded in patients with diabetes
mellitus-Thrombolysis in Myocardial Infarction (SAVOR-
TIMI) trial [36]. However, other studies have not con-
firmed an association between DPP-4 inhibitors and HF
hospitalization and shown adverse prognosis in patients
with HF using DPP-4 inhibitors [37–41]. Previous meta-
analyses can not rule out the concern that DPP-4 inhibi-
tors have cardioprotective roles by affecting BNP1-32/
BNP3-32 ratio [42–45].

Synthesis and secretion of CNP
As the most abundant NP in brain, CNP is also synthe-
sized in atrium, ventricle, kidney, chondrocyte, endothe-
lium and blood cells. NPPC gene has the following
exons: exon 1 (5’-UTR, a 23-aa signal peptide, and 7 aa
of proCNP sequence), exon 2 (most of proCNP
sequence) and exon 3 (3’-UTR) (Fig. 1). After removing
23-aa signal peptide from 126-aa preproCNP, 103-aa
proCNP is produced and then cleaved upon secretion
into 53-aa CNP by intracellular serine endoprotease
(furin) [46]. CNP expression is up-regulated by shear

stress [47]. Transforming growth factor-β stimulates
CNP production and secretion in endotheliocytes [2].
CNP-53 is then cleaved into 22-aa CNP, and CNP-53
and CNP-22 are equipotent [48]. Although CNP-22 and
CNP-53 have similar activity and function, CNP-53
predominates in heart, endothelium and brain, whereas
CNP-22 predominates in cerebral spinal fluid and
plasma [49].

Function
Receptors of NPs
NP system has significant autocrine, paracrine and
endocrine function. As two of five transmembrane GC
receptors in humans, NPR-A and NPR-B induce patho-
physiologic functions of NP system (Fig. 1). NPR-A is
activated by ANP and BNP, and NPR-B is activated by
CNP [50]. NPRs are present in heart, brain, kidney,
adrenal, liver, pancreas, vascular and gastrointestinal
smooth muscle, adipocytes, chondrocytes, fibroblasts
and platelets [3]. NPR-A is highly present in kidney,
adrenal, lung, terminal ileum, aorta and adipose. NPR-B
is highly present in fibroblasts [51]. They have an extra-
cellular ligand-binding and membrane-spanning region,
an intracellular particulate GC region and an intracellu-
lar cGMP-dependent protein kinase (PKG) region [52].
Activated NPRs catalyze conversion of guanosine tri-
phosphate (GTP) to cGMP. As an intracellular second
messenger, cGMP activates PKG and phosphodiesterase
(PDE) to regulate various pathways including ion
channels, protein phosphorylation, nuclear translocation
and gene expression, all of which exert biologic effects
[53, 54]. NPR-C is highly present in atrium, kidney, ad-
renal, lung, mesentery, placenta, cerebral cortex, cerebel-
lum, aorta and vein [51]. NPR-C has a disulfide-bonding
dimer homologous to extracellular region of NPR-A and
NPR-B and intracellular 37 aa for potential signaling
functions. NPR-C is a clearance receptor for ANP, BNP
and CNP [55]. Although NPR-C has no GC activity, it
induces pathophysiologic functions, such as affecting cell
growth, through adenylate cyclase, inhibitory guanine
nucleotide-regulatory protein (G-protein) and phospho-
lipase C [56]. Modulation of NPR expression in target
organ may be determinant for local bioavailability and
regulation of NPs. Therefore, NP resistance may be
caused by NPR-C upnregulation or NPR-A downregula-
tion. In early stage of HF, NPs provide compensatory
actions including not only natriuresis, diuresis and
vasodilation, but also RAAS and SNS inhibition. In se-
vere HF, NPs have attenuated effects despite high plasma
NP levels assessed by current immunoassays. Several
possible explanations include increased NP degradation,
reduced NP bioactivity, increased secretion of inactive
NP forms, increased cGMP degradation and reduced
NPR-A activity due to receptor dephosphorylation
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and degradation [57–59]. However, limited informa-
tion is available regarding bioactivity change in NPR
and its clinical significance in HF.

Function of ANP
ANP boosts natriuresis and diuresis. Na+ reabsorption in
inner medullary collecting ducts depends mainly on the
apical amiloride-sensitive Na+ channel (cyclic nucleoti-
degated ion channel) and basolateral Na+-K+-adenosine
triphosphatase (Na+-K+-ATPase). Apical amiloride-
sensitive Na+ channel allows passive Na+ entry from
renal tubular lumen. Basolateral Na+-K+-adenosine tri-
phosphatase helps Na+-K+-2Cl- cotransporter actively
pump Na+ out of epithelial cell into peritubular space
and eventually bloodstream. ANP inhibits apical Na+

channel and basolateral Na+-K+-ATPase activity, result-
ing in decreased Na+ reabsorption from inner medullary
collecting ducts and increased Na+ excretion from urine
known as natriuresis [53]. ANP induces cGMP to inhibit
Na+ channel by a mechanism of activating PKG inde-
pendent of phosphorylation [2]. ANP inhibits basolateral
Na+-K+-ATPase through PKG-induced phosphorylation
in a cGMP-dependent manner [53]. ANP inhibits RAAS
with reduced angiotensin II-induced sodium and water
transport in renal proximal tubules [60]. ANP suppresses
renin secretion from juxtaglomerular (granular) cells in
a cGMP-dependent manner without changing intracellu-
lar Ca2+. ANP also suppresses aldosterone synthesis in
adrenal glomerulosa (adrenocorticotropic hormone-
induced, angiotensin-II-induced and basic aldosterone),
which enhances natriuretic effect and reduces extracellu-
lar volume [61]. ANP/NPR-A activity induces natriuresis
and diuresis, but appears to be downregulated in HF
with RAAS activation [62]. Although conflicting studies
exist, ANP may suppress angiotensin-II-induced secre-
tion of vasopressin from posterior pituitary without
blood-brain barrier, and inhibit V2 receptor-mediated ef-
fect of vasopressin on water reabsorption in collecting
ducts [63–65]. ANP increases glomerular filtration rate
(GFR) through its direct vasodilative effect on afferent
arterioles. ANP also reverses norepinephrine-induced
vasoconstriction of afferent arterioles [66]. Vasodilative
effect of ANP on vascular smooth muscle may involve
following mechanisms: reducing Ca2+ influx, enhancing
Ca2+ extrusion, and inhibiting Ca2+ release from sarco-
plasmic reticulum [67]. ANP directly relaxes contractile
intraglomerular mesangial cells and expands glomerular
capillary surface area available for filtration. ANP also
inhibits angiotensin-II-induced constriction of mesangial
cells [67]. There have been controversies on vasocon-
strictive effect of ANP on efferent arterioles: some have
observed no change in diameter of efferent arterioles,
whereas others have reported the dilatation of afferent
arterioles and constriction of efferent arterioles [68].

Lowering blood pressure
ANP induces hypovolemia and decreases blood pressure
(BP). ANP lowers BP with increased permeability of ca-
pillaries and fluid efflux from blood [69]. ANP decreases
cardiac load by shifting intravascular fluid into intersti-
tial space. ANP stimulates Ca2+/calmodulin-dependent
endothelial nitric oxide (NO) synthase in aorta, ventricle
and kidney to produce more NO for relaxing vascular
smooth muscle cells by binding to either NPR-A or
NPR-C, causing a decrease in BP levels [70]. ANP de-
creases vascular resistance also by inhibiting RAAS [71].
Thus, ANP/NPR-A activity reduces basic BP levels
through its combined effects on vascular relaxation and
intravascular volume. Moreover, ANP relaxes air
passages and blood vessels in lung [72]. ANP and BNP
have elevated levels due to wall stretch of right ventricle,
and inhibit pulmonary hypertension caused by chronic
hypoxia [73].

Counteracting sympathetic activity
ANP not only modulates baroreflex mechanism, but also
inhibits sympathetic activity and enhances vagal afferent.
SNS is inhibited in peripheral vessels, perhaps by lower-
ing activation threshold of baroreceptors, by decreasing
catecholamine release from nerve endings, and by
reducing sympathetic outflow [74]. It lowers activation
threshold of vagal afferent, reflex tachycardia and vascu-
lar constriction, and causes a sustained decrease in mean
arterial pressure [75]. ANP decreases sympathetic out-
flow by modulating ganglionic neurotransmission rather
than increasing discharge from cardiac mechanorecep-
tors with inhibitory vagal afferent [76].

Inhibiting cardiac hypertrophy
Both prolonged exposure to systemic hypertension and
lacking the inhibition of heart growth lead to cardiac
hypertrophy [77, 78]. Moreover, ANP has direct effects
on heart, and inhibits cardiac hypertrophy and fibrosis
[79]. ANP induces cardiomyocyte apoptosis and inhibits
fibroblast growth [3]. ANP suppresses fibroblast migra-
tion and proliferation by counteracting angiotensin-II,
aldosterone and endothelin-1, as well as inflammatory
reaction including pro-inflammatory factor and macro-
phage infiltration [80, 81]. ANP inhibits stress-activated
protein kinase and extracellular-regulated kinase-2
induced by platelet-derived growth factor [82]. ANP
exhibits antimitogenic and antineoplastic properties by
reducing cell adhesion and inflammatory reaction
through p38 mitogen-activated protein kinase [83]. ANP
attenuates the growth of cardiomyocytes and fibroblasts
by inhibiting norepinephrine-induced Ca2+ influx in a
cGMP-mediated manner [84]. Meanwhile, ANP and
BNP reduce systemic and pulmonary BP, and inhibit car-
diac hypertrophy in HF [85]. ANP and CNP exert direct
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effects on vessels by reducing adhesion molecules of
endotheliocytes (P-selectin and monocyte chemotactic
protein-1) and inflammatory infiltration on atheroma-
tous plaques [86].

Regulating energy homeostasis
ANP stimulates exercise-induced lipolysis through
cGMP and PKG in primates with an increased NPR-A/
NPR-C ratio [87]. ANP affects the conversion from
white to brown fat through mitochondrial uncoupling
protein-1 and p38 mitogen-activated protein kinase [88].
BNP may also have hypoglycemic effect and regulate en-
ergy homeostasis [89]. ANP and BNP stimulate oxidative
ability of skeletal muscle and lipolytic action in subcuta-
neous adipose [90]. ANP and BNP induce hormone-
sensitive lipase of adipocytes in a cGMP-mediated
manner [91].

Function of BNP
In addition to the well documented natriuresis, diuresis
and vasodilation, BNP also has direct effects on heart
[14]. BNP may provide compensatory protection, such
as inhibiting myocardial apoptosis and necrosis and re-
ducing cardiac hypertrophy and fibrosis [92, 93]. BNP
may also modulate immune and inflammatory reaction
to cardiac injury. BNP depletes monocytes, B lympho-
cytes and natural killer cells in peripheral blood [94].
BNP regulates the chemotaxis of monocytes and produc-
tion of inflammatory molecules by macrophages [95].
BNP may promote cardiac neutrophil infiltration and
metalloprotease-9 expression after myocardial infarction
(MI), and also have direct effects on matrix remodeling
and wound healing [96].

Affecting cardiac embryogenesis
BNP plays significant roles in cardiac embryogenesis.
There are high BNP levels in embryonic heart during
the midgestation, and peaks of BNP secretion correlate
with cardiac development [97]. Plasma BNP levels in
humans are high at birth, progressively declining there-
after, to stabilize at around ten years of age to the levels
found in adults [98]. ANP and BNP may regulate cardio-
myocyte differentiation and proliferation in the develop-
ing embryo [99]. Embryonic stem cells express high
levels of BNP, which are crucial for their proliferation
and differentiation [100]. BNP may also be involved in
the process of angiogenesis following skeletal muscle is-
chemia [101]. BNP secretion by vascular satellite cells
has been found to activate the regeneration of adjacent
endothelium in a paracrine manner. Moreover, BNP has
been addressed in cardiac regeneration by evaluating the
relationships between cardiac precursor cells (CPCs) and
BNP in neonatal and adult mice. Firstly, all forms of
proBNP are more abundant in neonatal heart than in

adult heart [102]. Secondly, CPCs express NPR-A and
NPR-B, supporting that CPCs can respond to BNP
[102]. NPR-A contributes to self-renewal and mainten-
ance of CPC pluripotency, whereas NPR-B is involved in
CPC proliferation [103]. ANP, BNP and CNP stimulate
CPC proliferation and differentiation into new cardio-
myocytes by NPR-B binding, cGMP increase and PKG
activation [104]. Thirdly, exogenous BNP has increased
proliferating CPCs and new cardiomyocytes, which are
associated with improved cardiac function and remodeling
after MI [102]. Finally, CPCs stain positive for BNP, sug-
gesting that CPCs can also synthesize and secrete BNP in
an autocrine manner to regulate their proliferation and
differentiation into new cardiomyocytes. Thus, BNP and
CPCs may be useful therapies for HF and MI [102].

Function of CNP
All of ANP, BNP and CNP provide cardiorenal protec-
tion, although CNP has the most antifibrotic and least
renal effects [13]. CNP is a vasodilator mainly secreted
from endothelial cells in response to vascular injury.
Patients with HF have minimally increased CNP levels,
and HF severity is significantly relevant to CNP levels
[105]. Although CNP dose not predominantly behave as
a cardiac hormone, it has cardiovascular actions as well,
such as re-endothelialization, hyperpolarization, anti-
thrombosis and antifibrosis [106, 107]. CNP inhibits pro-
liferation and migration of coronary artery smooth
muscle cells mediated by oxidized low-density lipopro-
tein in a cGMP-dependent manner [108]. CNP inhibits
platelet aggregation and thrombosis formation by sup-
pressing plasminogen activator inhibitor-1, perhaps
through NPR-C [109]. As an endothelium-derived hy-
perpolarizing factor, CNP may regulate several vasodila-
tive factors, including prostacyclin and NO [110]. CNP
inhibits cardiac hypertrophy and fibrosis in autocrine
and paracrine manners within myocardium [111]. CNP
has antifibrotic effect by regulating PKG-derived phos-
phorylation of Smad3 and transforming growth factor-β-
derived nuclear translocation [112]. CNP may have com-
pensatory actions in HF in a cAMP-dependent manner,
which are incompletely understood. CNP-dependent
NPR-B activity is about half of ANP-dependent NPR-A
activity in normal ventricle. ANP-dependent NPR-A
activity is unaltered or reduced, and CNP-dependent
NPR-B activity is mildly or significantly elevated in failing
ventricle [113, 114]. Failing ventricle has increased fibro-
blasts, and NPR-B is highly present in cardiac fibroblasts
[115]. Additionally, CNP inhibits pulmonary hypertension
and fibrosis in a similar manner in HF [116]. Fibroblast
growth factor receptor 3 (FGFR3) is an important regula-
tor of bone formation. Its gene gain-of-function mutations
activate mitogen-activated protein kinase pathway and re-
sult in achondroplasia. CNP acts as a key regulator of
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longitudinal bone growth by downregulating mitogen-
activated protein kinase pathway [117].

Metabolism
Mechanisms of metabolism
Main mechanisms are in the following: 1) NPR-C-
derived and clathrin-mediated endocytosis, lysosomal
ligand hydrolysis and ligand-free receptor recycling; and
2) NEP (neprilysin), a zinc-dependent exoenzyme with
broad substrates [53]. ANP is degraded effectively in
most organs, and more effectively in some than others.
Although 30%–50% of ANP has been shown to be de-
graded in kidney, liver or lower limbs rather than lung,
subsequent studies have reported that 19%-24% of ANP
is degraded in lung (lung > liver > kidney) [118, 119].
Degradation of BNP and CNP have been discussed pre-
viously [120]. BNP binds to NPR-C 7% as tightly as
ANP, and BNP has long half-life due to less degradation
by NPR-C [121]. With a part of aa sequence similar to
NPs, osteocrin (also known as musclin) is an important
decoy ligand for NPR-C, and acts to increase plasma
levels of NPs [122].

NEP and IDE
NEP is a dominant enzyme for NP degradation. In heart,
NEP is expressed on membrane of cardiomyocytes, fi-
broblasts, vascular smooth muscle and endothelial cells
[123]. Although expressed in many epithelial tissues,
NEP levels are particularly high at the luminal side of
renal proximal tubules [124]. Initial attack of breaking
ring and inactivating peptide occurs between cysteine
and phenylalanine (Fig. 1) [125]. Cleavage sites in ring
structure are crucial for degradation [48]. ANP and CNP
have differences of zero or one aa between species, and
are similarly degraded by NEP. BNP differs obviously be-
tween species, and is species-specifically degraded by
NEP [126]. BNP is a worse substrate than ANP and
CNP, and human NEP cleaves BNP at three sites [127].
Most BNP is degraded by NEP in rat renal membrane,
but NEP dose not degrade all BNP in human renal
membrane [128]. IDE, a zinc-dependent protease with
broad substrates, degrades not only insulin, but also
ANP [129, 130].

Roles of NPR-C
Relative effects of NPR-C and NEP degradation on NP
levels are still controversial and unclear [131]. Under
normal condition, NPR-C-blocking peptides affect
physiologic roles of ANP mildly more than or equally to
NEP inhibitors, and ANP has maximal roles with both
NPR-C-blocking peptides and NEP inhibitors [132].
Under pathologic condition, NEP inhibitors become
important due to elevated NP levels and possible NPR-C
saturation [133].

Genetic regulation
Genetic variants
Not only there are genetic variants in NPs and NPRs in
humans, but also they have significant associations with
cardiometabolic phenotypes [134]. NPPA gene has many
variants in promoter, intronic, coding and 3’-UTR [134].
C-664G variant has been related to lower ANP levels,
higher BP levels and more LV hypertrophy in Italian and
Japanese populations [85]. Rs5063 variant has been
related to lower BP levels in American and Chinese pop-
ulations [135–137]. Rs5065 variant has been related to
less hypertension and more MI [138–140]. However, lots
of candidate genes have not been confirmed in big-
sample population genetic studies and Genome Wide
Association Studies. In a big-sample and genome-wide
meta-analysis, rs5068 variant in 3’-UTR has been in-
versely regulated by micro-RNA (miR)-425 and related
to higher ANP levels, lower BP levels and less LV hyper-
trophy [141]. Rs5068 variant has also been correlated
with lower anthropometric indices, lower C-reactive
protein, higher high density lipoprotein, as well as less
susceptibility to HF [142–144]. In NPPB gene, rs198388
and 198389 variants have been related to lower BP
levels, reduced LV remodeling, improved LV function
and less diabetes mellitus [145, 146]. Variants in NPPC
and NPR-B gene remain unclear [133]. Variants in NPR-
C gene have been related to hypertension in Genome
Wide Association Studies of Caucasian and Asian popu-
lations [147]. Variants in corin gene have been related to
higher BP levels and more LV hypertrophy in African-
American population [148].

Genetic manipulation
In order to determine the function of NPs and medica-
tion of NPRs, genetic manipulation has been widely
applied through the knockout of NPRs in animal experi-
ments. For example, ANP-dependent natriuresis and
diuresis are mediated exclusively by NPR-A in mice be-
cause these effects are completely lost after NPR-A
knockout [62]. Mice lacking ANP or NPR-A have an en-
larged heart, whereas mice over-expressing ANP have a
smaller heart [79]. Mice over-expressing ANP are resist-
ant to hypoxia-induced hypertension, whereas mice lack-
ing ANP exhibit increased pulmonary hypertension in
response to chronic hypoxia [73]. Moreover, designer
NPs have been engineered through genetic alteration of
native NPs. Compared with native NPs, designer NPs
have improved efficacy and safety [7].

Roles of micro-RNA
MiR-100 has been demonstrated to inhibit NPR-C
expression in rat MI tissues and human LV cells, and
increased miR-100 in HF may reflect a compensatory
mechanism to prolong half-life of NPs [149]. MiR-425
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inhibits ANP synthesis in human heart by interacting
with 3’-UTR of NPPA gene, and antagonists of miR-425
may be a potential therapy for HF [144]. MiR-21 inter-
acts with ANP in vascular smooth muscle cells through
modulating downstream cGMP signaling [150]. MiR-30
is expressed in healthy heart, but suppressed in failing
heart. MiR-30 inhibits GalNAc-transferase (GALNT) 1
and 2-mediated glycosylation of proBNP-108. MiR-30-
GALNT pathway may be a novel therapeutic target for
HF, and more researches are necessary in humans [32].
Although many miRs targeting NPRs have been
suggested in silico analyses to modulate NP signaling
pathways in HF, it is necessary to confirm their actual
interactions in vivo experiments [151].

Epigenetic remodeling
Maladaptive remodeling of LV in HF is correlated with
fetal-gene reactivation and epigenetic remodeling in
promoters of NPPA and NPPB genes. Although there is
nuclear export of histone deacetylase 4 (HDAC4), gene
activation of NPPA and NPPB dose not require in-
creased histone acetylation in promoters. In contrast,
methylation of histone 3 lysine 9 (H3K9) and binding of
heterochromatin protein 1 (HP1) in promoters of these
genes are reduced by HDAC4, perhaps by forming a
transcriptional repressor complex with histone methyl-
transferase (suppressor of variegation 3-9 homolog 1,
SUV39H1). This complex is disrupted by Ca2+/calmodu-
lin-dependent kinase II (CaMKII)δB-induced phosphor-
ylation of HDAC4. Histone demethylase [Jumonji C
(JmjC) domain-containing demethylase] may be upregu-
lated to maintain H3K9 demethylation in HF [152].

Diagnostic values
Practical application
NPs reflect cardiac stress and function, increase drastic-
ally in patients with HF, and have powerful diagnostic
value for various forms of HF [153]. Plasma NP levels
are also used to evaluate HF severity [154, 155]. Plasma
ANP levels differ according to atrial pressure, whereas
plasma BNP levels reflect ventricular overload. BNP
(half-life: 22 minutes) has been shown to have greater
stability than ANP (half-life: 2 minutes) [156]. Both BNP
and NT-proBNP are removed by kidney, and BNP is also
degraded by NEP and NPR-C. BNP has shorter half-life
than NT-proBNP (half-life: 70 minutes). Thus, BNP and
NT-proBNP are preferred to other NPs as gold standard
for HF diagnosis, and established as rule-out tests of HF
based on clinical guidelines [157, 158]. LV hypertrophy
and dysfunction lead to higher levels of ANP and BNP.
Thus, elevated ANP and BNP levels can be used to iden-
tify LV hypertrophy and dysfunction in general popula-
tion and hospitalized patients [159]. Rapid assay for NPs
can not only discriminate the origin of acute dyspnea

(acute HF versus bronchial asthma), but also manage the
patients with chronic HF [160–162]. Plasma NT-
proBNP level 300 pg/ml is appropriate for ruling out
acute HF. Age-dependent cutoff levels of plasma NT-
proBNP are appropriate for ruling in acute HF: 450
pg/ml in patients < 50 years of age, 900 pg/ml in pa-
tients ≥ 50 years of age, and 1800 pg/ml in patients >
75 years of age [163]. Plasma BNP level 100 pg/ml
and 400 pg/ml are appropriate for ruling out and rul-
ing in acute HF, respectively. Cutoff levels of plasma
NT-proBNP and BNP are 125 pg/ml and 35 pg/ml to
chronic HF, respectively [164].

Confounding factors
Although applying BNP and NT-proBNP as diagnostic
biomarkers of HF has brought significant improvement
in treating HF, several confounding factors, such as
aging, obesity, anemia, sepsis, hypertension, MI, cardiac
hypertrophy, pulmonary hypertension, atrial fibrilla-
tion, diabetes mellitus, renal failure, liver cirrhosis, se-
vere burn and cancer chemotherapy, limit their
accuracy [165]. Plasma NP levels have been inversely
related to body mass index in epidemiological investi-
gations [166, 167]. Plasma NPs have lower levels in
patients with diabetes mellitus, insulin resistance or
metabolic syndrome, perhaps contributing to HF risk
[168, 169]. Plasma BNP has higher levels in patients
with hypertension or LV hypertrophy than in those
without them [170, 171]. Plasma BNP has higher levels in
patients with LV concentric hypertrophy than in those
with LV eccentric hypertrophy or in those with normal LV
structure and hypertension [172]. BP-lowering therapy
reduces BNP levels and LV mass [173, 174].

Coronary artery disease
Plasma NPs have higher levels in patients with acute
coronary syndrome or exercise-induced myocardial is-
chemia but without ventricular dilation [175]. Plasma
ANP levels rise until admission and then decline in pa-
tients with acute MI. Plasma BNP levels rise until 12-24
hours after acute MI, then decline and peak once more
after 5-7 days [176]. Height of the second peak is an use-
ful indicator of LV remodeling [177]. Although there is a
gradual decrease, plasma BNP levels are still increased
in chronic phase, showing LV damage and remodeling
[178]. However, plasma BNP has almost normal levels if
early coronary reperfusion successfully prevents LV
remodeling.

Chronic kidney disease
Renal function has systematical effects on NP system. In
patients with chronic kidney disease (CKD), plasma NP
levels are elevated as compensatory protection of renal
function. CKD is always related to cardiovascular
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abnormalities. However, due to unclear mechanisms,
there are elevated BNP levels in patients with CKD but
without cardiovascular abnormalities [179]. Plasma NP
levels may be regulated both by synthetic/secretory rate
from heart and by extraction rate from blood. Key
mechanism may not be an increase in extraction rate
from kidney. Other mechanisms include the decreases in
functional renal mass, second messenger synthesis and
clearance receptor degradation in kidney [180, 181].
Elevated NP levels in CKD are correlated with a
counter-regulatory response directed from heart to
kidney, suggesting NPs as potential biomarkers of LV
remodeling in patients with CKD [181]. Plasma NP
levels in CKD reflect the stress on cardiac wall caused
by LV hypertrophy or dysfunction [182].

End-stage renal disease
Plasma BNP and NT-proBNP have higher levels in
patients with end-stage renal disease. There is a decrease
of about 20–40% in plasma BNP levels after
hemodialysis (HD). Peritoneal dialysis (PD) may not alter
plasma BNP levels [183]. HD promotes fluid clearance
and alleviates volume overload, leading to reduced wall
stress and NP release [184]. Plasma BNP has lower levels
in patients with PD than in those with HD, supporting
that PD may lead to slower ultrafiltration rate, higher
urine output, better hemodynamic condition, less car-
diac load and lower BP levels than HD [185]. However,
it remains inconclusive and needs more researches
[186]. Meanwhile, due to reduced ultrafiltration rate,
continuous volume overload and more LV hypertrophy,
patients with automated PD (APD) may have higher
BNP levels than those with continuous ambulatory PD
(CAPD) [187]. Moreover, plasma BNP levels have a
significant potential to identify LV hypertrophy or
dysfunction in patients with different dialysis and renal
transplant [188–190].

Practical application in CKD
Renal function limits current use of NPs in patients with
CKD [191]. Plasma NP levels in patients with CKD are
related to CKD severity, and cutoff levels are increased
as CKD stages advance. Plasma BNP levels rise to almost
200 pg/ml in patients with CKD but without HF. Com-
pared with plasma BNP levels, plasma NT-proBNP
levels may be more strongly correlated with GFR and
affected by age-related decrease in GFR, suggesting care-
ful use of NT-proBNP in elderly with CKD [192]. In
patients with CKD, plasma NT-proBNP levels > 1200
pg/ml suggest chronic HF in patients < 50 years of age
and > 4502 pg/ml in patients between 50 and 75 years
old [180]. It remains unclear if elevated NP levels in
CKD effectively reflect the activation of NP system and
effects on target organ. Elevated NP levels may have

reduced ability to activate NP system and affect target
organ in CKD. NP resistance in CKD may be caused by
downregulated NPR-A expression in renal medulla and
upregulated NPR-C expression in renal cortex [193]. NP
resistance in CKD results in the invalidity of NP infusion
in protecting renal function and treating cardiorenal
syndrome in patients with HF [194].

Point-of-care systems
Previous assays for BNP are invasive and time-consuming
with the discomfort caused by venipuncture. Some ideal
point-of-care (POC) systems have been developed to allow
rapid and repeated assays for BNP from capillary blood,
like measuring blood sugar from fingertip [195]. A system
at bedside would not only be useful for repeated assays at
home, but also achieve routine monitoring in a remote
way. Additionally, POC systems would also be used in the
hospitals for BNP-guided therapy of HF and rapid triage
of dyspnea. Two POC systems for BNP use either
venipuncture ethylenediaminetetraacetic acid (EDTA)
plasma (Alere Triage) or EDTA whole blood (Abbott i-
STAT) [196–199]. In contrast, Alere Heart Check BNP
Test is the first POC system easily used as a rapid assay
for BNP from untreated fingertip capillary whole blood.
Previous studies have demonstrated the safety and feasibil-
ity of Alere Heart Check BNP Test at home [200–202].

Current bioactivity assays
Current immunoassays can not reflect the bioactivity of
NPs [203]. Rabbit aortic strip test (RAST) measures in-
hibitory activity of recombinant form of human BNP
(rhBNP) on the tension of isolated aortic strip to deter-
mine its bioactivity [204]. However, it is variable, rough,
laborious and time-consuming with the isolation of fresh
issues from sacrificed rabbits. As the well-characterized
pathways activated by rhBNP, cGMP has been quanti-
fied as alternative assays in human umbilical vein
endotheliocyte (HUVEC) or rat pheochromocytoma
cell-12 (PC-12) by radioimmunoassays [205]. However,
HUVEC is primary cell and PC-12 tends to differenti-
ate. Both HUVEC and PC-12 are not stable in cul-
ture. These intracellular cGMP measurements have
limited accuracy, precision and reproducibility. They
are tedious with the preparation of cell lysate and de-
pend on standard curve by radioimmunoassays [206].
One stable cell-based assay is based on the NPR-A in
HEK 293 cell. This single high-responsiveness clone is
simplified by detecting the cGMP in culture supernatant
with non-radioactive material in a high-throughput man-
ner [207]. Although this assay has a significant potential
to monitor endogenous activities of NPs, it needs
more researches involving different NP forms and
clinical stages [203].
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Therapeutic values
Mechanisms of therapy
Mortality rate remains high in patients with HF even
with the best current therapies. This mandates a con-
tinuing search for new therapies. NPs counteract RAAS
by inhibiting renin secretion through second messenger
cGMP, and NP augment on top of RAAS blockade may
have synergistic effects on HF [208]. NPR-A suppression
activates the RAAS and impairs the kidney [209].
Although HF develops with progressive activation of
NPs, this response is apparently insufficient to counter-
act vascular constriction and sodium retention of RAAS
and SNS [7]. Synthetic ANP has an attenuated renal
response (natriuresis and diuresis) in patients with HF,
suggesting NPR dysregulation in these patients with
RAAS activation [62]. However, synthetic ANP has other
significant roles, such as hemodynamic improvement
and RAAS inhibition, in patients with HF [210]. Elevated
NP levels maintain sodium balance in early stage of HF,
and NPR-A suppression in HF causes sodium retention
[211, 212]. NPs suppress angiotensin-II-induced vaso-
constriction, angiotensin-II-stimulated proximal tubule
sodium reabsorption, angiotensin-II-enhanced aldoster-
one secretion and endothelin secretion [213]. Moreover,
most of plasma BNP measured with current immunoas-
says is less active in patients with HF. Thus, HF induces
an attenuated response to elevated BNP levels, and rep-
resents a deficiency of active BNP caused by abnormal
processing of NPs [214, 215].

Increasing NP bioactivity
Novel therapies are under development based on an
augment in cardioprotective effects of NPs to re-balance
neuroendocrine dysregulation in HF [216]. Current NP-
augmenting strategies include the synthesis of NPs or
agonists to increase NP bioactivity and inhibition of
NEP to reduce NP breakdown [217, 218]. Nesiritide, a
rhBNP, has been shown to induce hemodynamic and
clinical improvements in Vasodilatation in the Manage-
ment of Acute CHF (VMAC) and other trials [219].
Nesiritide is successfully approved by Food and Drug
Administration (FDA) and routinely used for both acute
and chronic HF. However, nesiritide has been ques-
tioned in two subsequent meta-analyses to worsen renal
function and increase mortality rate [220]. Other studies,
such as Acutely Decompensated Heart Failure Registry
(ADHERE) trial, have not confirmed these unfavorable
effects of nesiritide [221, 222]. Acute Study of Clinical
Effectiveness of Nesiritide in Decompensated Heart
Failure (ASCEND-HF) trial has reported that nesiritide
has no significant relationship with mortality rate, nor is
it related to worsening renal function [223]. Neutral
conclusions may be correlated with nesiritide dose.
Large dose of nesiritide is strongly vasodilative, causes

severe hypotension and neutralizes beneficial roles. Re-
cent studies have reported that small dose of nesiritide,
particularly when administered through subcutaneous
route, induces hemodynamic and clinical improvements,
without increasing nephrotoxicity and mortality, thus
reopening the debates about its usefulness in patients
with HF [224]. Long-term antiapoptotic, antiremodeling
and antihypertrophic actions of nesiritide are beneficial
if NPR-A could be activated chronically [225]. Nesiritide
administered twice daily for eight weeks through sub-
cutaneous route has improved clinical symptoms and re-
duced LV mass in patients with HF [226]. Additionally,
nesiritide has been suggested to protect LV function in
patients with MI [227]. Carperitide, recombinant form
of human ANP, has alleviated clinical symptoms and
been recommended in Japan for acute decompensated
HF [125]. But short half-life limits clinical application of
carperitide. Moreover, oral forms of ANP and BNP are
too unstable to be routinely used in HF. CNP is unsuit-
able for treating HF due to relatively short half-life and
no renal-enhancing action. In Safety and Efficacy of an
Intravenous Placebo-controlled Randomised Infusion of
Ularitide (SIRIUS I and II), synthetic urodilatin (ulari-
tide) has induced hemodynamic and clinical improve-
ments, without worsening renal function and obvious
BP change, in patients with acute decompensated HF
[228, 229]. Another Phase III Trial of Ularitide Efficacy
and Safety in Acute Heart Failure (TRUE-AHF) has
shown that ularitide reduces systolic BP and cardiac
stress as indicated by plasma NT-proBNP levels, but has
no effect on clinical composite end point, cardiovascular
mortality and myocardial injury as indicated by cardiac
troponin T levels [230].

Designer NPs
Severe hypotension and short half-life make recombin-
ant agents, including nesiritide, carperitide and ularitide,
not very suitable for clinical use. Designer NPs are devel-
oped by altering genetic forms or aa structures of native
NPs. These hybrid peptides have normal binding to
NPR-A and increased resistance to degradation [7]. DNP
is firstly discovered in snake venom, and much about
DNP remains unclear in humans. Cenderitide-NP (CD-
NP) is not easy to be degraded as a 37-aa hybrid NP
designed by fusing native CNP-22 with 15-aa C-terminal
of DNP. This first-generation designer NP retains vaso-
dilative, antifibrotic and antihypertrophic roles of CNP,
and natriuretic and diuretic roles of DNP [231]. Both
NPR-A and NPR-B can be effectively activated by CD-
NP to increase more GFR and cause less hypotension
than nesiritide, with reduced atrial pressure and im-
proved cardiac-unloading effect [232]. FDA has provided
a fast-track designation for CD-NP in Phase II trials
[233]. CU-NP has been designed by fusing 17-aa ring
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structure of native CNP with C- and N-terminal of uro-
dilatin [234]. As an experimental agent in early stage,
CU-NP exerts cardiac-unloading, renal-enhancing and
RAAS-suppressing effects through activating cGMP.
CU-NP has direct antihypertrophic effect through inhi-
biting sodium-hydrogen exchanger 1 (NHE-1)/calcine-
urin pathway [235]. Mutant ANP (M-ANP) has been
designed as a 40-aa peptide by fusing native ANP with
12-aa extension to C-terminal [236]. M-ANP has exerted
beneficial cardiac and renal effects, such as boosting
natriuresis and diuresis, regulating BP and GFR,
inhibiting RAAS and SNS, and promoting antifibrosis
and antiproliferation in experiments [237]. Novel NPs
are currently under clinical development programs for
further trials [238]. An alternative RNA spliced tran-
script for BNP (AS-BNP) has a unique 34-aa C-terminal,
with remaining structure of native BNP [205]. ANX-042
has been designed as a 42-aa peptide by fusing 16 aa
from C-terminal of AS-BNP and 26 aa from native BNP.
ANX-042 can activate cGMP to boost natriuresis and
diuresis and suppress renin and angiotensin-II, but not
activate cGMP to relax blood vessels. As a designer NP
in a first-in-human trial, FDA has suggested ANX-042 as
an investigated new drug for HF with renal protection
and less hypotension [239]. CNP analog (BMN111) is
one of the most promising therapy for achondroplasia,
and obviously improves skeletal parameters in animal
experiments [240].

Reducing NP degradation
Although NP breakdown can be blocked by affecting
NPR-C and inhibiting IDE, the more commonly used
approach to reduce NP degradation is NEP inhibition.
However, there are plentiful substrates of NEP, such as
angiotensin-I, angiotensin-II, bradykinin, substance P,
adrenomedullin, endothelin-1, opioid peptide, insulin β-
chain, glucagon, oxytocin, chemotactic peptide, neuro-
tensin, enkephalins, gastrin and amyloid-β peptide. NEP
inhibition has potential to increase levels of these
substrates, leading to conflicting effects on kidney and
vessels [7]. Moreover, NEP hydrolyzes angiotensin-I to
angiotensin-(1-7), which counteracts angiotensin-II. As
the first pure NEP inhibitor, candoxatril is stable when
administered orally. However, due to its effects on other
systems, candoxatril has no benefit for patients with
hypertension or HF [241]. Candoxatril is characterized
by both NP augment (elevated NP levels and natriuresis)
and RAAS activation (elevated angiotensin-II levels and
vasoconstriction), leading to unaltered vascular resist-
ance and unavailable antihypertensive role.

Dual ACE/NEP inhibitors
Pure NEP inhibitors have disappointing clinical effects,
which may be improved by combining RAAS blockade.

Due to no improvement in clinical symptoms and an
increase in aplastic anemia, it is unpractical to choose an
addition of NEP inhibitors (ecadotril) to standard
therapies including angiotensin-converting enzyme
(ACE) inhibitors [242]. Dual ACE/NEP inhibitor
(vasopeptidase inhibitor, sampatrilat) has shown benefi-
cial effects, but then been dropped due to short half-life
[243]. Omapatrilat (BMS-186716) has almost affinity
and inhibition for NEP and ACE. In experimental HF
and hypertension models, omapatrilat has not only im-
proved clinical symptoms and survival, but also relieved
cardiac dysfunction and hypertension [244]. Moreover,
omapatrilat has improved cardiac function and remodel-
ing, and decreased cardiac hypertrophy and fibrosis in
mice with MI [245]. Omapatrilat has been evaluated in
patients with HF or hypertension in Omapatrilat
Cardiovascular Treatment Versus Enalapril (OCTAVE),
Inhibition of Metalloprotease by Omapatarilat in a Ran-
domized Exercise and Symptoms Study of Heart Failure
(IMPRESS) and Omapatrilat Versus Enalapril Random-
ized Trial of Utility in Reducing Events (OVERTURE)
trials [246–248]. Omapatrilat has more obviously low-
ered vascular resistance and BP levels than candoxatril.
As bradykinin is degraded by both NEP and ACE,
simultaneous inhibition of them by omapatrilat increases
bradykinin levels that favor the development of angio-
edema. Compared with enalapril, omapatrilat has
increased angioedema and hypotension, and shown no su-
perior benefit in patients with HF or hypertension, pre-
cluding its clinical use and final approval of FDA [249].

Triple ACE/ECE/NEP inhibitors
Endothelin-1 is a multifunctional vasoconstrictor and
contributes to HF progression [250]. Most endothelin-1
receptor antagonists have no prognostic improvement in
patients with acute and chronic HF. In experimental HF
model, endothelin-converting enzyme (ECE) inhibition
has suppressed endothelin-1 synthesis, improved cardi-
orenal function and reduced the neurohormones, such
as renin, angiotensin-II and aldosterone [251]. NPs may
be degraded by ECE. Thus, ECE inhibition may simul-
taneously augment the NPs and suppress the endothelin
[252]. ECE inhibition has induced hemodynamic im-
provement in patients with HF [253]. However, there is
no long-term study about ECE inhibition. Dual ECE/
NEP inhibitor SLV-306 (daglutril) has not only lowered
LV pressure in patients with HF, but also improved
cardiac function and remodeling in rats with LV
hypertrophy [254]. Moreover, daglutril has inhibited BP
elevation and increased NP levels in healthy humans
[255]. Another dual ECE/NEP inhibitor (SLV-338) has
improved cardiac fibrosis in experiment [256]. Triple
ACE/ECE/NEP inhibitors may inhibit the synthesis of
angiotensin-II and endothelin-1, and enhance the effects
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of NPs and bradykinin. In experimental HF model, triple
ACE/ECE/NEP inhibition has been superior to ACE in-
hibition and dual ECE/NEP inhibition in improving LV
structure and function [257]. However, the development
of triple ACE/ECE/NEP inhibitors may be obstructed by
negative conclusions about endothelin-1 receptor an-
tagonists from large HF trials and practical concerns
about the safety with ACE/NEP inhibitors. It needs to
be emphasized that endothelin-1 receptor antagonism
and ECE inhibition should be distinguished in further
human trials.

Development of LCZ696
Angiotensin receptor blocker NEP inhibitor (ARNI,
LCZ696) is a major advance in the therapies for HF in
the last 15 years. Molecular moieties of NEP inhibitor
prodrug sacubitril (AHU377), and valsartan, an angio-
tensin receptor blocker (ARB), are present in this single
molecule in 1:1 molar ratio (sacubitril/valsartan). Sacubi-
tril (AHU377) becomes active NEP inhibitor LBQ657
after cleaving ethyl ester. ARNI preserves ACE mechan-
ism for bradykinin degradation [258]. ARNI augments
beneficial effects of NPs and inhibits harmful effects of
angiotensin-II. As the first-in-class ARNI, LCZ696 has
improved cardiac dysfunction, fibrosis, remodeling and
hypertrophy in an animal model [245]. Compared with
valsartan alone, LCZ696 has more effectively lowered BP
levels, without increased angioedema, in patients with
hypertension [259]. In patients with HF with reduced
ejection fraction (HFrEF), LCZ696 has more effectively
reduced all-cause, cardiovascular and sudden death, pre-
vented HF progression and hospitalization, and im-
proved life quality and renal function than enalapril in
Prospective comparison of ARNI with ACE inhibitor to
Determine Impact on Global Mortality and morbidity in
Heart Failure (PARADIGM-HF) trial [260–263]. LCZ696
has recently been approved by FDA for treating HFrEF.
But translating the results of this trial into guideline rec-
ommendation has raised some concerns [264]. Firstly,
this study has been discontinued ahead of schedule due
to overwhelming benefit of LCZ696, and there is a doubt
about efficacy and safety of LCZ696 used for longer time
[265]. Secondly, LCZ696 was administered twice daily at
a dose of 200 mg (160 mg of valsartan), and enalapril
was administered twice daily at a dose of 10 mg. Both
two doses are target doses in most HF guidelines but
higher than many patients with HFrEF may tolerate.
Thirdly, more symptomatic postural hypotension in
LCZ-696 group limited its clinical use, particularly in pa-
tients with borderline BP before therapy. It is necessary
to observe this agent according to baseline BP in further
studies. Fourthly, bradykinin levels have previously been
shown to increase with ARB, and there were more pa-
tients with angioedema in LCZ-696 group [266]. Fifthly,

amyloid-β peptide is a key peptide in Alzheimer disease,
and NEP may block its breakdown to induce Alzheimer
disease [267]. However, Alzheimer disease and cancer
were not increased using LCZ696, and cognitive decline
related to vascular diseases may be reduced by LCZ696.
Finally, drug denials have already been increased, and
applying LCZ696 would be further complicated by cost.
Compared with valsartan, LCZ696 has not only reduced
NT-proBNP levels and caused GFR elevation, but also
improved overall clinical status and decreased left atrial
pressure in Prospective comparison of ARNI with ARB
on Management Of heart failUre with preserved ejec-
tioN fracTion (PARAMOUNT) trial [268]. Whether it
would benefit patients with HF with preserved ejection
fraction (HFpEF) is currently being tested in ongoing
Efficacy and Safety of LCZ696 Compared to Valsartan
on Morbidity and Mortality in Heart Failure Patients
With Preserved Ejection Fraction (PARAGON-HF,
NCT01920711) trial. ARNI class has sparked consi-
derable excitement in other cardiovascular diseases
including hypertension [269]. Prospective comparison of
Angiotensin Receptor neprilysin inhibitor with Angioten-
sin receptor blocker MEasuring arterial sTiffness in the
eldERly (PARAMETER) trail is also underway to compare
the relationships of LCZ696 and olmesartan with central
BP in patients with resistant hypertension [270].

Mechanisms of LCZ696
It remains unclear about the mechanisms responsible for
the superiority of LCZ696 over ACE inhibitor. Consider-
ing elevated levels of plasma BNP and urinary cGMP,
systemic vasodilation and renal natriuresis could be im-
portant mechanisms. But it remains uncertain whether its
superiority is direct effect on heart or indirect effect
secondary to beneficial effects of this agent on vessels
(lower BP levels) and kidney (less renal injury) [271].
Lower NT-proANP and troponin levels support that
LCZ696 directly reduces myocardial stretch or ischemia.
LCZ696 reduces proteinuria, focal segmental glomerulo-
sclerosis and retinopathy, and plays beneficial effects on
microvascular and renal complications. Without the evi-
dence in PARADIGM-HF, further studies are required to
fully address this issue. Meanwhile, positive effects of BNP
on cardiac regeneration may also play an important role,
and should be fully addressed in ongoing experimental
and clinical studies. Exogenous BNP or NEP inhibition
may induce endogenous cardiac regeneration, and achieve
the therapies for HF and MI [4]. In experimental hyper-
tension models, either alone or combined with MI or dia-
betes mellitus, ARNI has improved cardiac hypertrophy
and fibrosis in a BP-independent manner. Since sacubitril
is largely cleared in kidney, drug accumulation may occur
in patients with impaired renal function, and hypotension
is a potential adverse effect in patients with CKD.
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BNP-guided therapy
Serial assays for BNP over time are clinically applied to
the management of HF. BNP-guided therapy can assess
the effectiveness and adjust the doses of drugs for HF,
and improve the survival in patients with HFrEF or
HFpEF [272]. United Kingdom-based economic model
of BNP-guided therapy has been developed in patient
with chronic HF [273]. BNP-guided therapy is cost-
effective in younger patients (< 75 years) with HFrEF. It
is potentially cost-effective in younger patients (< 75
years) with HFpEF and older patients (≥ 75 years) with
HFrEF, but more evidence is required, particularly with
respect to the frequency, duration and target for BNP
monitoring [274]. Ongoing Guiding Evidence Based
Therapy Using Biomarker Intensified Treatment in
Heart Failure (GUIDE-IT) trial would be very important
in providing better evidence in patients with HFrEF
[275]. Additionally, NEP inhibitors may increase BNP
levels and lower NT-proBNP levels, and require different
monitoring strategies in BNP-guided therapy [261].

Prognostic values
Plasma NP levels have prognostic values in patients with
cardiovascular diseases. Previous studies on NP infusion,
experimental animals and population genetics have dem-
onstrated inverse correlations of plasma NP levels with
different cardiovascular diseases. But epidemiological
and clinical investigations of NPs as prognostic bio-
markers have yielded positive correlations of plasma NP
levels with poor prognosis [276]. As counter-regulatory
hormones secreted after cardiac stretch, NPs have this
paradox should be no surprise. In epidemiological inves-
tigations, elevated NP levels even in regular limit have
been commonly observed in patients with subclinical
cardiovascular diseases. In Framingham Offspring Study
and Copenhagen, elevated NP levels have been signifi-
cantly related to major adverse cardiovascular events
and mortality rate in population without obvious cardio-
vascular diseases [277]. In patients with stable coronary
artery disease, acute coronary syndrome or HF, elevated
NP levels have also been significantly associated with
cardiovascular events and mortality rate [154, 278, 279].
If plasma BNP or NT-proBNP levels do not fall off after
the therapies for HF, patients with HF have more hos-
pital admission and higher mortality rate. In patients
with HF, NT-proBNP has higher levels, better accuracy,
longer half-life and lower variation than BNP, and may
be a better biomarker of HF progression and mortality
rate [280]. Moreover, NPs are reliable predictors of all-
cause and cardiovascular death independently of other
clinical and biochemical risk factors, and have a poten-
tial to guide the therapy and predict the prognosis in
patients with CKD [281–283].

Conclusion
NPs play central roles in the regulation of HF. Both BNP
and NT-proBNP are useful biomarkers to not only make
the diagnosis and assess the severity of HF, but also guide
the therapy and predict the prognosis in patients with HF.
Current NP-augmenting strategies include the synthesis of
NPs or agonists to increase NP bioactivity and inhibition
of NEP to reduce NP breakdown. Nesiritide has been
established as an available therapy, and ARNI has
obtained extremely encouraging results with decreased
morbidity and mortality. Novel pharmacological ap-
proaches based on NPs may promote a therapeutic shift
from suppressing the RAAS and SNS to re-balancing
neuroendocrine dysregulation in patients with HF.
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