






lactate or glycerin with toluene induced greater lumines-
cence than did toluene alone. Lactate at 100 μM in-
creased luminescence by 21% ± 8.6% for T7-lux-E. coli
and 20.3% ± 5.1% for SP6-lux-E. coli, while glycerin in-
creased by 14% ± 1.8% for T7-lux-E. coli and 13.5% ±
3.5% for SP6-lux-E. coli, respectively. The increased lu-
minescence disappeared when the concentrations were
below 70 μM (lactate) or 85 μM (glycerin). By contrast,
the coexistence of acetate with toluene induced lower lu-
minescence than did toluene alone; luminescence de-
creased by 32% ± 1.5% for T7-lux-E. coli and 32.5% ±
2.9% for SP6-lux-E. coli. However, for other chemicals,
the coexistence had negligible effect on the detection of
toluene by T7-lux-E. coli and SP6-lux-E. coli.
Figure 4b illustrates the effects of the benzoate con-

centration on the luminescence of T7-lux-E. coli and
SP6-lux-E. coli. Benzoate is the most important metabol-
ite produced during toluene biodegradation [35], which
may affect XylS expression [33]; thus, we evaluated the
effect of the benzoate concentration on the lumines-
cence of T7-lux-E. coli and SP6-lux-E. coli. The results
demonstrated that a high benzoate concentration could
induce higher luminescence than did toluene alone, as
detected using T7-lux-E. coli and SP6-lux-E. coli. Al-
though 50–150 μM benzoate did not affect lumines-
cence, 250–300 μM benzoate increased luminescence by
26% ± 3.5% for T7-lux-E. coli (25.4% ± 1.8% for SP6-lux-
E. coli) and 34% ± 2.8% for T7-lux-E. coli (33.8% ± 1.8%
for SP6-lux-E. coli), respectively. In other words, the ef-
fect of low concentrations of benzoate on luminescence
was limited when toluene was detected by T7-lux-E. coli
or SP6-lux-E. coli.
Figure 4c illustrates the effects of toluene analogs and

their concentrations on the luminescence of T7-lux-E.
coli and SP6-lux-E. coli. The results demonstrated that
the various concentrations of o-xylene and p-xylene had
negligible effects on toluene detection by the recombin-
ant E. coli biosensor; moreover, even when 250 μM o-xy-
lene was used, only 4.15–4.30% increase in luminescence
was observed. However, 250 μMm-xylene and 250 μM
benzene induced T7-lux-E. coli or SP6-lux-E. coli to pro-
duce relatively high luminescence (12.3–12.5% and
14.3–14.6%, respectively). By contrast, the effect of the
toluene analog concentration of ≤200 μM on toluene de-
tection was limited (< 8%). The effect of the synergistic
mode was far lower than that observed in the P. putida
mt-2 KG1206 biosensor [12].
Taken together, these results illustrate that our recom-

binant luminescent biosensor possesses high selectivity
and specificity when detecting a group of analytes with
similar chemical structures. Because the included chemi-
cals mainly affect the regulatory genes xylS or xylR, but
not the T3, SP6, or T7 promoter, their effects on the
magnitude of luminescence among all three recombinant

E. coli biosensors were similar [12]. Figure 4 exemplifies
the cases of T7-lux-E. coli and SP6-lux-E. coli.

Relationship of toluene concentration with luminescence
The function of these promoters (T7, T3, SP6) is to
make the downstream reporter gene (lux) more strongly
expressed. Therefore, xylR is first induced in the pres-
ence of toluene and activates gene expression, then the
promoters and reporter gene (lux) follow. Under optimal
operating conditions, we determined the relationships
between the toluene concentration and the luminescence
of the three recombinant E. coli strains. Two sets of lin-
ear relationships were observed between the toluene
concentration and luminescence at different concentra-
tion ranges. Figure 5a presents a set of regression equa-
tions for the toluene concentration and the
luminescence of T7-lux-E. coli, T3-lux-E. coli, and SP6-
lux-E. coli when the toluene concentration was 10–

Fig. 5 Relationship between toluene concentration [(a) 0.01–500
and (b) 0.05–10 μM] and luminescence of recombinant E. coli with
different promoters (initial cell concentration: 5 × 107 cfu/mL, culture
media: TMM, operational condition: 37 °C and 200 rpm, incubation
time: 2 h for T3/T7-lux-E. coli and 1 h for SP6-lux-E. coli)
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bioluminescence emissions of the three recombinant E.
coli strains were evaluated separately, and 100 μM tolu-
ene was used as an inducer in TMM. During incubation,
temperature (15–40 °C) was controlled using thermostat,
and ionic strength (0.04–0.55M) was adjusted using
aqueous NaCl. After 2-h incubation for T3-lux-E. coli
and T7-lux-E. coli and 1-h incubation for SP6-lux-E.
coli, 200 μL of the cultures were sampled, and the lumi-
nescence intensity (in RLU) of these biosensors was
measured immediately. On average, 20-min consecutive
measurements were recorded (i.e., one measurement
every 0.5 s).
Various carbon sources (i.e., acetate, lactate, glucose,

sucrose, fructose, glycerin, succinate, citrate, and pyru-
vate) were added to TMM to evaluate their effects on
bioluminescence emissions of the three recombinant E.
coli strains. In medium, final concentrations of coexist-
ing carbon sources and toluene were 100 μM. After 2-h
incubation for T3-lux-E. coli and T7-lux-E. coli and 1-h
incubation for SP6-lux-E. coli, the luminescence inten-
sity of each biosensor was measured immediately. Tolu-
ene analogs (i.e., benzene, o-xylene, p-xylene, and m-
xylene) and intermediates of toluene degradation
(benzoate) were added to TMM to evaluate the effects
on the bioluminescence emissions of the three recom-
binant E. coli strains. Based on their solubility, o-xylene,
p-xylene, and m-xylene were predissolved in 95% etha-
nol and added to TMM. The final concentrations of the
toluene analogs, benzoate, and toluene in medium were
50–250, 50–300, and 100 μM, respectively. The cells
were incubated for 2 h (T3-lux-E. coli and T7-lux-E. coli)
or 1 h (SP6-lux-E. coli) at 37 °C; the luminescence inten-
sity (in RLU) of these biosensors was then measured, as
described above. Measurements were obtained from at
least three independent experiments, each performed at
least in triplicate.

Establishment of calibration curve and measurement of
real water sample
To establish the relationships between the toluene con-
centration and the luminescence intensity of the three
recombinant E. coli biosensors, we mixed 100 μL of tolu-
ene (0.01–500 μM), 50 μL of 4× TMM (without toluene),
and 50 μL of recombinant luminescent E. coli cells (final
concentration after mixing: 5 × 107 cfu/mL). We then
operated at the optimal incubation time and conditions
determined in previous experiments. Standard curves
(known as calibration curves) were plotted from the lin-
ear regression of average luminescence intensity at each
toluene concentration. To obtain the LOD concentra-
tion, we calculated the SD from the average of the three
blank measurements, multiplied the SD by 3, and then
used the standard curve to determine the LOD concen-
tration. To ensure that the established curves and

methods were valid, we prepared similar solutions as
mentioned above, but used groundwater (from Lin-Yuan
Industrial Park, Kaohsiung City, Taiwan) and river water
(from Tamsui River, New Taipei City, Taiwan) instead
of pure toluene. The toluene concentration in the pre-
pared solution was separately measured using the estab-
lished GC–mass spectrometry (MS) method [41] as well
as using our three recombinant E. coli biosensors. Con-
sidering practical application, the retention of illumin-
ance of recombinant E. coli after its cryogenic storage is
essential for biosensor usage; thus, similar experiments
were conducted when the biosensors were cryogenically
stored for 3 months. Data were obtained from at least
three independent experiments, with each performed at
least in triplicate.
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