Skip to main content
Fig. 4 | Journal of Biological Engineering

Fig. 4

From: Design and engineering of a transmissible antiviral defense

Fig. 4

Numerical dynamics of lethal virus, host and two-component vaccine. Manual vaccinations were introduced as doubly-infected cells (H VMS ) at time 0. In the long term, the population comes to consist of only doubly-infected cells (H VMR , thick dark red) and lethal virus (L, purple), but the early dynamics depend on initial conditions and the rate at which vaccine-infected cells convert from sensitive to resistance against the lethal virus (given by c). a b c: The cases of c=0.1, c=0.01 and c=0.001 are contrasted and show a large effect of delayed protection. With c=0.001, many cells carrying vaccine are killed because they were not yet converted to a resistant state when exposed to lethal virus. d The rates of vaccine and helper production from doubly-infected cells are increased 10-fold over those in (a), but parameters and initial conditions are otherwise the same. The result is a nearly 1-log increase in protected cells in the time frame shown. e f: Burst size of the lethal virus is dropped 10-fold over that in (a). Parameters and initial conditions are otherwise the same as in (a) for panel (e), but the number of initial vaccinations (H VMS ) is increased 10-fold in (f), resulting in a 7-fold increase in protected cells. In these latter two trials, the lethal virus has effectively no effect on the bacterial dynamics in the time frame shown. For all panels, equations used are given in (A1), parameters as in Table 4 in Appendix. Unless indicated otherwise, runs started with 108 uninfected cells, 105 doubly-infected (sensitive), 1000 lethal virus, and a carrying capacity of 109

Back to article page