McNally HA, Borgens RB: Three-Dimensional Imaging of Living and Dying Neurons with Atomic Force Microscopy. J Neurocytol 2004, 33: 251-258.
Article
Google Scholar
Schwab JM, Leppert CA, Kaps K, Monnier PP: Functional recovery after spinal cord injury: basic science meets clinic. Trends Neurosci 2001, 24: 437-439. 10.1016/S0166-2236(00)01893-2
Article
Google Scholar
Schwab M: Repairing the Injured Spinal Cord. Scienc 2002, 295: 1029-1031. 10.1126/science.1067840
Article
Google Scholar
Borgens RB: Cellular engineering: molecular repair of membranes to rescue cells of the damaged nervous system. Neurosurgery 2001, 49: 370-378. discussion 378–379
Google Scholar
Borgens RB, Shi R: Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J 2000, 14: 27-35.
Google Scholar
Bradbury E, McMahon S: Spinal cord repair strategies: why do they work? Nature Rev Neurosci 2006, 7: 644-653.
Article
Google Scholar
Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O: Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Remyelinate and Restore Locomotion after Spinal Cord Injury J Neurosci. 2005, 29: 4694-4705.
Google Scholar
Coutts M, Keirstead HS: Stem cells for the treatment of spinal cord injury. Exp Neurol 2008, 209: 368-377. 10.1016/j.expneurol.2007.09.002
Article
Google Scholar
Borgens R, Shi R, Bohnert D: Behavioral Recovery From Spinal Cord Injury Following Delayed Application of Polyethylene Glycol. J Exp Biology 2002, 205: 1-12.
Google Scholar
Luo J, Borgens R, Shi R: Polyethylene glycol improves function and reduces oxidative stress in synaptosomes following spinal cord injury. J Neurotrauma 2004, 21: 994-1007. 10.1089/0897715041651097
Article
Google Scholar
Serbest G, Horwitz J, Jost M, Barbee K: Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J 2006, 20: 308-310.
Google Scholar
Cadichon SB, Le H, Wright D, Curry D, Kang U, Frim DM: Neuroprotective effect of the surfactant poloxamer 188 in a model of intracranial hemorrhage in rats. J Neurosurg 2007, 106: 36-40. 10.3171/jns.2007.106.1.36
Article
Google Scholar
Koob AO, Borgens RB: Polyethylene glycol treatment after traumatic brain injury reduces beta-amyloid precursor protein accumulation in degenerating axons. J Neurosci Res 2006, 83: 1558-1563. 10.1002/jnr.20837
Article
Google Scholar
Koob AO, Duerstock BS, Babbs CF, Sun Y, Borgens RB: Intravenous polyethylene glycol inhibits the loss of cerebral cells after brain injury. J Neurotrauma 2005, 22: 1092-1111. 10.1089/neu.2005.22.1092
Article
Google Scholar
Laverty PH, Leskovar A, Breur GJ, Coates JR, Bergman RL, Widmer WR, Toombs JP, Shapiro S, Borgens RB: A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. J Neurotrauma 2004, 21: 1767-1777. 10.1089/neu.2004.21.1767
Article
Google Scholar
Lee RC, River LP, Pan F, Wollman RS: Surfactant-induced sealing of electrpermeabilized skeletal muscle membranes in vitro. Proc Natl Acad Sci USA 1992, 89: 4524-4528. 10.1073/pnas.89.10.4524
Article
Google Scholar
Merchant FA, Holmes WH, Capelli-schellpfeffer BS, Lee RC, Toner M: Poloxamer 188 enhances functional recovery of lethally heat-shocked fibroblasts. J Surgical Research 1998, 74: 131-140. 10.1006/jsre.1997.5252
Article
Google Scholar
Palmer JS, Cromie WJ, Lee RC: Surfactant administration reduces testicular ischemia-reperfusion injury. J Urol 1998, 159: 2136-2139. 10.1016/S0022-5347(01)63295-6
Article
Google Scholar
Borgens RB, Bohnert D, Duerstock B, Spomar D, Lee RC: Subcutaneous tri-block copolymer produces recovery from spinal cord injury. J Neurosci Res 2004, 76: 141-154. 10.1002/jnr.20053
Article
Google Scholar
Quinlan JG, Wong BL, Niemeier RT, McCullough AS, Levin L, Emanuele M: Poloxamer 188 failed to prevent exercise-induced membrane breakdown in mdx skeletal muscle fibers. Neuromuscul Disord 2006, 16: 855-864. 10.1016/j.nmd.2006.09.016
Article
Google Scholar
Shi Y, Kim S, Huff TB, Borgens RB, Park K, Shi R, Cheng JX: Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nat Nanotechnol 2009, 5: 80-87.
Article
Google Scholar
Borgens RB, Bohnert D: Rapid recovery from spinal cord injury following subcutaneously administered polyethylene glycol. J Neurosci Res 2001, 66: 1179-1186. 10.1002/jnr.1254
Article
Google Scholar
Donaldson J, Shi R, Borgens R: Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Neurosurgery 2002, 50: 147-156.
Google Scholar
Koob AO, Colby JM, Borgens RB: Behavioral recovery from traumatic brain injury after membrane reconstruction using polyethylene glycol. J Biol Eng 2008, 2: 9. 10.1186/1754-1611-2-9
Article
Google Scholar
Ditor DS, John SM, Roy J, Marx JC, Kittmer C, Weaver LC: Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat. J Neurosci Res 2007, 85: 1458-1467. 10.1002/jnr.21283
Article
Google Scholar
Detlof MR, Lavik E, Fisher LC, Langer R, Basso DM: Polyethylene Glycol Administration After Moderate Spinal Cord Injury Decreases Lesion Size and Improves Locomotor Recover. J Neurol Phys Ther 2006, 30: 201. 210.1097/1001.NPT.0000281275.0000295819.cd
Article
Google Scholar
Detloff MR, Lavik E, Fisher LC, Langer R, Basso DM: Polyethylene glycol administration after moderate spinal cord injury decreases lesionsize and improves locomotor recovery. J Neurotrauma 2005, 22: 1219.
Google Scholar
Schneiderman S, Farber JL, Baserga R: A simple method for decreasing the toxicity of polyethylene glycol in mammalian cell hybridization. Somat Cell Mol Genet 1979, 5: 263-269. 10.1007/BF01539165
Article
Google Scholar
Szabó G, Kiss A, Trón L: Permeabilization of lymphocytes with polyethylene glycol 1000. Discrimination of permeabilized cells by flow cytometry. Cytometry 1982, 3: 59-63.
Article
Google Scholar
Cole A, Shi R: Prolonged focal application of polyethylene glycol induces conduction block in guinea pig spinal cord white matter. Toxicol Vitr 2005, 19: 215-220. 10.1016/j.tiv.2004.10.007
Article
Google Scholar
Webster R, Elliott V, Park BK, Walker D, Hankin M, Taupin P: PEG and PEG conjugates toxicity: towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals. In PEGylated Protein Drugs: Basic Science and Clinical Application. Edited by: Veronese FM. Switzerland: Birkhäuser Basel; 2009:127-146. Milestones in Drug Therapy
Chapter
Google Scholar
Brent J: Current management of ethylene glycol poisoning. Drugs 2001, 61: 979-988. 10.2165/00003495-200161070-00006
Article
Google Scholar
Caravati EM, Erdman AR, Christianson G, Manoguerra AS, Booze LL, Woolf AD, Olson KR, Chyka PA, Scharman EJ, Wax PM, et al.: Ethylene glycol exposure: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila) 2005, 43: 327-345. 10.1080/07313820500184971
Article
Google Scholar
Cho Y, Shi R, Borgens R, Ivanisevic A: Repairing the Damaged Spinal Cord and Brain with Nanomedicine. Small 2008, 4: 1676-1681. 10.1002/smll.200800838
Article
Google Scholar
Cho Y, Shi R, Borgens RB: Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J Bio Eng 2010, 29: 2.
Article
Google Scholar
Cho Y, Shi R, Ivanisevic A, Borgens RB: The Functionalized Mesoporous Silica Nanoparticles (MSNs) Based Drug Delivery System to Rescue Acrolein-Mediated Cell Death. Nanomedicine 2008, 3: 507-519. 10.2217/17435889.3.4.507
Article
Google Scholar
Cho Y, Shi R, Ivanisevic A, Borgens RB: Functional Silica Nanoparticle-Mediated Neuronal Membrane Sealing Following Traumatic Spinal Cord Injury. J Neurosci Res 2010, 88: 1433-1444. 10.1002/jnr.22309
Article
Google Scholar
Mohanraj VJ, Chen Y: Nanoparticles – A Review. Trop J Pharm Res 2006, 5: 561-573.
Google Scholar
Liu-Snyder P, Logan M, Shi R, Smith D, Borgens R: Neuroprotection from secondary injury by polyethylene glycol requires its internalization. J Exp Biol 2007, 210: 1-8. 10.1242/jeb.02588
Article
Google Scholar
Liu-Snyder P, Logan MP, Shi R, Smith DT, Borgens RB: Neuroprotection from secondary injury by polyethylene glycol requires its internalization. J Exp Biol 2007, 210: 1455-1462. 10.1242/jeb.02756
Article
Google Scholar
Cho Y, Borgens RB: Polymer and nano-technology applications for repair and reconstruction of the central nervous system. Exp Neurol 2012, 233: 126-144. 10.1016/j.expneurol.2011.09.028
Article
Google Scholar
Borgens RB, Liu-Snyder P: Understanding Secondary Injury. The Quarterly Review Of Biology 2012, 87: 89-127. 10.1086/665457
Article
Google Scholar
Bittner GD, Ballinger ML, Raymond MA: Reconnection of severed nerve axons with polyethylene glycol. Brain Res 1986, 367: 351-355. 10.1016/0006-8993(86)91617-3
Article
Google Scholar
Lee RC: Cytoprotection by Stabilization of Cell Membranes. Annals New Your Academy of Sciences 2002, 961: 271-275. 10.1111/j.1749-6632.2002.tb03100.x
Article
Google Scholar
Lentz B: PEG as a tool to gain insight into membrane fusion. Eur Biophys J 2007, 36: 315-326. 10.1007/s00249-006-0097-z
Article
Google Scholar
MacDonald RI: Membrane fusion due to dehydration by polyethylene glycol, dextran, or sucrose. Biochemistry 1985, 24: 4058-4066. 10.1021/bi00336a039
Article
Google Scholar
Weinreb G, Lentz BR: Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model. Biophys J 2007, 92: 4012-4029. 10.1529/biophysj.106.090043
Article
Google Scholar
Borgens RB, Jaffe LF, Cohen MJ: Large and persistent electrical currents enter the transected lamprey spinal cord. Proc Natl Acad Sci U S A 1980, 77: 1209-1213. 10.1073/pnas.77.2.1209
Article
Google Scholar
Borgens RB Electric Fields in Vertebrate Repair. In Artificially controlling axonal regeneration and development by applied electric fields. New York: Alan R. Liss; 1989:117-170.
Google Scholar
Zuberi M, Liu-Snyder P, Ul Haque A, Porterfield DM, Borgens RB: Large naturally-produced electric currents and voltage traverse damaged mammalian spinal cord. J Biol Eng 2008, 2: 17. 10.1186/1754-1611-2-17
Article
Google Scholar
Cho Y, Shi R, Borgens RB: Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury. J Exp Biol 2010, 213: 1513-1520. 10.1242/jeb.035162
Article
Google Scholar
Fang N, Chan V: Chitosan-induced restructuration of a mica-supported phospholipid bilayer: an atomic force microscopy study. Biomacromolecules 2003, 4: 1596-1604. 10.1021/bm034259w
Article
Google Scholar
Fang N, Chan V, Mao HQ, Leong KW: Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2001, 2: 1161-1168. 10.1021/bm015548s
Article
Google Scholar
Koob A, Duerstock B, Babbs C, Sun Y, Borgens R: Intravenous polyethylene glycol inhibits the loss of cerebral cells after brain injury. J Neurotrauma 2005, 22: 1092-1111. 10.1089/neu.2005.22.1092
Article
Google Scholar
Koob A, Borgens R: Polyethylene Glycol Treatment After Traumatic Brain Injury Reduces Amyloid Precursor Protein Accumulation in Degenerating Axons. J Neurosci Res 2006, 83: 1558-1563. 10.1002/jnr.20837
Article
Google Scholar
Shi R, Borgens RB: Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 2000, 29: 633-643. 10.1023/A:1010879219775
Article
Google Scholar
Luo J, Borgens RB, Shi R: Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochemistry 2002, 83: 471-480. 10.1046/j.1471-4159.2002.01160.x
Article
Google Scholar