Liao JF, Shi K, Jia YP, Wu YT, Qian ZY. Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioactive Mat. 2021;6(8):2221–30.
Google Scholar
Qiu PC, Li MB, Chen K, Fang B, Chen PF, Tang ZB, et al. Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials. 2020;227.
Liu XL, Yang YL, Li Y, Niu X, Zhao BZ, Wang Y, et al. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale. 2017;9(13):4430–8.
Google Scholar
Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011;32(1):65–74.
Google Scholar
Lyu S, Huang CL, Yang H, Zhang XP. Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res. 2013;31(9):1382–9.
Google Scholar
Cui LG, Zhang N, Cui WW, Zhang PB, Chen XS. A Novel Nano/Micro-Fibrous Scaffold by Melt-Spinning Method for Bone Tissue Engineering. J Bionic Eng. 2015;12(1):117–28.
Google Scholar
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, et al. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res. 2019;18:185–201.
Google Scholar
Arambula-Maldonado R, Mequanint K. Carbon-based electrically conductive materials for bone repair and regeneration. Mat Adv. 2022;3(13):5186–206.
Google Scholar
Islam M, Lantada AD, Mager D, Korvink JG. Carbon-based materials for articular tissue engineering: From innovative scaffolding materials toward engineered living carbon. Adv Healthc Mater. 2022;11(1):e2101834.
Google Scholar
Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7.
Google Scholar
Georgakilas V, Perman JA, Tucek J, Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem Rev. 2015;115(11):4744–822.
Google Scholar
Bhaisare ML, Sharma KH, Lee JY, Hang DR, Wu HF. Synthesis and characterization of two-dimensional carbon dots decorated with molybdenum oxide nanoflakes with various phases. New J Chem. 2016;40(10):8954–60.
Google Scholar
Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small. 2015;11(14):1620–36.
Google Scholar
Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9(5):590–603.
Google Scholar
Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019;21(3):449–71.
Google Scholar
Zhang HC, Huang H, Ming H, Li HT, Zhang LL, Liu Y, et al. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J Mater Chem. 2012;22(21):10501–6.
Google Scholar
Wang R, Lu KQ, Tang ZR, Xu YJ. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A. 2017;5(8):3717–34.
Google Scholar
Yu HJ, Zhao YF, Zhou C, Shang L, Peng Y, Cao YH, et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A. 2014;2(10):3344–51.
Google Scholar
Messina MM, Barrionuevo SD, Coustet ME, Kreuzer MP, Saccone FD, Claro PCD, et al. Graphene and Carbon Dots for Photoanodes with Enhanced Performance. Acs App Nano Mat. 2021;4(7):7309–18.
Google Scholar
Wang JY, Zhu YH, Wang L. Synthesis and Applications of Red-Emissive Carbon Dots. Chem Rec. 2019;19(10):2083–94.
Google Scholar
Wang ZF, Yuan FL, Li XH, Li YC, Zhong HZ, Fan LZ, et al. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes. Adv Mater. 2017;29(37).
Dong YQ, Wang RX, Li GL, Chen CQ, Chi YW, Chen GN. Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions. Anal Chem. 2012;84(14):6220–4.
Google Scholar
Zhang RZ, Chen W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron. 2014;55:83–90.
Google Scholar
Qu KG, Wang JS, Ren JS, Qu XG. Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Label-Free Detection of Iron (III) Ions and Dopamine. Chem A Eur J. 2013;19(22):7243–9.
Google Scholar
Zheng M, Xie ZG, Qu D, Li D, Du P, Jing XB, et al. On Off On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium (VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Appl Mater Interfaces. 2013;5(24):13242–7.
Google Scholar
Liu W, Diao HP, Chang HH, Wang HJ, Li TT, Wei WL. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors Actuators B Chem. 2017;241:190–8.
Google Scholar
Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron. 2017;96:308–16.
Google Scholar
Du FY, Zhang LR, Zhang L, Zhang MM, Gong AH, Tan YW, et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials. 2017;121:109–20.
Google Scholar
Gu CX, Guo CP, Li ZZ, Wang MH, Zhou N, He LH, et al. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron. 2019;134:8–15.
Google Scholar
Gowthaman NSK, Sinduja B, Karthikeyan R, Rubini K, John SA. Fabrication of nitrogen-doped carbon dots for screening the purine metabolic disorder in human fluids. Biosens Bioelectron. 2017;94:30–8.
Google Scholar
Doblare M, Garcia JM, Gomez MJ. Modelling bone tissue fracture and healing: a review. Eng Fracture Mech. 2004;71(13-14):1809–40.
Google Scholar
Martin AD, McCulloch RG. Bone dynamics: stress, strain and fracture. J Sports Sci. 1987;5(2):155–63.
Google Scholar
Wang WH, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Mat. 2017;2(4):224–47.
Google Scholar
Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54.
Google Scholar
DeLacure MD. Physiology of bone healing and bone grafts. Otolaryngol Clin North Am. 1994;27(5):859–74.
Google Scholar
Panetta NJ, Gupta DM, Longaker MT. Bone Regeneration and Repair. Curr Stem Cell Res Ther. 2010;5(2):122–8.
Google Scholar
Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schutz MA, Duda GN, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials. 2009;30(12):2149–63.
Google Scholar
Wildemann B, Kadow-Romacker A, Pruss A, Haas NP, Schmidmaier G. Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank. 2007;8(2):107–14.
Google Scholar
Choi B, Lee SH. Nano/Micro-Assisted Regenerative Medicine. Int J Mol Sci. 2018;19(8):2187.
Google Scholar
Mendonca G, Mendonca DBS, Aragao FJL, Cooper LF. Advancing dental implant surface technology - From micron- to nanotopography. Biomaterials. 2008;29(28):3822–35.
Google Scholar
Bighetti-Trevisan RL, Almeida LO, Castro-Raucci LMS, Gordon JAR, Tye CE, Stein GS, et al. Titanium with nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by regulating histone methylation. Biomaterials. Advances. 2022:134.
Rosa AL, Kato RB, Raucci L, Teixeira LN, de Oliveira FS, Bellesini LS, et al. Nanotopography Drives Stem Cell Fate Toward Osteoblast Differentiation Through alpha 1 beta 1 Integrin Signaling Pathway. J Cell Biochem. 2014;115(3):540–8.
Google Scholar
Liu Y, Luo D, Yu M, Wang Y, Jin SS, Li ZX, et al. Thermodynamically controlled self-assembly of hierarchically staggered aArchitecture as an osteoinductive alternative to bone autografts. Adv Funct Mater. 2019;29(10):1806445.
Google Scholar
Sola A, Bellucci D, Cannillo V. Functionally graded materials for orthopedic applications - an update on design and manufacturing. Biotechnol Adv. 2016;34(5):504–31.
Google Scholar
Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310(5751):1135–8.
Google Scholar
Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014;13(6):547–57.
Google Scholar
Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.
Google Scholar
Liu Y, Liu SA, Luo D, Xue ZJ, Yang XA, Cu L, et al. Hierarchically Staggered Nanostructure of Mineralized Collagen as a Bone-Grafting Scaffold. Adv Mater. 2016;28(39):8740–8.
Google Scholar
Li LM, Zuo Y, Zou Q, Yang BY, Lin LL, Li JD, et al. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO-PU Composite Scaffold for Bone Regeneration. ACS Appl Mater Interfaces. 2015;7(40):22618–29.
Google Scholar
Jin SS, He DQ, Luo D, Wang Y, Yu M, Guan B, et al. A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration. ACS Nano. 2019;13(6):6581–95.
Google Scholar
Hou S, Niu XF, Li LH, Zhou J, Qian ZY, Yao DY, et al. Simultaneous nano- and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration. Biomaterials. 2019;223.
Huang GY, Li F, Zhao X, Ma YF, Li YH, Lin M, et al. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev. 2017;117(20):12764–850.
Google Scholar
Gogoi S, Maji S, Mishra D, Devi KSP, Maiti TK, Karak N. Nano-bio engineered carbon dot-peptide functionalized water dispersible hyperbranched polyurethane for bone tissue regeneration. Macromol Biosci. 2017;17(3):1600271.
Google Scholar
Gogoi S, Kumar M, Mandal BB, Karak N. A renewable resource based carbon dot decorated hydroxyapatite nanohybrid and its fabrication with waterborne hyperbranched polyurethane for bone tissue engineering. RSC Adv. 2016;6(31):26066–76.
Google Scholar
Shao D, Lu MM, Xu D, Zheng X, Pan Y, Song YB, et al. Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomater Sci. 2017;5(9):1820–7.
Google Scholar
Lu Y, Li LH, Li M, Lin ZF, Wang LP, Zhang Y, et al. Zero-Dimensional Carbon Dots Enhance Bone Regeneration, Osteosarcoma Ablation, and Clinical Bacterial Eradication. Bioconjug Chem. 2018;29(9):2982–93.
Google Scholar
Lu ZH, Liu SJ, Le YG, Qin ZN, He MW, Xu FB, et al. An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials. 2019;218.
Khajuria DK, Kumar VB, Gigi D, Gedanken A, Karasik D. Accelerated Bone Regeneration by Nitrogen-Doped Carbon Dots Functionalized with Hydroxyapatite Nanoparticles. ACS Appl Mater Interfaces. 2018;10(23):19373–85.
Google Scholar
Bu WH, Xu XW, Wang ZL, Jin NQ, Liu LL, Liu J, et al. Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Appl Mater Interfaces. 2020;12(45):50287–302.
Google Scholar
Meng Y, Yang MX, Liu XC, Yu WX, Yang B. Zn2+-Doped carbon dots, a good biocompatibility nanomaterial applied for bio-imaging and inducing osteoblastic differentiation in vitro. Nano. 2019;14(3):58.
Google Scholar
Wang B, Yang MX, Liu LJ, Yan GX, Yan HJ, Feng J, et al. Osteogenic potential of Zn2+-passivated carbon dots for bone regeneration in vivo. Biomater Sci. 2019;7(12):5414–23.
Google Scholar
Liu JW, Jiang TM, Li C, Wu Y, He ML, Zhao JM, et al. Bioconjugated Carbon Dots for Delivery of siTnf alpha to Enhance Chondrogenesis of Mesenchymal Stem Cells by Suppression of Inflammation. Stem Cells Transl Med. 2019;8(7):724–36.
Google Scholar
Das B, Girigoswami A, Dutta A, Pal P, Dutta J, Dadhich P, et al. Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation. ACS Biomater Sci Eng. 2019;5(7):3549–60.
Google Scholar
Jin NQ, Jin N, Wang ZL, Liu LL, Meng L, Li DW, et al. Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2 alpha-ATF4 pathway. Biomater Sci. 2020;8(10):2840–52.
Google Scholar
Ren CX, Hao XQ, Wang L, Hu Y, Meng L, Zheng SZ, et al. Metformin carbon dots for promoting periodontal bone regeneration via activation of ERK/AMPK pathway. Adv Healthc Mater. 2021;10(12):2100196.
Google Scholar
Ghorghi M, Rafienia M, Nasirian V, Bitaraf FS, Gharravi AM, Zarrabi A. Electrospun captopril-loadedPCL-carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies. Polymers Adv Technol. 2020;31(12):3302–15.
Google Scholar
Shafiei S, Omidi M, Nasehi F, Golzar H, Mohammadrezaei D, Rad MR, et al. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Mat Sci Eng C Mat Biol App. 2019;100:564–75.
Google Scholar
Geng BJ, Qin H, Shen WW, Li P, Fang FL, Li XK, et al. Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration. Chem Eng J. 2020;383.
Lu F, Yang SW, Song YX, Zhai CM, Wang QG, Ding GQ, et al. Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation. Mat Res Express. 2019;6(6).
Han Y, Zhang F, Zhang J, Shao D, Wang YN, Li S, et al. Bioactive carbon dots direct the osteogenic differentiation of human bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces. 2019;179:1–8.
Google Scholar
Dave K, Gomes VG. Bioresorbable poly (lactic acid) and organic quantum dot-based nanocomposites: luminescent scaffolds for enhanced osteogenesis and real-time monitoring. J Nanostructure Chem.
Geng BJ, Li P, Fang FL, Shi WY, Glowacki J, Pan DY, et al. Antibacterial and osteogenic carbon quantum dots for regeneration of bone defects infected with multidrug-resistant bacteria. Carbon. 2021;184:375–85.
Google Scholar
DuMez R, Miyanji EH, Corado-Santiago L, Barrameda B, Zhou YQ, Hettiarachchi SD, et al. In vivo characterization of carbon dots-bone interactions: toward the development of bone-specific nanocarriers for drug delivery. Drug Deliv. 2021;28(1):1281–9.
Google Scholar
Yang MX, Meng Y, Liu JJ, Yu WX, Yang B. Facile synthesis of Mg2+-doped carbon dots as novel biomaterial inducing cell osteoblastic differentiation. Particle Particle Sys Charac. 2019;36(1):1800315.
Google Scholar
Rajabnejadkeleshteri A, Basiri H, Mohseni SS, Farokhi M, Mehrizi AA, Moztarzadeh F. Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application. Int J Biol Macromol. 2021;184:29–41.
Google Scholar
Meng WK, Rey-Rico A, Claudel M, Schmitt G, Speicher-Mentges S, Pons F, et al. rAAV-Mediated Overexpression of SOX9 and TGF-beta via Carbon Dot-Guided Vector Delivery Enhances the Biological Activities in Human Bone Marrow-Derived Mesenchymal Stromal Cells. Nanomaterials. 2020;10(5).
Wang W, Ni YR, Xu ZZ. One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application. J Alloys Compd. 2015;622:303–8.
Google Scholar
Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mat Sci Eng C Mat Biol Appl. 2014;38:20–7.
Google Scholar
Yang ZC, Wang M, Yong AM, Wong SY, Zhang XH, Tan H, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun. 2011;47(42):11615–7.
Google Scholar
Zhu H, Wang XL, Li YL, Wang ZJ, Yang F, Yang XR. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun. 2009;34:5118–20.
Google Scholar
Wang XH, Qu KG, Xu BL, Ren JS, Qu XG. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem. 2011;21(8):2445–50.
Google Scholar
Liu Y, Xiao N, Gong NQ, Wang H, Shi X, Gu W, et al. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon. 2014;68:258–64.
Google Scholar
Jiang K, Wang YH, Gao XL, Cai CZ, Lin HW. Facile, Quick, and Gram-Scale Synthesis of Ultralong-Lifetime Room-Temperature-Phosphorescent Carbon Dots by Microwave Irradiation. Angew Chem Int Ed Engl. 2018;57(21):6216–20.
Google Scholar
Lo SH. Focal adhesions: What's new inside. Dev Biol. 2006;294(2):280–91.
Google Scholar
Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: In command and control of cell motility. Nat Rev Mol Cell Biol. 2005;6(1):56–68.
Google Scholar
Brown MC, Perrotta JA, Turner CE. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol. 1996;135(4):1109–23.
Google Scholar
Hemmings L, Barry ST, Critchley DR. Cell-matrix adhesion: structure and regulation. Biochem Soc Trans. 1995;23(3):619–26.
Google Scholar
McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95.
Google Scholar
Li JC, Zhang J, Chen Y, Kawazoe N, Chen GP. TEMPO-Conjugated Gold Nanoparticles for Reactive Oxygen Species Scavenging and Regulation of Stem Cell Differentiation. ACS Appl Mater Interfaces. 2017;9(41):35683–92.
Google Scholar
Chen Y, Whetstone HC, Lin AC, Nadesan P, Wei QX, Poon R, et al. Beta-catenin signaling plays a disparate role in different phases of fracture repair: Implications for therapy to improve bone healing. PLoS Med. 2007;4(7):1216–29.
Google Scholar
Yamaguchi M, Goto M, Uchiyama S, Nakagawa T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem. 2008;312(1-2):157–66.
Google Scholar
Kwun IS, Cho YE, Lomeda RAR, Shin HI, Choi JY, Kang YH, et al. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. 2010;46(3):732–41.
Google Scholar
Wang WH, Li TL, Wong HM, Chug PK, Kao RYT, Wu SL, et al. Development of novel implants with self-antibacterial performance through in-situ growth of 1D ZnO nanowire. Colloids Surf B Biointerfaces. 2016;141:623–33.
Google Scholar
Popp JR, Love BJ, Goldstein AS. Effect of soluble zinc on differentiation of osteoprogenitor cells. J Biomed Mater Res A. 2007;81A(3):766–9.
Google Scholar
Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31(8):2084–96.
Google Scholar
Wong HM, Wu SL, Chu PK, Cheng SH, Luk KDK, Cheung KMC, et al. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials. 2013;34(29):7016–32.
Google Scholar
Wang W, Wong H, Leung F, Cheung K, Yeung K. Magnesium Ions Enriched Decellularized Bone Allografts for Bone Tissue Engineering. Tissue Eng Part A. 2015;21:S232–2.
Google Scholar
Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect Tissue Res. 2014;55:155–9.
Google Scholar
Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014;10(6):2834–42.
Google Scholar
Verberckmoes SC, De Broe ME, D'Haese PC. Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int. 2003;64(2):534–43.
Google Scholar
Li YF, Li JH, Zhu SS, Luo E, Feng G, Chen QM, et al. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2012;418(4):725–30.
Google Scholar
Wu CT, Zhou YH, Xu MC, Han PP, Chen L, Chang J, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34(2):422–33.
Google Scholar
Ren L, Wong HM, Yan CH, Yeung KWK, Yang K. Osteogenic ability of Cu-bearing stainless steel. J Biomed Mat Res B App Biomater. 2015;103(7):1433–44.
Google Scholar
Fan W, Crawford R, Xiao Y. Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials. 2010;31(13):3580–9.
Google Scholar
Wu CT, Zhou YH, Fan W, Han PP, Chang J, Yuen J, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012;33(7):2076–85.
Google Scholar
Quinlan E, Partap S, Azevedo MM, Jell G, Stevens MM, O'Brien FJ. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials. 2015;52:358–66.
Google Scholar
Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127–35.
Google Scholar
Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, et al. Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of Human Mesenchymal Stem Cells. Adv Mater. 2013;25(24):3329–36.
Google Scholar